Funkce dvou proměnných
|
|
- Pavel Mach
- před 6 lety
- Počet zobrazení:
Transkript
1 Funkce dvou proměnných Funkce dvou proměnných harmonická vlna Postupné příčné vlnění T=2, = 2 ( t, ) Asin t 2 Asin t T v t Asin 2 T Počátek koná harmonický pohb, ten se šíří dál řadou oscilátorů ve směru os rchlostí v. Do bodu M ve vdálenosti od droje vlnění dospěje a čas τ =. O tuto dobu je kmitání bodu M v opožděno oproti kmitání droje. 1
2 Př: paraboloid Funkce dvou proměnných Etrém pro H>0, Sedlový bod pro H < 0 2 limita_ondra.ggb Vjádření ploch 1. Eplicitní: = f(,) ; [,] 2. Implicitní: F(,,)=0 sin 0, ; 0,1 r 3. Parametrické: P(u,v) = [(u,v), (u,v), (u,v)] 2
3 Kvadrik algebraické ploch 2. stupně O O O 0 = V Kvadrik algebraické ploch 2. stupně Trojosý elipsoid a b c O acos ucos t b cosu sin t c sinu Jednodílný hperboloid a b c a cosh u cost bcosh usin t c sinhu Dvoudílný hperboloid a b c O a cosh u b cost sinh u csin t sinh u 3
4 Parabolický paraboloid a b O at bu t u Hperbolický paraboloid a b at bu t u Kuželová plocha a b 2 0=V at cosu bt sinu t Parametriace kulové ploch OM1 d d cos d sin d r cos r sin rcos cos rcos sin rsin ; 0,2 ;, M 1 M 4
5 Parametrické vjádření ploch Plocha je dvouparametrická množina bodů P(u,v), jejichž souřadnice le vjádřit spojitým obraením E 3, [u, v] [,, ] P (u,v) = [(u,v); (u,v); (u,v)] = (u,v) = (u,v) = (u,v); [u, v] [u 0,v 0 ] Křivka na ploše Plocha P(u,v) = [(u,v) ; (u,v) ; (u,v)] Křivka na ploše má parametrické vjádření K(t) = [ (u(t), v(t)); (u(t), v(t)); (u(t), v(t))] = (u(t), v(t)) = (u(t), v(t)) = (u(t), v(t)) u konstantní u=u 0... parametrická v křivka K(v)=P(u 0,v) = [(u 0,v) ; (u 0,v) ; (u 0,v)] v konstantní v=v 0... parametrická u křivka K(u)=P(u,v 0 ) = [(u,v 0 ) ; (u,v 0 ) ; (u,v 0 )] Například: rotační paraboloid P t t t t 2 (, ) [ cos, sin, ] P( t, ) [ t cos, t sin, t ], kružnice P t t t t 2 (, 0 ) [ cos 0, sin 0, ], parabola rotacni-paraboloid.ggb 5
6 Implicitní rovnice: = r 2 Parametrické rovnice: = r cos u = r sin u = v, u<0, 2>, v <0, h> křivka na ploše: u = t, v = t, t <0, 4> Rotační válec u,v, v n Transformace parametru Plocha je dána vektorovou funkcí P u, v na oblasti a nechť je dána bijekce u 1., jsou tříd C u,v. Nechť 2. na je Jakobián J nenulový u J v u v P := [ cosh( u ) cos( v ), cosh( u ) sin( v ), sinh( u) ] Pt := [ cosh( u ) cos ( v 2 u ), cosh( u ) sin ( v 2 u ), sinh( u) ] 6
7 Transformace parametru = u u cos sin J u usin ucos 2 X( u, )=[ u cos( ), u sin( ), u ] rotacni_paraboloid.ggb Transformace parametru = X( u,v)=[ u v, u v, u v u v ] u u 1 1 J v v 7
8 Tečná rovina a normála ploch Nechť T je bod ploch. Uvažujme všechn křivk k i ploch, procháející bodem T. Pokud tečn všech křivek k i tvoří rovinu, pak bod T naveme regulárním bodem ploch a rovinu tečnou rovinu ploch. t (t,r) Plocha je dána parametrick: P (u,v) = [(u,v); (u,v); (u,v)] Tečná rovina ploch v bodě T: u, v T ut vr T r t ; ; u u u r ; ; v v v Normála ploch přímka kolmá na tečnou rovinu Př: Tečná rovina a normála kulové ploch v bodě T( = 0, =0) Kulová plocha cos cos cos sin cos sin cos cos sin ; 0 0,2 ;, T( 0, 0) [1, 0, 0] Tečná rovina : : 1 P t P r 0,1,0 n t r 0,0,1 1,0,0 u v; u, v R normála : n[1 u,0,0] t sin cos sin sin cos r t T r 01_sfera_tecna.ggb 8
