Algebraické struktury s jednou binární operací
|
|
- Radovan Neduchal
- před 9 lety
- Počet zobrazení:
Transkript
1 16 Kapitola 1 Algebraické struktury s jednou binární operací Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte počkat. Nejprve krátké opakování ze střední školy. Pamatujete na kartézský součin množin? Definice 1.1. (Kartézský součin) Kartézským součinem množiny A a B nazveme množinu A B = {(a, b) a A, b B}. To jest, jde o množinu všech uspořádaných dvojic, kde první z dvojice je prvkem z množiny A a druhý je prvkem z množiny B. Pár příkladů: Jestliže A = {1, 2} a B = {1, 3, 5}, pak A B = {(1, 1), (1, 3), (1, 5), (2, 1), (2, 3), (2, 5)}. Jestliže A = {prasátko, } a B = {Lojzík, 3}, pak ale A B = {(prasátko, Lojzík), (prasátko, 3), (, Lojzík), (, 3)}, B A = {(Lojzík, prasátko), (3, prasátko), (Lojzík, ), (3, )}, Z tohoto příkladu plyne, že A B nemusí být vždy totéž jako B A. U kartézského součinu záleží na pořadí!
2 Grupoid, pologrupa, monoid a grupa 17 Jestliže A = {1, 2} a B = {1, 2}, pak A B = {(1, 1), (1, 2), (2, 1), (2, 2)} = B A. V případě, že A = B platí A B = B A = A A. Nyní si vzpomeňme na základní školu a na sčítání přirozených čísel. Jak se sčítají? Jednoduše, nějaké dvě čísla vezmu, kupříkladu 1 a 1 a jako jejich součet mi vyjde číslo 2. Obdobně součin dvou reálných čísel. Nasypu do něj třeba čísla 2 a 3 a vypadne číslo 6. Obecně, zobrazení, které každé uspořádané dvojici prvků z množiny A (což je prvek kartézského součinu A A) přiřadí nějaký prvek z A, nazýváme binární operací na množině A. Definice 1.2. (Binární operace) Binární operací na množině A nazveme každé zobrazení : A A A. Hodnotu (a, b) budeme dále značit a b (tak jak jsme zvyklí, nepíšeme +(2, 3), ale 2 + 3). Ekvivalentní formulace: Binární operací na množině A nazveme každé zobrazení definované na množině A A takové, že a, b A : a b A. (Říkáme, že zobrazení je uzavřené na množině A - hodnota a b neunikne z množiny A, ale zůstane v ní.) Pokud bude jasné, že máme na mysli binární operaci, budeme mluvit pouze o operaci. Dodejme, že zobrazení : A A A A nazýváme ternární operací na A, zobrazení : A A nazýváme unární operací na A a obecně zobrazení nazýváme n-ární operací na A. : A A... A n - krát A Příklad 1.3. Rozhodněte, zda je zobrazení binární operací na množině A. je obvyklé násobení reálných čísel, A = R. Násobení reálných čísel je definováno tak, že každé dvojici reálných čísel přiřadí jejich součin, což je opět reálné číslo. Proto jde o zobrazení z R R do R. Podle Definice 1.2 to znamená, že jde o binární operaci na množině reálných čísel.
