Vnitřní síly v prutových konstrukcích

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Vnitřní síly v prutových konstrukcích"

Transkript

1 Vnitřní síly v prutových konstrukcích Síla je vektorová fyikální veličina, která vyjadřuje míru působení těles nebo polí. Zavedení síly v klasické Newtonově mechanice (popis pohybu těles) dp dv F = = m = dt dt ma Rodělení sil podle působu působení: např. gravitační, elastické, elektromagnetické, kapilární Rodělení sil ve fyice podle ákladní interakce hmotných objektů gravitační, elektromagnetická, silná, slabá

2 Síly působící na/v konstrukci ZATÍŽENÍ. Síly působící vnějšku na konstrukci. Jednotky N nebo N/m, N/m 2, N/m 3. (vi SM1) REAKCE. Síly působící ve vabách, které uvádějí do rovnováhy. Jednotky N. (vi SM1) VNITŘNÍ SÍLY, F. Integrální veličiny popisující aktuální stav namáhání daného místa konstrukce (průřeu). Jsou v rovnováe e atížením části prutu. Jednotky N. (SM2) NAPĚTÍ, σ. charakteristika namáhání bodu tělesa/prutu/konstrukce. Síla vtažená na jednotku plochy. Jednotky N/m 2. (vi Pružnost) F σ F = A Plocha průřeu, A σ da

3 Popis konstrukce (model, statické schéma) Modelování ahrnuje jednodušení a popis tvaru konstrukce. Model-Prostorový (těleso nebo prostorová prutová konstrukce) Plošný (deska, stěna) Rovinný prutový (rám, rošt) atížení pruty

4 Prut: konstrukční prvek, jehož jeden roměr (délka) převládá nad ostatními. h l >> h l >> b l b Průře: příčný ře prutu Střednice: čára tvořená těžišti průřeů prutu Pruty budeme modelovat jejich střednicí.

5 Prostorový prut - střednice je prostorová křivka nebo lomenáčára Rovinný prut - střednice je rovninná křivka nebo lomenáčára Primatický prut - přímý prut konstantního průřeu osa Obecný prut - akřivený, proměnného průřeu

6 Nosník = podepřený prut, atížený Př: Prostý nosník Prostý nosník s převislými konci Konolový nosník, konola, krakorec

7 Nosníky přímé obloukové lomené prutové soustavy, rámové konstrukce

8 prutové soustavy, rámové konstrukce prutové soustavy, roštové konstrukce

9 Základní fyikální stavy prutu- deformace a odpovídající síly Síly atížení Napětí v bodě průřeu Elementární síla df působící na jednotkovou plochu da Normálové napětí v bodě průřeu σ = df/da (N/m 2 ) Jaká je celková (vnitřní) síla působící v průřeu?

10 Tah/tlak da df R=F σ N N σ Celková (vnitřní) síla působící v průřeu N = σ da A F Pokud je napětí rovnoměrné, pak N = σ da = σ A A

11 Čistý ohyb M M σ σ da df Napětí je nerovnoměrné. Podle teorie pružnosti je lineární. Celkové (vnitřní) síly působící v průřeu N M = = A σ da = 0 A σ da

12 Ohyb+tlak/tah M N M da df σ 1 N + σ 2 σ 2 + σ 1 Napětí je nerovnoměrné. Celkové (vnitřní) síly působící v průřeu σ N = M = A A da σ da

13 Zavedení vnitřních sil na prutu rovnováhy sil Prut v rovnováe (reakce a atížení tvoří rovnovážnou soustavu sil) L P rodělíme fiktivním řeem na 2 části L a P

14 Zavedení vnitřních sil na prutu rovnováhy sil Aby každáčást byla v rovnováe, musí v řeu působit síly a momenty: P, P... Vyjadřuje účinek části P na L, uvádíčást L do rovnováhy L, L... Vyjadřuje účinek části L na P, uvádíčást P do rovnováhy L P P L L P Princip akce a reakce: P = - L P = - L Pon: P, P je ekvivalentní náhrada atížení, které působí na Pravéčásti P L, L je ekvivalentní náhrada atížení, které působí na Levéčásti L