9 Rotační válec rovinutelná přímková plocha Implicitní rovnice: = 1 Parametrické rovnice: X := [ cos( ), sin( ), u] Parciální derivace: u Tečná rovina v bodě X 0,1,0 X, u0 2 X u, u0 2 1,0,0 0,0,1, u0 2 TR := [ s, 1, r] Hperbolický paraboloid = X u v u v u v (, ) [,, ] X X [1,0,2 u]; [0,1, 2 v] u v Tečná rovina v bodě X(0,0) = [0,0,0] X t, w t w, t w, 4tw X t X t : 0 X w X w 1,1, 4w; 1,1, 4t 0,0 1,1,0 ; (0,0) 1,1,0 03_hp_paraboloid_funkce_tecna.ggb 9
10 Tečná rovina grafu funkce dvou proměnných sin 0, ; 0,1 = f, X(, ) [,, f, ] X f X f [1,0, ]; [0,1, ] Tečná rovina v bodě [ 0, 0,f( 0, 0 )] r 0 s 0 f f f ( 0, 0 ) r ( 0, 0 ) s ( 0, 0 ) f f f ( 0, 0 ) 0 ( 0, 0 ) 0 ( 0, 0 ) sin_funce_tecna.ggb Gradient f skalárního pole f(,) Diferenciální operátor, jehož výsledkem je vektorové pole vjadřující směr a velikost největší měn skalárního pole. Znáorníme-li skalární pole f(,) jako graf funkce = f(,), určuje gradient směr největšího spádu. f f f (, ), 05_gradient.ggb 10
11 Gradient f skalárního pole f(,) Normála ploch přímka kolmá na tečnou rovinu X ( u, v) ( u, v), ( u, v), ( u, v) n t r t ; ; u u u r ; ; v v v Plocha dána implicitně: F(,, ) 0 F F F n F,, 11
12 Klasifikace bodů na ploše dle průnikové křivk ploch a tečné rovin Bod T naýváme : Eliptický bod ploch je-li bod T iolovaný (nebo jediný) bod průnikové křivk T Hperbolický bod ploch je-li bod T ulovým bodem křivk Parabolický bod ploch v ostatních případech T T T Množina eliptických a hperbolických bodů na ploše je oddělena křivkou parabolických bodů. hperbolické bod Ře tečnou rovinou v parabolickém bodě eliptické bod 12
13 Ře anuloidu tečnou rovinou v hperbolickém bodě Eliptické a hperbolické bod Ře tečnou rovinou v parabolickém bodě Normálová křivost Každá normálová rovina řeže ploch v normálovém řeu. Křivost normálového řeu je v každém směru tečné rovin jiná. Etrémální křivosti naýváme hlavní křivosti, jejich směr pak hlavní směr. Dupinova indikatri je křivka v tečné rovině náorňující křivosti normálového řeu v ávislosti na směru tečn - tj. úhlu otočení. Vdálenost bodu D od bodu dotku A je R, kde R je poloměr oskulační kružnice příslušného normálového řeu. 13
14 Průniková křivka ploch Průniková křivka ploch Průnik jednodílného hperboloidu a rotačního válce Průniková křivka X( t) cos( t), 2 sin t,sin t 14
15 Rotační ploch Parametrické vjádření rotační ploch Plocha vnikne rotací tvořící křivk k kolem os. Nechť je osou rotace souřadnicová osa, tvořící křivkou je meridián v souřadnicové rovině (,). Křivka je dána parametrick: Parametrické vjádření rotační ploch: X ( t) t,0, t X ( t, ) t cos, t sin, t 15
16 Implicitní rovnice a a b Rotační elipsoid Parametrické rovnice a cost cos a cost sin b sin t ; 0,2, t, Šroubové ploch 16
17 Parametrické vjádření šroubové ploch Plocha vnikne šroubovým pohbem tvořící křivk k kolem os. Nechť je osou šr. pohbu souřadnicová osa, tvořící křivkou je meridián v souřadnicové rovině (,). Křivka je dána parametrick: X ( t) t,0, t Parametrické vjádření rotační ploch: X ( t, ) t cos, t sin, t, t, R 17
Diferenciáln. lní geometrie ploch
Diferenciáln lní geometrie ploch Vjádřen ení ploch Eplicitní: z = f(,) ; [,] Ω z Implicitní: F(,,z)=0 + + z = r z = sin 0, π ; 0,1 Implicitní ploch bloob objects,, meta balls Izoploch: F(,,z)=konst. Implicitní
Popis jednotlivých kvadrik
Kapitola Popis jednotlivých kvadrik V této kapitole se budeme abývat některými kvadrikami podrobněji. Nejprve budeme uvažovat elipsoid a hperboloid, které patří do skupin regulárních středových kvadrik.