3 18 Algebraické struktury s jednou binární operací je restrikce násobení reálných čísel na množinu iracionálních čísel I, A = I. je tedy zobrazení, které funguje stejně jako násobení reálných čísel, ale omezíme se pouze na násobení iracionálních čísel. Vezměme příklad: 2 I 2 I = 2 / I. Vynásobili jsme dvě iracionální čísla, ale jejich součin již iracionální číslo není! Proto není operací na I (Nejde o zobrazení z I I do I). je restrikce sčítání přirozených čísel na množinu lichých přirozených čísel A = {2k 1 k N}. Sečteme-li dvě lichá přirozená čísla, vyjde číslo sudé, proto není operací na A. je restrikce násobení přirozených čísel na množinu lichých přirozených čísel A = {2k 1 k N}. Vynásobíme-li dvě lichá přirozená čísla, vyjde opět číslo liché. Podmínka uzavřenosti zobrazení na A je splněna. Proto je binární operací na A. Množinu A, na níž je definována nějaká operace (označit ji můžeme různě,, *, +,.,... ) budeme říkat grupoid. Přesněji řečeno, budeme tak nazývat uspořádanou dvojici, která sestává z této množiny a této operace. Definice 1.4. (Grupoid) Uspořádanou dvojici (A, ), kde A je neprázdná množina a je binární operace nazýváme grupoid. Známých grupoidů je mnoho, například: (Z, +), kde Z je množina celých čísel a + je jejich obvyklé sčítání, (F, +), kde F je množina reálných funkcí definovaných na R a + je jejich obvyklé sčítání, (F, ), kde F je množina reálných funkcí definovaných na R a je jejich skládání, (M (n,n), ), kde M (n,n) je množina čtvercových matic reálných čísel o n řádcích a je jejich obvyklé násobení.
4 Grupoid, pologrupa, monoid a grupa 19 Z výše uvedeného (Příklad 1.3) je patrné, že například množina iracionálních čísel spolu s jejich obvyklým násobením grupoid netvoří, neboť součin dvou iracionálních čísel již nemusí být iracionální číslo. Grupoid, jehož operace je asociativní budeme nazývat pologrupou. Definice 1.5. (Pologrupa) Uspořádanou dvojici (A, ), kde A je neprázdná množina a je zobrazení definované na množině A A takové, že 1.) a, b A : a b A, (tzn. (A, ) je grupoid ) 2.) a, b, c A : a (b c) = (a b) c, ( je asociativní) nazýváme pologrupou. Všechny výše uvedené příklady grupoidů jsou také příklady pologrup, neboť sčítání celých čísel je asociativní. Například platí: (1 + 2) + 5 = = 8 = = 1 + (2 + 5), Sčítání čtvercových matic reálných čísel je asociativní.například platí: ( ) ( ( ) ( ) ) ( ( ) ( ) ) ( = ) sčítání reálných funkcí definovaných na R je asociativní. Například platí: (x 2 + x) + x = x 2 + 2x = x 2 + (x + x), skládání reálných funkcí definovaných na R je asociativní. Uvažujme například funkce dané předpisy f : f(x) = x+1, g : g(x) = 2x a h : h(x) = sin x. Potom Funkce f (g h) zobrazuje dle následujícího schématu: ( ) x h sin x g f 2 sin x 2 sin x + 1 To jest, (f (g h)) (x) = 2 sin x + 1 Funkce (f g) h zobrazuje dle následujícího schématu: ( ) x h g sin x 2 sin x f 2 sin x + 1 To jest, ((f g) h) (x) = 2 sin x + 1 Ještě uvedeme příklad grupoidu, který není pologrupou. Podle definice pologrupy tedy půjde o grupoid, jehož operace není asociativní.