15 Q y P Ve koumaném řeu avedeme lokální souřadný systém -y- ; osa tečna ke střednici, y, normály y M y Q N M P M Vniřní síly prutu Vektory P a P roložíme do složek: F P = N... normálová síla [N] F Py = Q y = V y... posouvající síla [N] F P = Q = V... posouvající síla [N] M P = M = T... kroutící moment [Nm] M Py = M y... ohybový moment [Nm] M P = M... ohybový moment [Nm]

16 Kladná orientace vnitřních sil + - Záporně orientovaný průře (vidíme e směru áporné poloosy ) y M y Q y Q M N M Kladně orientovaný průře (vidíme e směru kladné poloosy ) kladné vnitřní síly orientované shodně se souřadnicovými osami M M Q M N y Q y y kladné vnitřní síly orientované opačně než souřadnicové osy

17 Výpočet vnitřních sil pomocí podmínek rovnováhy V y N M M Q N Q y M y M y V M M Soustava sil v rovnováe na levéčásti Soustava sil v rovnováe na pravéčásti Sestavením podmínek rovnováhy (6) na jedné nebo druhéčásti ískáváme rovnice pro výpočet nenámých vnitřních sil

18 Alternativní výpočet vnitřních sil pomocí podmínek ekvivalence L M M Q N Q y M y Vnitřní síly na pravéčásti (na áporném průřeu) jsou ekvivalentní k veškerému atížení, které působí od ačátku konstrukce k danému řeu (na části L). P Pon. Také vnitřní síly na levéčásti (na kladném průřeu) jsou ekvivalentní k veškerému atížení, které působí od konce konstrukce k danému řeu (na části P).

19 Zatížení prutu/nosníku Pokud pruty modelujeme jejich střednicí Př.: A h 2 veškeré síly působící na konstrukci (atížení i reakce) redukujeme ke střednici A A F A A F F F rovina h 2 B B h/2 h/2 prostor F F b/2 b/2 F b 2

20 Příklad 1 f= 10 kn/m Příklad 2 C A B h b L/3 2/3 L F=100 kn Určete vnitřní síly v průřeech A, B, C.

21 Rovinný prut atížený v rovině Pokud: 1) střednice - rovinná křivka 2) vnější síly (atížení a reakce) - rovnovážná soustava v rovině střednice jednodušení vnitřních sil: Q y M = 0 = M = 0 podmínek rovnováhy oddělenéčásti y Μ Q N Vnitřní síly: N... normálová síla [N] Q = Q = V... posouvající síla [N] M y = M... ohybový moment [Nm]

22 Kladná orientace vnitřních sil M Q N N Q M Kladně orientovaný průře (vidíme e směru kladné poloosy ) Záporně orientovaný průře (vidíme e směru áporné poloosy )

23 Orientace lokálního souřadného systému (rovinná kce.) osa... vždy tečná ke střednici prutu osa... preferujeme ve směru emské tíže (shora dolu) nebo leva doprava - pravotočivá soustava souřadnic někdy též * "spodní" vlákna (stranu) prutů onačujeme čárkovanou čarou

24 Vnitřní síly na ákladních konstrukcích Prostý nosník Nosník s převislými konci Konola

25 Příklad

26 Výpočet vnitřních sil v daném průřeu prutu Určete vnitřní síly v průřeu a. F a f 1 1) Prut vyjmeme e soustavy a určíme všechny vnější síly na něj působící (atížení a reakce) F a F R1 f 2 A A B B

27 2) Prut rodělíme řeem a na části L a P a do řeu avedeme nenámé vnitřní síly. A A F a F R1 A A F L M Q N N M Q F R1 P B B B B 3) Vnitřní síly v řeu určíme podmínek rovnováhy všech sil působících na oddělenou část prutu L nebo P: L: A, A, F, N, Q, M... musí být v rovnováe P: B, B, F R1, N, Q, M... musí být v rovnováe * Ať použijeme část L nebo P, vnitř. síly N, Q, M musí vyjít stejně (akce a reakce) kontrola výsledku!