Základní vlastnosti ploch
plocha zpravidla se definuje jako výsledek spojitého pohybu jisté tvořící křivky podél zadané trajektorie lze obohatit o možnost spojitých změn tvaru tvořící křivky x v průběhu pohybu podél trajektorie
Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3,
Analytická geometrie přímky roviny opakování středoškolské látk Jsou dány body A [ ] B [ 5] a C [ 6] a) přímky AB b) osy úsečky AB c) přímky na které leží výška vc trojúhelníka ABC d) přímky na které leží
9.1 Definice a rovnice kuželoseček
9. Kuželosečky a kvadriky 9.1 Definice a rovnice kuželoseček Kuželosečka - řez na kruhovém kuželi, množina bodů splňujících kvadratickou rovnici ve dvou proměnných. Elipsa parametricky: X(t) = (a cos t,
Klasické třídy ploch
Klasické třídy ploch Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Klasické třídy ploch klasické plochy jsou často generovány kinematicky, a to pohybem tvořicí křivky takto např. vznikají
Obsah a průběh zkoušky 1PG
Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dvě konstrukční úlohy dle části po. bodech a jedna úloha výpočetní úloha dle části za bodů. Ústní část jedna
Analytická geometrie v E 3 - kvadriky
Analtická geometrie v E 3 - kvadrik ROVNICE KVADRIKY ( v ákladní a posunuté poloe) Kvadrik v ákladní poloe - střed nebo vrchol leží v počátku ( vi příloha na konci) Posunutí v rovnici nahradíme všechn
Základní topologické pojmy:
Křivky Marie Ennemond Camille Jordan (88 9): Křivka je množina bodů, která je surjektivním obrazem nějakého intervalu Giuseppe Peano (858 9): Zobrazení intervalu na čtverec Wacław Franciszek Sierpiński
1. Cvičení: Opakování derivace a integrály
. Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )
Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.
KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový
8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura:
8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: (1)Poláček, J., Doležal, M.: Základy deskriptivní a konstruktivní geometrie, díl 5, Křivky a plochy
ploch Maturitní práce 2013/2014 Oponenti: RNDr. Alena Rybáková, RNDr. Vladimíra Hájková, Ph.D.
Parametrické vjádření rotačních a šroubových ploch Michal Šesták Maturitní práce 2013/2014 Smíchovská střední průmslová škola Fakulta architektur ČVUT Vedoucí práce: Mgr. Zbšek Nechanický Oponenti: RNDr.