5 20 Algebraické struktury s jednou binární operací Příklad 1.6. Uvažujme grupoid (A, *), kde A = {1, 2, 3} N a operace * je dána následující tabulkou: * Podle této tabulky určíme, že ale 1 * (2 * 3) = 1 * 1 = 2, (1 * 2) * 3 = 3 * 3 = 1. Vidíme, že 1 * (2 * 3) (1 * 2) * 3. Operace * proto není asociativní a grupoid (A, *) tak není pologrupou. Vzpomeňme na násobení reálných čísel. Násobíme-li libovolné reálné číslo a číslem 1, obdržíme opět číslo a. Říkáme, že číslo 1 je neutrálním prvkem vzhledem k násobení reálných čísel. Přičteme-li k libovolnému reálnému číslu a číslo 0, obdržíme opět číslo a. Říkáme, že číslo 0 je neutrálním prvkem vzhledem ke sčítání reálných čísel. Podobně u matic, neutrálním prvkem vzhledem k násobení je jednotková matice a vzhledem ke sčítání je to nulová matice. Definice 1.7. (Neutrální prvek) Nechť je operace na množině A. Prvek e A nazveme neutrálním prvkem vzhledem k operaci právě když a A : a e = e a = a. Pologrupu, v níž existuje nějaký neutrální prvek, nazýváme monoid. Definice 1.8. (Monoid) Uspořádanou dvojici (A, ), kde A je neprázdná množina a je zobrazení definované na množině A A takové, že 1.) a, b A : a b A, (uzavřenost) 2.) a, b, c A : a (b c) = (a b) c, (asociativnost) 3.) e A a A : a e = e a = a, (existence neutrálního prvku) nazýváme monoid. Při pohledu na definici monoidu by mohlo leckoho napadnout, proč v bodu 3.) vystupuje a e i e a. Vždyť je to totéž, ne? Ne, nemusí být! Záleží na operaci. Třeba sčítání reálných čísel komutativní je, pro každé dvě reálná čísla a
6 Grupoid, pologrupa, monoid a grupa 21 a e opravdu platí a + e = e + a. Ale symbol může představovat třeba násobení matic, a to komutativní není. Obecně pro dvě matice A a E (byť třeba čtvercové a o stejném počtu řádků) neplatí, že A E = E A. Algebraickou strukturu, jejíž operace je komutativní častujeme přídomkem Abelova. Mluvíme tak o Abelově grupoidu, Abelově pologrupě, Abelově monoidu, či grupě. Ale vraťme se k monoidům. Pár příkladů: (Z, +), kde Z je množina celých čísel a + je jejich obvyklé sčítání. (Z, +) je Abelův monoid, neboť je to pologrupa, neutrálním prvkem je celé číslo 0 Z (a + 0 = 0 + a = a) a + je komutativní operace. (M (n,n), ), kde M (n,n) je množina čtvercových matic reálných čísel o n řádcích a je jejich obvyklé násobení. (M (n,n), ) je monoid, neboť je to pologrupa a neutrálním prvkem je jednotková matice E (A E = E A = A). Ale není to Abelův monoid, protože není komutativní operace. (F, +), kde F je množina reálných funkcí definovaných na R a + je jejich obvyklé sčítání, (F, +) je Abelův monoid, neboť je to pologrupa, neutrálním prvkem je funkce o daná předpisem x R : o(x) = 0 R a jejich obvyklé sčítání je komutativní. (F, ), kde F je množina reálných funkcí definovaných na R a je jejich skládání, (F, ) je monoid, neboť je to pologrupa a neutrálním prvkem je identita, to jest funkce id daná předpisem x R : id(x) = x. Ale není to Abelův monoid, protože skládání funkcí není komutativní operace. Uvažujme algebraickou strukturu (A, *), kde A = {1, 2, 3} N a operace * je dána následující tabulkou: * Z této tabulky je vidět, že:
7 22 Algebraické struktury s jednou binární operací 1.) Operace * je uzavřená na množině A = {1, 2, 3} (v tabulce se neobjevilo nic jiného, než 1, 2, nebo 3). 2.) Operace * je asociativní, neboť (pro stručnost uvedeme jen 3 z 27 možností, které je třeba prověřit): (1 * 1) *1 3 2 (1 * 1) *2 3 3 (3 * 3) *3 1 2 = 1 * (1 * 1) 3 2 = 1 * (1 * 2) 1 3. = 3 * (3 * 3) ) Neutrálním prvkem vzhledem k operaci * je prvek 2, neboť: 1 * 2 = 2 * 1 = 1 2 * 2 = 2 * 2 = 2 3 * 2 = 2 * 3 = 3 Můžeme proto tvrdit, že algebraická struktura (A, *) je monoid. Navíc vidíme, že tabulka je symetrická podle diagonály. To je neklamným znakem toho, že * je operace komutativní. Proto si můžeme dovolit ještě silnější tvrzení, a to, že (A, *) je Abelův monoid. Vyvstává otázka. Může býti v monoidu i více neutrálních prvků? Odpověď je jednoduchá. Ne! Věta 1.9. (O jednoznačnosti neutrálního prvku) Nechť (A, ) je monoid. Potom v A existuje jediný neutrální prvek vzhledem k operaci. Důkaz. Předpokládejme, že e 1 A a také e 2 A je neutrální prvek vzhledem k operaci. Potom e 1 = e 1 e 2 = e 2. Znemená to, že neexistují dva různé neutrální prvky vzhledem k operaci.