28 Příklad přímé konstrukce

29 Příklad: Vypočítejte vnitřní síly v řeech a, b, c dané konstrukce. F 2 = 2 kn a F 1 = 8 kn b f = 1.5 kn/m c (m) Reakce: (kn) 9

30 Průře a: Výpočet "leva" N a M a a 8 Q a 3 3 Na + 5 = 0 Na = 5kN Qa = 0 Qa = 4kN 8 4 M a = 0 M a = 0kNm 5 (m, kn)

31 Průře a: Výpočet "prava" Q a a 4 M a 3 Na = 0 Na = 5kN N a 2 2 Qa + 4 = 0 Qa = 4kN (m, kn) M a = 0 M a = 0kNm

32 Průře b: Výpočet "leva" 2 b M b N b Nb = 0 Nb = 4kN 8 8 Q b Qb = 0 Qb = 3kN M b = 0 M b = 0kNm 5 (m, kn)

33 Průře b: Rovnováha ve styčníku Q a 2 b a M a N a Q b M b N b (m, kn) Nb Qa = 0 Nb = Qa = 4kN Qb + Na + 2 = 0 Qb = Na 2 = 3kN M b M a = 0 M b = M a = 0kNm

34 Průře c: c M c N c 8 Q c Nc = 0 Nc = 4kN (m, kn) Qc = 0 Qc = 0kN M c = 0 M c = 3kNm

35 Průře c (alternativní výpočet): Q b 1.52 N b c M c N c M b 2 Q c (m, kn) Nc Nb = 0 Nc = Nb = 4kN Qc Qb + 3 = 0 Qc = Qb 3 = 0kN M c M b Qb = 0 M c = 3kN

36 Speciální případy

37

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

Stavební mechanika 2 (K132SM02)

Stavební mechanika 2 (K132SM02) Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz konzultační hodiny budou upřesněny později https://mech.fsv.cvut.cz/student/

Více

2.13 Rovinný obloukový nosník zatížený v rovině = staticky určitě podepřený rovinný obloukový prut

2.13 Rovinný obloukový nosník zatížený v rovině = staticky určitě podepřený rovinný obloukový prut .13 Rovinný obloukový nosník atížený v rovině = staticky určitě podepřený rovinný obloukový prut (střednice-rovinná křivka, atížení v rovině střednice) Geometrie obloukového prutu Poloha průřeu: s x =

Více

Pružnost a pevnost. 2. přednáška, 10. října 2016

Pružnost a pevnost. 2. přednáška, 10. října 2016 Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné

Více

Předpoklady: konstrukce je idealizována jako soustava bodů a tuhých těles (v prostoru) nebo bodů a tuhých desek (v rovině) konstrukce je v rovnováze

Předpoklady: konstrukce je idealizována jako soustava bodů a tuhých těles (v prostoru) nebo bodů a tuhých desek (v rovině) konstrukce je v rovnováze 4.5 eakce staticky určitých konstrukcí Úloha: posoudit statickou určitost / navrhnout podepření konstrukce jistit jakými silami jsou namáhanéčásti konstrukce, jakými silami působí konstrukce na áklady

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

3. kapitola. Průběhy vnitřních sil na lomeném nosníku. Janek Faltýnek SI J (43) Teoretická část: Příkladová část: Stavební mechanika 2

3. kapitola. Průběhy vnitřních sil na lomeném nosníku. Janek Faltýnek SI J (43) Teoretická část: Příkladová část: Stavební mechanika 2 3. kapitola Stavební mechanika Janek Faltýnek SI J (43) Průběhy vnitřních sil na lomeném nosníku Teoretická část: Naším úkolem je v tomto příkladu vyšetřit průběh vnitřních sil na lomeném rovinném nosníku

Více

Téma 8 Příčně zatížený rám a rošt

Téma 8 Příčně zatížený rám a rošt Statika stavebních konstrukcí I.,.ročník bakalářského studia Téma 8 Příčně zatížený rám a rošt Základní vlastnosti příčně zatíženého rámu Jednoduchý příčně zatížený otevřený rám Základní vlastnosti roštu

Více

SLOUP NAMÁHANÝ TLAKEM A OHYBEM

SLOUP NAMÁHANÝ TLAKEM A OHYBEM SOUP NAMÁHANÝ TAKEM A OHYBEM Posuďte únosnost centrick tlačeného sloupu délk 50 m profil HEA 4 ocel S 55 00 00. Schéma podepření a atížení je vidět na následujícím obráku: M 0 M N N N 5m 5m schéma pro

Více

Desky. Petr Kabele. Pružnost a pevnost 132PRPE Přednášky. Deska/stěna/skořepina, desky základní předpoklady, proměnné a rovnice