Elementární křivky a plochy
Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin
ROTAČNÍ PLOCHY. 1) Základní pojmy
ROTAČNÍ PLOCHY 1) Základní pojmy Rotační plocha vznikne rotací tvořicí křivky k kolem osy o. Pro zobrazení a konstrukce bude výhodnější nechat rotovat jednotlivé body tvořicí křivky. Trajektorii rotujícího
13. cvičení z Matematické analýzy 2
. cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2
KMA/G2 Geometrie 2 9. až 11. cvičení
KMA/G2 Geometrie 2 9. až 11. cvičení 1. Rozhodněte, zda kuželosečka k je regulární nebo singulární: a) k : x 2 0 + 2x 0x 1 x 0 x 2 + x 2 1 2x 1x 2 + x 2 2 = 0; b) k : x 2 0 + x2 1 + x2 2 + 2x 0x 1 = 0;
Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu
ŠROUBOVICE Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace Šroubovice dráha hmotného bodu při šroubovém pohybu ZÁKLADNÍ POJMY osa šroubovice o nosná válcová plocha (r poloměr řídicí kružnice
(15) Určete vektory tečny, hlavní normály a binormály křivky f(t) = (t, t 2, t + 1)
Cvičení II (Křivky) (1) Rozhodněte, zda pohyb f(t) = (t 1, t 3 t), t R je jednoduchý. [Není, bod samoprotnutí odpovídá hodnotám t = 1 a t = 1 () Určete singulární body pohybu x = r( cos t cos t), y = r(
Offsety KMA/ITG Informační technologie ve vyučování geometrie Offsety ITG 1 / 33
Offsety KMA/ITG Informační technologie ve vyučování geometrie Offsety ITG 1 / 33 Motivace Motivace 3-osé obrábění motivaci k zavedení offsetů je možné hledat v obrábění. 3-osé obrábění je obrábění frézou,
Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:
PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se
Deg2-Kvadriky. Světlana Tomiczková
KMA FAV ZČU Plzeň 18. března 2016 Kvadriky Rotační kvadriky singulární (vzniknou rotací singulární kuželosečky) a) rotační válcová plocha x2 + y2 = 1 a 2 a 2 b) rotační kuželová plocha x2 + y2 z2 = 0 a
11. Rotační a šroubové plochy
Rotační a šroubové plochy ÚM FSI VU v Brně Studijní text. Rotační a šroubové plochy. Rotační plochy Rotační plochy jsou plochy, které lze získat rotačním šablonováním křivky. Jejich rovnice je tedy tvaru
1.13 Klasifikace kvadrik
5 KAPITOLA 1. KVADRIKY JAKO PLOCHY. STUPNĚ 1.13 Klasifikace kvadrik V této části provedeme klasifikaci kvadrik. Vyšetříme všechny případy, které mohou různou volbou koeficientů v rovnici kvadriky a 11
ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce
1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé
5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ
5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na
F n = F 1 n 1 + F 2 n 2 + F 3 n 3.
Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,
y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1).
III Diferenciál funkce a tečná rovina Úloha 1: Určete rovnici tečné roviny ke grafu funkce f = f(x, y) v bodě (a, f(a)) f(x, y) = 3x 3 x y + 5xy 6x + 5y + 10, a = (1, 1) Řešení Definičním oborem funkce
Úvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v
. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x
ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.
ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní
Klíčová slova Mongeovo promítání, kuželosečka, rotační plocha.
Abstrakt Tento text je určen všem zájemcům z řad široké veřejnosti, především jako studijní materiál pro studenty Konstruktivní a počítačové geometrie. Práce pojednává o rotačních kvadratických plochách,
MATEMATIKA II - vybrané úlohy ze zkoušek (2015)
MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz
Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem
Geometrie Mongeovo promítání................................ 1 Řezy těles a jejich průniky s přímkou v pravoúhlé axonometrii......... 3 Kuželosečky..................................... 4 Šroubovice......................................