8 Grupoid, pologrupa, monoid a grupa 23 Zavedeme další pojem. Opět vzpomeňme na násobení reálných čísel. Kterým číslem je třeba vynásobit číslo 2 tak, aby vyšlo číslo 1 (neutrální prvek)? Ano správně, jednou polovinou. Analogie pro sčítání reálných čísel je následující. Které číslo je třeba přičíst k číslu 2 tak, aby vyšlo číslo 0 (neutrální prvek při sčítání)? Jistě, bude to číslo 2. Říkáme, že jedna polovina je inverzním prvkem čísla 2 vzhledem k násobení reálných čísel. Číslo 2 je zase inverzním prvkem k číslu 2 vzhledem ke sčítání reálných čísel. Definice (Inverzní prvek) Nechť je operace na množině A a e je neutrální prvek vzhledem k operaci. Prvkem inverzním k prvku a A vzhledem k operaci nazveme každý prvek a 1 A takový, že a a 1 = a 1 a = e. Všimněme si, že ne každé reálné číslo má inverzní prvek vzhledem k násobení (inverze k nule neexistuje), ale každé reálné číslo má svůj inverzní prvek vzhledem ke sčítání. Monoid, kde každý prvek má svůj inverzní prvek budeme nazývat grupou. Prvek inverzní k prvku a budeme označovat a 1. Definice (Grupa) Uspořádanou dvojici (A, ), kde A je neprázdná množina a je zobrazení definované na množině A A takové, že 1.) a, b A : a b A, (uzavřenost) 2.) a, b, c A : a (b c) = (a b) c, (asociativnost) 3.) e A a A : a e = e a = a, (existence neutrálního prvku) 4.) a A a 1 A : a a 1 = a 1 a = e, (existence inverzních prvků) nazýváme grupa. Grupa je speciálním případem monoidu. Víme proto, že v ní existuje pouze jediný neutrální prvek (Věta 1.9). Jak je to ale s inverzními prvky? Může mít daný prvek více prvků inverzních? V grupě ne! Věta (O jednoznačnosti inverzního prvku) Nechť (A, ) je grupa. Potom v A existuje ke každému prvku právě jeden prvek inverzni. To jest, platí: a A! a 1 A : a a 1 = a 1 a = e, kde e je neutrální prvek vzhledem k operaci.
9 24 Algebraické struktury s jednou binární operací Důkaz. Předpokládejme, že a 1 1 a také a 1 2 jsou inverzní prvky k a vzhledem k operaci. (A, ) je grupa, proto operace je asociativní. A tak a 1 1 = a 1 1 e = a 1 1 (a a 1 e 2 ) = (a 1 1 a) a 1 2 = a 1 2. e Znamená to, že neexistují dva různé inverzní prvky k prvku a vzhledem k operaci. Věta Nechť (A, ) je grupa, a A. Potom platí: (a 1 ) 1 = a. To jest, inverzním prvkem k a 1 je a. Ještě jinak, prvek je inverzním prvkem ke svému inverznímu prvku. Důkaz. Důkaz plyne okamžitě z definice inverzního prvku (Definice 1.10). Věta Nechť (A, ) je grupa, a 1, a 2,..., a n A. Potom platí: (a 1 a 2 a n ) 1 = a 1 n a 1 2 a 1 1. Důkaz. Tvrzení věty plyne z asociativity operace ((A, ) je grupa!): (a 1 a 2 a n ) (a 1 n a 1 2 a 1 1 ) = e = (a 1 a 2 a n 1 ) (a 1 e. n 1 a 1 2 a 1 1 ) = = (a 1 a 2 ) (a 1 2 a 1 1 ) = e = a 1 a 1 1 = e. Obdobně se dá ukázat, že (a 1 n a 1 2 a 1 1 ) (a 1 a 2 a n ) = e.