Desky. Petr Kabele. Pružnost a pevnost 132PRPE Přednášky. Deska/stěna/skořepina, desky základní předpoklady, proměnné a rovnice Pružnost a pevnost 13PRPE Přednášk Desk Deska/stěna/skořepina, desk ákladní předpoklad, proměnné a rovnice Petr Kabele České vsoké učení technické v Prae Fakulta stavební Úvod Přemístění, deformaci a napjatost

Více

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M. Definování 4. přednáška prutech iroslav okáč miroslav.vokac@cvut.cz ČUT v Praze, Fakulta architektury 11. dubna 2016 prutech nitřní síly síly působící uvnitř tělesa (desky, prutu), které vznikají působením

Více

Podmínky k získání zápočtu

Podmínky k získání zápočtu Podmínky k získání zápočtu 18 až 35 bodů 7 % aktivní účast, omluvená neúčast Odevzdání programů Testy: 8 nepovinných testů (-2 body nebo -3 body) 3 povinné testy s ohodnocením 5 bodů (povoleny 2 opravné

Více

Přednáška 1 Obecná deformační metoda, podstata DM

Přednáška 1 Obecná deformační metoda, podstata DM Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí

Více

Zjednodušená deformační metoda (2):

Zjednodušená deformační metoda (2): Stavební mechanika 1SM Přednášky Zjednodušená deformační metoda () Prut s kloubově připojeným koncem (statická kondenzace). Řešení rovinných rámů s posuvnými patry/sloupy. Prut s kloubově připojeným koncem

Více

Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1).

Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1). Kapitola 4 Vnitřní síly přímého vodorovného nosníku 4.1 Analýza vnitřních sil na rovinných nosnících Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena rekapitulace

Více

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady. Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových

Více

Přednáška 09. Smyk za ohybu

Přednáška 09. Smyk za ohybu Přednáška 09 Smk a ohbu Vnitřní síl na nosníku ve vtahu k napětí Smkové napětí pro obdélníkový průře Smkové napětí pro obecný průře Smkové ochabnutí Svar, šroub, spřahovací trn Příklad Copright (c) 2011

Více

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání iloš Hüttner SR D přímé nosníky cvičení 09 adání D PŘÍÉ NOSNÍKY Příklad č. 1 Vykreslete průběhy vnitřních sil na konstrukci zobrazené na Obr. 1. Příklad převzat z katedrové wikipedie (originál ke stažení

Více

PRUŽNOST A PLASTICITA I

PRUŽNOST A PLASTICITA I Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice

Více

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici)

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici) Kapitola 8 Vnitřní síly rovinně zakřiveného prutu V této kapitole bude na příkladech vysvětleno řešení vnitřních sil rovinně zakřivených nosníků, jejichž střednici tvoří oblouk ve tvaru kvadratické paraboly[1].

Více

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled

Více

Rovnoměrně ohýbaný prut

Rovnoměrně ohýbaný prut Přednáška 02 Prostý ohb Hpotéa o achování rovinnosti průřeu Křivost prutu, vtah mei momentem a křivostí Roložení napětí při ohbu Pružný průřeový modul Vliv teplot na křivost Copright (c) 2011 Vít Šmilauer

Více

1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5.

1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5. Kapitola 5 Vnitřní síly přímého šikmého nosníku Pojem šikmý nosník je používán dle publikace [1] pro nosník ležící v souřadnicové rovině xz, který je vůči vodorovné ose x pootočen o úhel α. Pro šikmou

Více

Smyková napětí v ohýbaných nosnících

Smyková napětí v ohýbaných nosnících Pružnost a plasticita, 2.ročník kominovaného studia Smková napětí v ohýaných nosnících Základní vtah a předpoklad řešení ýpočet smkového napětí odélníkového průřeu Dimenování nosníků namáhaných na smk

Více

Normálová napětí v prutech namáhaných na ohyb

Normálová napětí v prutech namáhaných na ohyb Pružnost a plasticita, 2.ročník kombinovaného studia Normálová napětí v prutech namáhaných na ohb Základní vtah a předpoklad řešení Výpočet normálového napětí Dimenování nosníků namáhaných na ohb Složené

Více

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Přednáška 2 pro kombinované studium Jiří Brožovský Kancelář: LP C 303/1 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz

Více

Téma 7 Smyková napětí v ohýbaných nosnících

Téma 7 Smyková napětí v ohýbaných nosnících Pružnost a plasticita,.ročník bakalářského studia Téma 7 Smková napětí v ohýbaných nosnících Základní vtah a předpoklad řešení Výpočet smkového napětí vbraných průřeů Dimenování nosníků namáhaných na smk

Více

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Vnitřní síly na nosnících Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW:

Více

Pružnost a pevnost I

Pružnost a pevnost I Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická

Více

trojkloubový nosník bez táhla a s

trojkloubový nosník bez táhla a s Kapitola 10 Rovinné nosníkové soustavy: trojkloubový nosník bez táhla a s táhlem 10.1 Trojkloubový rám Trojkloubový rám se skládá ze dvou rovinně lomených nosníků v rovinné úloze s kloubovým spojením a

Více

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu. Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech

Více

Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury.

Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. reálných 3. přednáška Reakce na rovinných staticky určitých konstrukcích Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 21. března 2016 Dřevěný trámový strop - Anežský klášter

Více

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c ) 3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =

Více

4. Napjatost v bodě tělesa

4. Napjatost v bodě tělesa p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.

Více

Pružnost a pevnost. zimní semestr 2013/14

Pružnost a pevnost. zimní semestr 2013/14 Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:

Více

2. kapitola. Co jsou to vnitřní síly, jakými způsoby se dají určit, to vše jsme se naučili v první kapitole.

2. kapitola. Co jsou to vnitřní síly, jakými způsoby se dají určit, to vše jsme se naučili v první kapitole. 2. kapitola Stavební mechanika 2 Janek Faltýnek SI J (43) Průběhy vnitřních sil Teoretická část: V tomto příkladu máme za úkol vyšetřit průběhy vnitřních sil na rovinné konstrukci zatížené libovolným spojitým

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

1. kapitola. Vnitřní síly v průřezu prostorového prutu. Janek Faltýnek SI J (43) Teoretická část: Stavební mechanika 2.

1. kapitola. Vnitřní síly v průřezu prostorového prutu. Janek Faltýnek SI J (43) Teoretická část: Stavební mechanika 2. 1. kapitola Stavební echanika Janek Faltýnek SI J (43) Vnitřní síl v průřeu prostorového prutu eoretická část: ) erinologie ejdříve bcho si ěli říci co se rouí pod poje prut. Jako prut se onačuje konstrukční

Více

Výpočet sedání kruhového základu sila

Výpočet sedání kruhového základu sila Inženýrský manuál č. 22 Aktualizace 06/2016 Výpočet sedání kruhového základu sila Program: MKP Soubor: Demo_manual_22.gmk Cílem tohoto manuálu je popsat řešení sedání kruhového základu sila pomocí metody

Více

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ 7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní

Více

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti

Více

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině

Více

STATIKA. Vyšetřování reakcí soustav. Úloha jednoduchá. Ústav mechaniky a materiálů K618

STATIKA. Vyšetřování reakcí soustav. Úloha jednoduchá. Ústav mechaniky a materiálů K618 STATIKA Vyšetřování reakcí soustav Úloha jednoduchá Ústav mechaniky a materiálů K618 1 Zadání Posuďte statickou určitost a vyšetřete reakce rovinné soustavy zadané dle obrázku: q 0 M Dáno: L = 2 m M =

Více

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví 5. přednáška Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 5. května 2014 (prutové ) podle prostoru rozdělujeme na: Rovinné Prostorové Dále se budeme zabývat jen rovinnými

Více

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace

Více

FAKULTA STAVEBNÍ. Telefon: WWW:

FAKULTA STAVEBNÍ. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

Statika soustavy těles.

Statika soustavy těles. Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho

Více

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky

Více

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky. POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

P řed m lu va 11. P o u žitá sym b o lik a 13. I. Z á k la d y s ta v e b n í m e c h a n ik y - s ta tik y

P řed m lu va 11. P o u žitá sym b o lik a 13. I. Z á k la d y s ta v e b n í m e c h a n ik y - s ta tik y 5 Obsah P řed m lu va 11 P o u žitá sym b o lik a 13 I. Z á k la d y s ta v e b n í m e c h a n ik y - s ta tik y 15 1. Úvodní č á s t 17 I. I. Vědní obor mechanika..... 17 1.2. Stavební mechanika a je

Více

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia Stavební statika, 1.ročník bakalářského studia Zakřivený nosník Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita

Více

Příhradové konstrukce

Příhradové konstrukce Příhradové konstrukce Základní předpoklady konstrukce je vytvořena z přímých prutů pruty jsou navzájem pospojovány v bodech =>styčnících vzájemné spojení prutů se ve všech styčnících se předpokládá kloubové

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

Úvod do soustav sil. 1. Axiom o rovnováze sil F 1 F 2. tuhém tělese na stejném paprsku jsou v rovnováze. Axiomy statiky. Statika 1. M. Vokáč.