Konstruktivní geometrie
Mgr. Miroslava Tihlaříková, Ph.D. Konstruktivní geometrie & technické kreslení Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny
11 POJEM PLOCHY. u u. v v. = lim. vztahy w(u 0,v 0 ) . Analogicky definujeme
11 POJEM PLOCHY V dalším se budeme zabývat plochami v E 3. Nejjednodušším příkladem plochy je rovina. Z analytické geometrie je známo, že k určení polohy bodu v rovině je třeba dvou parametrů (viz parametrické
Matematika 1 pro PEF PaE
Tečny a tečné roviny 1 / 16 Matematika 1 pro PEF PaE 7. Tečny a tečné roviny Přemysl Jedlička Katedra matematiky, TF ČZU Tečny a tečné roviny Tečny a normály grafů funkcí jedné proměnné / 16 Tečny a normály
Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
na magisterský studijní obor Učitelství matematiky pro střední školy
Datum:... Jméno:... Přijímací řízení pro akademický rok 203/4 na magisterský studijní obor Učitelství matematiky pro střední školy Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd
Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
3.2 3DgrafyvMaple 106 KAPITOLA 3. UŽITÍ MAPLE PŘI ŘEŠENÍ KVADRIK
106 KAPITOLA 3. UŽITÍ MAPLE PŘI ŘEŠENÍ KVADRIK > A2:=augment(submatrix(A,1..3,[1]),b,submatrix(A,1..3,[3])); Potom vypočítáme hodnotu x 2 : > x2:=det(a2)/det(a); Zadání matice. Matici M typu (2, 3) zadáme
7. Aplikace derivace 7E. Křivky. 7E. Křivky
7E. Křivky Derivace nacházejí uplatnění také při studiu křivek. Obrazně řečeno křivka v rovině je množina bodů, která vznikne pohybem pera po papíře. Předpokládáme přitom, že hrot pera je stále v kontaktu
DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a
DERIVACE 1. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x 3. Zderivuj funkci y = 3 e sin2 (x 2 ) 4. Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y = cos2 x
Analytická geometrie v rovině
nltická geometrie v rovině Souřdnicová soustv v rovině Zvolme v rovině dvě nvájem kolmé přímk číselné os. růsečík O těchto přímek nveme počátek souřdnic. Vodorovnou přímku ončíme osou svislou ončíme osou
Parametrický popis křivek
Parametrický popis křivek Jan Suchomel Smíchovská střední průmslová škola Maturitní práce 013/014 Garant: Mgr. Zbšek Nechanický Konzultanti: RNDr. Alena Rbáková a RNDr. Vladimíra Hájková, Ph.D. Obsah 1
0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.
strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2
Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Diferenciální počet funkcí více proměnných 1. Funkce více proměnných (a)
Řešení : Těleso T je elementárním oborem integrace vzhledem k rovině (x,y) a proto lze přímo aplikovat Fubiniovu větu pro trojný integrál.
E. rožíková, M. Kittlerová, F. Mrá: Sbírka příkladů Matematik II (6 III.6. Aplikace trojných integrálů Příklad 6. Užitím vorce pro výpočet objemu tělesa pomocí trojného integrálu (tj.v ddd ukažte, že objem
Základní vlastnosti křivek
křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky
MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,
MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=
Diferenciální geometrie
Diferenciální geometrie Pomocný učební text díl I. František Ježek Plzeň, červen 2005 Obsah 1 Křivky 4 1.1 Vyjádření křivky......................... 4 1.2 Transformace parametru..................... 5
Výpočet křivosti křivek ve stavební praxi
Přechodnice podle Nördlinga (kubická parabola) Vypočtěte křivost Nördlingovy přechodnice v bodě x=0 a x=l x y( x) 6LR x- vzdálenost bodu přechodnice od začátku přechodnice v tečně y- kolmá vzdálenost bodu
) (P u P v dudv, f d p na ploše Q E 3, která je orientována. x = u, y = v, z = a, (P u P v dudv = B
E. rožíková, M. Kittlerová, F. Mrá: Sbírka příkladů Matematik II 6 V.4. Plošný integrál vektorové funkce Necht je jednoduchá hladká plocha orientovaná v bodech X jednotkovým vektorem normál n o X. Necht
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup
Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)
2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h
Kapitola 2. 1 Základní pojmy
Kapitola 2 Funkce více proměnných Ve vědních i technických oborech se často setkáváme s veličinami, jejichž hodnot ávisí na větším počtu proměnných. Objem válce je ávislý na poloměru podstav a výšce, tlak
Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné
. Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x
A 1. x x. 1.1 V pravoúhlé axonometrii zobrazte průměty bodu A [4, 5, 8].
strana 1 1. onometrie. 1.1 V pravoúhlé aonometrii obrate průmět bodu [4, 5, 8]. 1.2 Zobrate bývající pravoúhlé průmět bodu do souřadnicových rovin. Určete souřadnice bodu, který je obraen v pravoúhlé aonometrii.