10 Grupoid, pologrupa, monoid a grupa 25 Značení Pro jednoduchost zápisu zavedeme následující značení. Nechť (A, ) je grupa, a A a n N. Potom prvek a a a budeme označovat n krát symbolem a n. Prvek a 1 a 1 a 1 budeme označovat symbolem a n. n krát To jest, a n = a a a n krát a a n = a 1 a 1 a 1. n krát Neutrální prvek v grupě (A, ) budeme označovat symbolem a 0. S využitím zavedeného značení zformulujeme přímý důsledek Věty Věta Nechť (A, ) je grupa, a A. Potom: 1. n N : (a n ) 1 = (a) n. 2. m, n Z : a m a n = (a) m+n. Důkaz. První tvrzení je tvrzením Věty 1.14 pro případ a 1 = a 2 = = a n. Tvrzení druhé pak okamžitě plyne z tvrzení prvního a zavedeného značení. Věta (O krácení v grupě) Nechť (A, ) je grupa. Potom pro každé a, b, c G platí: (a c = b c) (a = b) Důkaz. (A, ) je grupa, proto existuje c 1, a operace je asociativní. Předpokládejme, že a c = b c a e je neutrální prvek v (A, ). Odtud: a = a e = a (c c 1 ) = (a c) c 1 = (b c) c 1 = b (c c 1 ) = b e = b. Poznámka Často se místo symbolu pro operaci v grupě používá symbol +, nebo (ať už představují jakékoli operace). V takovém případě se poněkud liší symbolika při použití operace + a při použití (odpovídá tomu, jak jsme zvyklí tyto operace zapisovat u reálných čísel):
11 26 Algebraické struktury s jednou binární operací aditivní zápis: multiplikativní zápis: a + a + + a n krát a a a n krát = na = a n Při použití symbolu + mluvíme o aditivní grupě (G, +), při použití symbolu mluvíme o multiplikativní grupě (G, ). V aditivní grupě nazýváme neutrální prvek nulovým prvkem, v multiplikativní grupě nazýváme neutrální prvek jednotkovým prvkem Cvičení Rozhodněte, zda (A, ) tvoří grupu. 1.) A = N a je obvyklé sčítání přirozených čísel. 2.) A = Z a je obvyklé sčítání celých čísel. 3.) A = Q a je obvyklé sčítání racionálních čísel. 4.) A = I a je obvyklé sčítání iracionálních čísel (tj. restrikce sčítání reálných čísel na I). 5.) A = N a je obvyklé násobení přirozených čísel. 6.) A = Z a je obvyklé násobení celých čísel. 7.) A = Q a je obvyklé násobení racionálních čísel. 8.) A = Q {0} a je restrikce obvyklého násobení racionálních čísel na Q {0}. 9.) A = I {0} a je obvyklé násobení iracionálních čísel (tj. restrikce sčítání reálných čísel na I {0}). 10.) A = {0, 1, 2} N a operace = + je dána následující tabulkou: ) A = {a + b 2 a, b Q, (a, b) (0, 0)} a je restrikce obvyklého násobení reálných čísel na množinu A.
12 Grupoid, pologrupa, monoid a grupa ) A = R 2 2 je množina čtvercových matic reálných čísel o dvou řádcích a dvou sloupcích a je obvyklé násobení matic. 13.) A = S n je množina permutací n-prvkové množiny a je skládání funkcí.