Úvod do soustav sil. 1. Axiom o rovnováze sil F 1 F 2. tuhém tělese na stejném paprsku jsou v rovnováze. Axiomy statiky. Statika 1. M. Vokáč. 1. cvičení Svazek sil & tlak Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 14. února 2018 do soustav sil Síla je vektor y tuhé těleso F & tlak působiště paprsek [0,0] α A[x A,y

Více

ZÁKLADNÍ POJMY A VZTAHY V TECHNICKÉ PRUŽNOSTI

ZÁKLADNÍ POJMY A VZTAHY V TECHNICKÉ PRUŽNOSTI ZÁKLDNÍ POJY VZTHY V TECHNICKÉ PRUŽNOSTI Napětí velikost vnitřní síl na jednotku ploch konečné podíl elementů vnitřních sil a ploch Podle směru vnitřních sil avádíme: ds napětí celkové σ r = v obecném

Více

Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)

Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5) Nosné desky Deska je těleso, které má jeden rozměr mnohem menší než rozměry zbývající. Zatížení desky je orientováno výhradně kolmo k její střednicové rovině. 1. Kirchhoffova teorie ohybu tenkých desek

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

4.6.3 Příhradové konstrukce

4.6.3 Příhradové konstrukce 4.6.3 Příhradové konstrukce Forth Bridge (1890) 2529 m Akashi Kaikyō Bridge (1998) 3911 m "Forth rail bridge head-on-panorama josh-von-staudach" by Josh von Staudach - Own work. "The Forth Bridge seen

Více

7 Lineární elasticita

7 Lineární elasticita 7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový

Více

Integrální definice vnitřních sil na prutu

Integrální definice vnitřních sil na prutu Přednáška 04 Integrální definice vnitřních sil Ohb prutu v rovinách x, x Šikmý ohb Kombinace normálové síl s ohbem Poloha neutrální os Jádro průřeu Příklad Copright (c) 011 Vít Šmilauer Cech Technical

Více

Vícerozměrné úlohy pružnosti

Vícerozměrné úlohy pružnosti Přednáška 07 Víceroměrné úlohy Rovinná napjatost a deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro úlohu rovinné napjatosti Příklady Copyright (c) 0 Vít Šmilauer Cech Technical University

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů)

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) PŘEDNÁŠKY Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) Volné dotvarování Vázané dotvarování Dotvarování a geometrická nelinearita Volné dotvarování Vývoj deformací není omezován staticky

Více

PRUŽNOST A PLASTICITA

PRUŽNOST A PLASTICITA PRUŽNOST A PLASTICITA Ing. Petr Konečný LPH 407/3 tel. 59 732 1384 petr.konecny@vsb.cz http://fast10.vsb.cz/konecny Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená literatura

Více

Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky.

Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. 7. Prutové soustavy Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. s styčník (ruší 2 stupně volnosti) každý

Více

graficky - užití Cremonova obrazce Zpracovala: Ing. Miroslava Tringelová

graficky - užití Cremonova obrazce Zpracovala: Ing. Miroslava Tringelová Statické řešení zadané rovinné prutové soustavy graficky - užití Cremonova obrazce Zpracovala: Ing. Miroslava Tringelová Určení sil v prutech prutové soustavy - graficky U příkladu viz obr. (1) graficky

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky Průmyslová střední škola Letohrad Ing. Soňa Chládková Sbírka příkladů ze stavební mechaniky 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního

Více

BO004 KOVOVÉ KONSTRUKCE I

BO004 KOVOVÉ KONSTRUKCE I BO004 KOVOVÉ KONSTRUKCE I PODKLADY DO CVIČENÍ VYPRACOVAL: Ing. MARTIN HORÁČEK, Ph.D. AKADEMICKÝ ROK: 2018/2019 Obsah Dispoziční řešení... - 3 - Příhradová vaznice... - 4 - Příhradový vazník... - 6 - Spoje