4.2. Graf funkce více proměnných
V této kapitole se soustředíme na funkce dvou proměnných. Poue v tomto případě jsme schopni graf funkcí dvou proměnných obrait. Pro funkce tří a více proměnných trácí grafické vjádření smsl. Výklad Definice
Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost:
753 Kulová plocha Předpoklady: 750 Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá Kulová plocha = kružnice v prostoru Př : Vyslov definici kulové plochy Kulová plocha je množina všech bodů
Výpočet průsečíků paprsku se scénou
Výpočet průsečíků paprsku se scénou 1996-2018 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Intersection 2018 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 26 Průsečík
Takže platí : x > 0 : x y 1 x = x+1 y x+1 x < 0 : x y 1 x = x+1 y x+1 D 1 = {[x,y] E 2 : x < 0, x+1 y 1 x}, D 2 = {[x,y] E 2 : x > 0, 1 x y x+1}.
E. Brožíková, M. Kittlerová, F. Mráz: Sbírka příkladů z Matematik II (206 II. Diferenciální počet funkcí více proměnných II.. Definiční obor funkce z = f(, Určete definiční obor funkcí a zakreslete jej
III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ).
III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce = f(x 0 + h 1, y 0 + h 2 ) f(x 0, y 0 ) f u (x 0, y 0 ), kde u = (h 1, h 2 ). ( ) = f(x 0 + h 1, y 0 ) f(x 0, y 0 ) x (x 0,
Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy
Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Jan Slovák Masarykova univerzita Fakulta informatiky 3. 10. 2011 Obsah přednášky 1 Literatura
Plochy počítačové grafiky II. Interpolační plochy Bezierovy pláty nad obdélníkovou a trojúhelníkovou sítí Recionální Bezierovy pláty B-spline NURBS
II Interpolační plochy Bezierovy pláty nad obdélníkovou a trojúhelníkovou sítí Recionální Bezierovy pláty B-spline NURBS Konstrukce a zadání plochy hraniční křivky sítí bodů Kinematicky vytvořené křivky
Základy matematiky pro FEK
Základ matematik pro FEK. přednáška Blanka Šedivá KMA imní semestr /7 Blanka Šedivá (KMA) Základ matematik pro FEK imní semestr /7 / Příklad ekonomických vtahů ve formě funkcí více proměnných I Poptávková
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.
+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F
Příkad 1 ( y ) Dokažte, že funkce F (x, y) = x n f x 2, kde f je spojitě diferencovatelná funkce, vyhovuje vztahu x F x + 2y F y = nf ; x 0 Ukažte, že každá funkce F (x, y), která má spojité parciální
Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb
Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet
II.7.* Derivace složené funkce. Necht jsou dány diferencovatelné funkce z = f(x,y), x = x(u,v), y = y(u,v). Pak. z u = f. x x. u + f. y y. u, z.
II.7.* Derivace složené funkce Necht jsou dán diferencovatelné funkce z = f(,), = (u,v), = (u,v). Pak u = u + u, v = v + v. Vpočítejte derivace daných diferencovatelných funkcí. Příklad 0. Jsou dán diferencovatelné
PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2
PŘÍKLADY K ATEATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY ZDENĚK ŠIBRAVA.. Dvojné integrály.. Vícenásobné intergrály Příklad.. Vypočítejme dvojný integrál x 3 + y da, kde =, 3,. Řešení: Funkce f(x, y) = x je na obdélníku
Výpočet průsečíků paprsku se scénou
Výpočet průsečíků paprsku se scénou 1996-2008 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz NPGR004, intersection.pdf 2008 Josef Pelikán, http://cgg.ms.mff.cuni.cz/~pepca
Další plochy technické praxe
Další plochy technické praxe Dosud studované plochy mají široké využití jak ve stavební tak ve strojnické praxi. Studovali jsme možnosti jejich konstrukcí, vlastností i využití v praxi. Kromě těchto ploch
UNIVERZITA PALACKÉHO V OLOMOUCI
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE Diplomová práce Řezy rotačních těles v projekcích Vedoucí diplomové práce: Mgr. Marie Chodorová, Ph.D. Rok odevzdání:
= 1, (2.3) b 2 + z2. c2 se nazývá imaginární elipsoid. Jedná se o regulární kvadriku, která, jak vidíme z rovnice (2.3), neobsahuje žádný reálný bod.