Aritmetika s didaktikou I.
Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM / Přednáška Struktury se dvěma binárními operacemi O čem budeme hovořit: opakování struktur s jednou operací struktury se dvěma operacemi Struktury
Teorie grup 1 Příklad axiomatické teorie
Teorie grup 1 Příklad axiomatické teorie Alena Šolcová 1 Binární operace Binary operation Binární operací na neprázdné množině A rozumíme každé zobrazení kartézského součinu A x A do A. Multiplikativní
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Relace, zobrazení, algebraické struktury Michal Botur Přednáška
Lineární algebra Kapitola 1 - Základní matematické pojmy
Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,
ALGEBRA. Téma 4: Grupy, okruhy a pole
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,
1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x
1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 2. Homomorfismy V souvislosti se strukturami se v moderní matematice studují i zobrazení,
Matice. a m1 a m2... a mn
Matice Nechť (R, +, ) je okruh a nechť m, n jsou přirozená čísla Matice typu m/n nad okruhem (R, +, ) vznikne, když libovolných m n prvků z R naskládáme do obdélníkového schematu o m řádcích a n sloupcích
Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer
Přednáška MATEMATIKA č. 3 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 21. 10. 2010 Uvažujme neprázdnou množinu přirozených čísel M = {1, 2,..., n}. Z kombinatoriky
1 Připomenutí vybraných pojmů
1 Připomenutí vybraných pojmů 1.1 Grupa Definice 1 ((Komutativní) grupa). Grupou (M, ) rozumíme množinu M spolu s operací na M, která má tyto vlastnosti: i) x, y M; x y M, Operace je neomezeně definovaná
[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon).
Grupy, tělesa grupa: množina s jednou rozumnou operací příklady grup, vlastnosti těleso: množina se dvěma rozumnými operacemi příklady těles, vlastnosti, charakteristika tělesa lineární prostor nad tělesem
Střípky z LA Letem světem algebry
Střípky z LA Letem světem algebry Jaroslav Horáček Pojem Algebra Laicky řečeno algebra je struktura na nějaké množině, společně s nějakými operacemi, které splňují určité vlastnosti. Případy algebry lineární
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací
Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména
Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ).
Matice Definice 4.1 Necht (T ; +, je číselné těleso, m, n N a dále necht a ij T pro všechny indexy i = 1, 2,..., m a j = 1, 2,..., n. Potom schéma a 11 a 12... a 1n a 21 a 22... a 2n... = (a ij m n a m1
1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
Vysoké učení technické v Brně Fakulta informačních technologií. Regulární pologrupy. Semestrální práce do předmětu Algebra, Kombinatorika, Grafy
Vysoké učení technické v Brně Fakulta informačních technologií Regulární pologrupy Semestrální práce do předmětu Algebra, Kombinatorika, Grafy Tomáš Masopust Brno, 2006 Obsah Úvod 1 1 Základní definice
grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa
grupa komutativní podgrupa těleso generovaná prvkem, cyklická, řád prvku Malá Fermatova věta konečné těleso charakteristika tělesa polynomy ireducibilní prvky, primitivní prvky definice: G, je grupa kde
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
Základy matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
DEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace
RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi
2.2. Cíle Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi Předpokládané znalosti Předpokladem zvládnutí
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
6. Vektorový počet Studijní text. 6. Vektorový počet
6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.
Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace
Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z
Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.
Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní
Úvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
PŘEDNÁŠKA 2 POSLOUPNOSTI
PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému
Matice lineárních zobrazení
Matice lineárních zobrazení Nechť V, +, a W, +, jsou nenulové vektorové prostory konečných dimenzí n a m nad tělesem T, +,, nechť posloupnosti vektorů g 1, g 2,..., g n V a h 1, h 2,..., h m W tvoří báze
ÚVOD DO ARITMETIKY. Michal Botur
ÚVOD DO ARITMETIKY Michal Botur 2011 2 Obsah 1 Algebraické základy 3 1.1 Binární relace.................................. 3 1.2 Zobrazení a operace............................... 7 1.3 Algebry s jednou
Kapitola 1: Reálné funkce 1/13
Kapitola 1: Reálné funkce 1/13 Číselné množiny 2/13 N = {1, 2, 3, 4,... }... přirozená čísla N 0 = N {0} = {0, 1, 2, 3, 4,... } Z = {..., 2, 1, 0, 1, 2, 3, 4,... }... celá čísla Q = { p q p, q Z}... racionální
Co je to univerzální algebra?