Více

Stavební mechanika přednáška, 10. dubna 2017

Stavební mechanika přednáška, 10. dubna 2017 Stavební mechanika 3 7. přednáška, 10. dubna 2017 Stavební mechanika 3 7. přednáška, 10. dubna 2017 Obecná deformační metoda 8) poznámky k využití symetrie 9) využití výpočetních programů 10) kontrola

Více

Předmět: SM02 PRŮBĚH VNITŘNÍCH SIL M(x), V(x), N(x) NA ROVINNÉM ŠIKMÉM PRUTU. prof. Ing. Michal POLÁK, CSc.

Předmět: SM02 PRŮBĚH VNITŘNÍCH SIL M(x), V(x), N(x) NA ROVINNÉM ŠIKMÉM PRUTU. prof. Ing. Michal POLÁK, CSc. Předmět: SM0 PRŮBĚH VNITŘNÍCH SIL M(), V(), N() NA ROVINNÉM ŠIKMÉM PRUTU pro. Ing. Michl POLÁK, CSc. Fkult stvení, ČVUT v Pre 004-014 PRŮBĚHY VNITŘNÍCH SIL M(), N(), V() NA ROVINNÉM ŠIKMÉM PRUTU: ZATÍŽENÍ

Více

Analýza napjatosti PLASTICITA

Analýza napjatosti PLASTICITA Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném

Více

Nelineární problémy a MKP

Nelineární problémy a MKP Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)

Více

2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3.

2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3. obsah 1 Obsah Zde je uveden přehled jednotlivých kapitol a podkapitol interaktivního učebního textu Pružnost a pevnost. Na tomto CD jsou kapitoly uloženy v samostatných souborech, jejichž název je v rámečku

Více

Přímková a rovinná soustava sil

Přímková a rovinná soustava sil Přímková a rovinná soustava sil 1) Souřadný systém - v prostoru - v rovině + y + 2) Síla P ( nebo F) - vektorová veličina - působiště velikost orientace Soustavy sil - přehled Soustavy sil můžeme rodělit

Více

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti. Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného

Více

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov 3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je

Více

SMR 1. Pavel Padevět

SMR 1. Pavel Padevět SR 1 Pavel Padevět ITŘÍ SÍY PRUTU ITŘÍ SÍY PRUTU Put (nosník) konstukční vek u něhož délka načně řevládá nad dalšími dvěma oměy. Při řešení tyto vky modelujeme jejich střednicí čáou tvořenou sojnicí těžišť

Více

5. Statika poloha střediska sil

5. Statika poloha střediska sil 5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny

Více

ANALÝZA KONSTRUKCÍ. 5. přednáška

ANALÝZA KONSTRUKCÍ. 5. přednáška ANALÝZA KONSTRUKCÍ 5. přednáška Nosné stěny rovinná napjatost Způsoby výpočtu napjatosti: Deformační metodou Primární neznámé: posuny u(,y), v(,y) Výchozí rovnice: statické Silovou metodou Primární neznámá:

Více

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.

Více

Platnost Bernoulli Navierovy hypotézy

Platnost Bernoulli Navierovy hypotézy Přednáška 0 Platnost Bernoulli Navierovy hypotézy Diferenciální rovnice ohybu prutu Schwedlerovy věty Rovnováha na segmentech prutu Clebschova metoda integrace Vliv teploty na průhyb a křivost prutu Příklady

Více

4. cvičení výpočet zatížení a vnitřních sil

4. cvičení výpočet zatížení a vnitřních sil 4. cvičení výpočet zatížení a vnitřních sil Výpočet zatížení stropní deska Skladbu podlahy a hodnotu užitného zatížení převezměte z 1. úlohy. Uvažujte tloušťku ŽB desky, kterou jste sami navrhli ve 3.