.. HYPERBOLOIDY 71 Kvadratiká ploha, jejíž rovnie je a + b + = 1,.3 se naývá imaginární elipsoid. Jedná se o regulární kvadriku, která, jak vidíme rovnie.3, neobsahuje žádný reálný bod.. Hperboloid Hperboloid
. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.
Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo
Smysl otáčení. Aplikace. Pravotočivá
Šroubovice Definice Šroubovice je křivka generovaná bodem A, který se otáčí kolem dané přímky o a zároveň se posouvá podél této přímky, oboje rovnoměrnou rychlostí. Pohyb bodu A šroubový pohyb Přímka o
(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení
.. Výklad Nní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení M R, kde M R nazývat stručně funkce. Zopakujeme, že funkce je každé zobrazení f : M R, M R, které každému
Studijní text pro obor G+K Katedra matematiky Fakulta stavební FUNKCE VÍCE. Doc. RNDr. Milada Kočandrlová, CSc.
Studijní tet pro obor G+K Katedra matematik Fakulta stavební České vsoké učení technické DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Doc. RNDr. Milada Kočandrlová, CSc. Lektorovali: RNDr. Milan Kočandrle,
SBÍRKA PŘÍKLADŮ NA KVADRATICKÉ PLOCHY
Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra matematiky Bakalářská práce SBÍRKA PŘÍKLADŮ NA KVADRATICKÉ PLOCHY Autor práce: Žaneta Mifková Vedoucí práce: prof. RNDr. Pavel Pech,
VIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2
Vlastní čísla a vlastní vektory
5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi
Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.
Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních
Diferenciální počet funkcí více proměnných
Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet
Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna
Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí
+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)
Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené
4.OBECNÁ AXONOMETRIE A KOSOÚHLÉ PROMÍTÁNÍ
4.BECNÁ AXNMETRIE A KSÚHLÉ PRMÍTÁNÍ Aonometrie kosoúhlé promítání voenská perspektiva pravoúhlá aonometrie Znalost těchto metod e ákladem skicování, které e potřebné i v době CAD sstémů. Kosoúhlé promítání
Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
Deskriptivní geometrie 2
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl I Světlana Tomiczková Plzeň 12. února 2016 verze 2.0 2 Autoři Obsah 1 Elementární
1. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny 1., 2. a 3. parciální derivace funkce f a funkce g.
. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny.,. a 3. parciální derivace funkce f a funkce g.. Spočtěte všechny první parciální derivace funkcí: a) f(x, y) = x 4 + y 4 4x y, b) f(x,
1. Přímka a její části
. Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v
Matematika pro chemické inženýry
Matematika pro chemické inženýry Drahoslava Janovská Plošný integrál Přednášky Z 216-217 ponzorováno grantem VŠCHT Praha, PIGA 413-17-6642, 216 Povinná látka. Bude v písemkách a bude se zkoušet při ústní
Matematické metody v kartografii
Mtemtické metody v krtogrfii. Přednášk Referenční elipsoid zákldní vzthy. Poloměry křivosti. Délky poledníkového rovnoběžkového oblouku. 1. Zákldní vzthy n rotčním elipoidu Rotční elipsoid dán následujícími
Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou
Rozvinutelné plochy Rozvinutelná plocha je každá přímková plocha, pro kterou existuje izometrické zobrazení do rov iny, tj. lze ji rozvinout do roviny. Dá se ukázat, že každá rozvinutelná plocha patří
X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)
.6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí
x 2(A), x y (A) y x (A), 2 f
II.10. Etrém funkcí Věta (nutná podmínka pro lokální etrém). Necht funkce f(, ) je diferencovatelná v bodě A. Má-li funkce f v bodě A lokální etrém, pak gradf(a) = 0. Onačme hlavní minor matice druhých
MATEMATIKA II - vybrané úlohy ze zkoušek v letech
MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013
Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU
Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného
Otázku, kterými body prochází větev implicitní funkce řeší následující věta.
1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.