Co je to univerzální algebra? Při studiu řadu algebraických struktur (grupoidy, pologrupy, grupy, komutativní grupy, okruhy, obory integrity, tělesa, polosvazy, svazy, Booleovy algebry) se často některé
Lineární algebra : Lineární prostor
Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární
Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál
Komutativní a nekomutativní polookruhy ve školské matematice. Commutative and non-commutative semi-rings in educational mathematics
Komutativní a nekomutativní polookruhy ve školské matematice Drahomíra Holubová Resume Polookruhy, které nejsou okruhy, mají významné zastoupení ve školské matematice. Tento příspěvek uvádí příklady komutativních
Algebra 2 KMI/ALG2. Zpracováno podle přednášek prof. Jiřího Rachůnka a podle přednášek prof. Ivana Chajdy. slidy k přednáškám
Algebra 2 slidy k přednáškám KMI/ALG2 Zpracováno podle přednášek prof. Jiřího Rachůnka a podle přednášek prof. Ivana Chajdy. Vytvořeno za podpory projektu FRUP_2017_052: Tvorba a inovace výukových opor
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Západočeská univerzita v Plzni
Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY ALGEBRAICKÉ STRUKTURY S JEDNOU BINÁRNÍ OPERACÍ A JEJICH ZOBRAZENÍ BAKALÁŘSKÁ PRÁCE Marie Černá Přírodovědná studia, Matematická studia
Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.
Teorie množin V matematice je všechno množina I čísla jsou definována pomocí množin Informatika stojí na matematice Znalosti Teorie množin využijeme v databázových systémech v informačních systémech při
Množiny, relace, zobrazení
Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,
1. Pologrupy, monoidy a grupy
Matematický ústav Slezské univerzity v Opavě Učební textykpřednášce ALGEBRA I, zimní semestr 2002/2003 Michal Marvan 1. Pologrupy, monoidy a grupy Algebra dvacátého století je nauka o algebraických strukturách.
10. DETERMINANTY " # $!
10. DETERMINANTY $ V této kapitole zavedeme determinanty čtvercových matic libovolného rozměru nad pevným tělesem, řekneme si jejich základní vlastnosti a naučíme se je vypočítat včetně příkladů jejich
Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
Kongruence na množině celých čísel
121 Kapitola 4 Kongruence na množině celých čísel 4.1 Relace kongruence na množině celých čísel Vraťme se k úvahám o dělení se zbytkem. Na základní škole jsme se naučili, že když podělíme číslo 11 číslem
Funkce, elementární funkce.
Kapitola 2 Funkce, elementární funkce. V této kapitole si se budeme věnovat studiu základních vlastností funkcí jako je definiční obor, obor hodnot. Připomeneme si pojmy sudá, lichá, rostoucí, klesající.