Více

Namáhání ostění kolektoru

Namáhání ostění kolektoru Inženýrský manuál č. 23 Aktualizace 06/2016 Namáhání ostění kolektoru Program: MKP Soubor: Demo_manual_23.gmk Cílem tohoto manuálu je vypočítat namáhání ostění raženého kolektoru pomocí metody konečných

Více

BETONOVÉ KONSTRUKCE B03C +B03K SKOŘEPINOVÉ KONSTRUKCE. Betonové konstrukce B03C +B03K. Betonové konstrukce - B03C +B03K

BETONOVÉ KONSTRUKCE B03C +B03K SKOŘEPINOVÉ KONSTRUKCE. Betonové konstrukce B03C +B03K. Betonové konstrukce - B03C +B03K 7.1.017 SKOŘEPINOVÉ KONSTUKCE BETONOVÉ KONSTUKCE B03C B03K Betonové konstrukce - B03C B03K 1 7.1.017 Skořepiny Konstrukční prvky plošnéo carakteru dva převládající roměry konstrukčnío prvku (

Více

Kˇriv e pruty Martin Fiˇser Martin Fiˇ ser Kˇ riv e pruty

Kˇriv e pruty Martin Fiˇser Martin Fiˇ ser Kˇ riv e pruty Obsah Dimenzování křivého tenkého prutu zde Deformace v daném místě prutu zde Castiglianova věta zde Dimenzování křivého tenkého prutu Mějme obecný křivý prut z homogeního izotropního materiálu. Obrázek:

Více

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM)

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM) NOSNÍK NA PRUŽNÉ PODLOŽÍ (WINKLEROVSKÉ) Uvažujeme spojitý nosník na pružných podporách. Pružná podpora - odpor je úměrný zatlačení. Pružné podpory velmi blízko sebe - jejich účinek lze nahradit spojitou

Více

Cvičení 7 (Matematická teorie pružnosti)

Cvičení 7 (Matematická teorie pružnosti) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:

Více

STATIKA Fakulta strojní, prezenční forma, středisko Šumperk

STATIKA Fakulta strojní, prezenční forma, středisko Šumperk STATIKA 2013 Fakulta strojní, prezenční forma, středisko Šumperk Př. 1. Určete výslednici silové soustavy se společným působištěm (její velikost a směr). Př. 2. Určete výslednici silové soustavy se společným

Více

Teorie prostého smyku se v technické praxi používá k výpočtu styků, jako jsou nýty, šrouby, svorníky, hřeby, svary apod.

Teorie prostého smyku se v technické praxi používá k výpočtu styků, jako jsou nýty, šrouby, svorníky, hřeby, svary apod. Výpočet spojovacích prostředků a spojů (Prostý smyk) Průřez je namáhán na prostý smyk: působí-li na něj vnější síly, jejichž účinek lze ekvivalentně nahradit jedinou posouvající silou T v rovině průřezu

Více

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu Přednáška 08 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův ákon Příklad emní tlak v klidu Copyright (c) 2011 Vít Šmilauer Cech Technical University in

Více

5. Prutové soustavy /příhradové nosníky/

5. Prutové soustavy /příhradové nosníky/ PŠ a VOŠ KLDNO MECHNIK I. - TTIK. Prutové soustavy /příhradové nosníky/ - nosné konstrukce mostů, jeřábů, stožárů, střech, letadel apod. - skládají se z prutů spojených nýty, šrouby nebo svary v kloubech

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

PRŮŘEZOVÉ CHARAKTERISTIKY

PRŮŘEZOVÉ CHARAKTERISTIKY . cvičení PRŮŘEZOVÉ CHRKTERISTIKY Poznámka Pojem průřezu zavádíme u prutových konstrukčních prvků. Průřez je rovinný obrazec, který vznikne myšleným řezem vedeným kolmo k podélné ose nedeformovaného prutu,

Více

POŽADAVKY KE ZKOUŠCE Z PP I

POŽADAVKY KE ZKOUŠCE Z PP I POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze o vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

Ohyb - smyková napětí

Ohyb - smyková napětí Oh - smková napětí p + + - - l x ohýaný nosník - M σ x - x Průřeové charakteristik pro smková napětí a ohu jsou statický moment ploch S a moment setrvačnosti. S A části průr T [ m ] max Mení stav únosnosti

Více

Statika tuhého tělesa Statika soustav těles. Petr Šidlof

Statika tuhého tělesa Statika soustav těles. Petr Šidlof Statika tuhého tělesa Statika soustav těles Petr Šidlof Rovnováha volného tuhého tělesa (1) Hmotný bod: v rovnováze když rovnováha sil F 0 Tuhé těleso: v rovnováze když rovnováha sil a momentů F 0, M 0

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více