Kapitola 1: Reálné funkce 1/13
Kapitola 1: Reálné funkce 1/13 Číselné množiny N, N 0, Z, Q, I, R, C Definice: Kartézský součin M N množin M a N je množina všech uspořádaných dvojic, ve kterých je první složka prvkem množiny M a druhá
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Polynomy v moderní algebře
Polynomy v moderní algebře 2. kapitola. Neutrální a inverzní prvek. Grupa In: Karel Hruša (author): Polynomy v moderní algebře. (Czech). Praha: Mladá fronta, 1970. pp. 15 28. Persistent URL: http://dml.cz/dmlcz/403713
SOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p. Např: (-2) = -3
SOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p Např: 2 2 + (-2) 4 + 0 0 + 1 1 = -3 INVERZNÍ MATICE Pro čtvercovou matici B může (ale nemusí) existovat
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí
1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální
P 1 = P 1 1 = P 1, P 1 2 =
1 Výpočet inverzní matice Věta 1 Necht P U elementární matice vzniklá el úpravou U Pak je P U regulární Důkaz: Protože elementární úprava U je invertovatelná, existuje el úprava U, která vrací změny U
M M. Je-li ρ M 2 relace, pak vztah (x, y) ρ zapisujeme x ρ y.
Matematický ústav Slezské univerzity v Opavě Učební textykpřednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 8. Uspořádání asvazy Uspořádání je další užitečná abstraktní struktura na množině. Modeluje
Kapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
Operace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
Matematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n
[1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem
Algebra II pro distanční studium
Algebra II pro distanční studium (1) Předmluva................... 3 I. Struktury s jednou binární operací........ 5 1. Základní vlastnosti grup.......... 5 2. Podgrupy................ 22 3. Grupy permutací.............
Matematika pro informatiku 1
Matematika pro informatiku 1 Alena Šolcová katedra teoretické informatiky Fakulta informačních technologií ČVUT Evropský sociální fond Investujeme do vaší budoucnosti Přednášející Ing. Karel Klouda, Ph.
18. První rozklad lineární transformace
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 18. První rozklad lineární transformace Úmluva. Vtéto přednášce V je vektorový prostor
Číselné vektory, matice, determinanty
Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny
[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici
[1] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A = 0 pro singulární matici, det A 0 pro regulární matici používá se při řešení lineárních soustav... a v mnoha dalších aplikacích
8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1]
[1] Afinní transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím využití například v počítačové grafice Evropský sociální fond Praha & EU. Investujeme do
Báze a dimenze vektorových prostorů
Báze a dimenze vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ). Nechť u 1, u 2,..., u n je konečná posloupnost vektorů z V. Existují-li prvky s 1, s 2,..., s n T, z nichž alespoň
Bakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
Kapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. března 2014, 12:42 1 2 0.1 Násobení matic Definice 1. Buďte m, n, p N, A
RELACE, OPERACE. Relace
RELACE, OPERACE Relace Užití: 1. K popisu (evidenci) nějaké množiny objektů či jevů, které lze charakterizovat pomocí jejich vlastnostmi. Entita je popsána pomocí atributů. Ty se vybírají z domén. Různé
VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
Množiny, základní číselné množiny, množinové operace
2 Množiny, základní číselné množiny, množinové operace Pokud kliknete na některý odkaz uvnitř textu kromě prezentace, zobrazí se odpovídající příklad nebo tabulka. Levý Alt+šipka doleva nebo ikona Vás
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.
Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní
1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU
Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření
Lineární prostory. - vektorové veličiny(síla, rychlost, zrychlení,...), skládání, násobení reálným číslem
Lineární prostory - vektorové veličiny(síla, rychlost, zrychlení,...), skládání, násobení reálným číslem - volné vektory a operace s nimi(sčítání, násobení reálným číslem) -ve 2 nebove 3 vázanévektorysespolečnýmpočátkem
Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném rušení ) Muhammada ibn Músá al-chvárizmího (790? - 850?, Chiva, Bagdád),
1 LINEÁRNÍ ALGEBRA 1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci
15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.
Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,
Matematická analýza ve Vesmíru. Jiří Bouchala
Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/21 Matematická analýza ve Vesmíru. proměnné - p. 2/21 Definice. Funkcí (přesněji:
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Lineární algebra. Matice, operace s maticemi
Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím.
Regulární matice Věnujeme dále pozornost zejména čtvercovým maticím. Věta. Pro každou čtvercovou matici A = (a ij ) řádu n nad tělesem (T, +, ) jsou následující podmínky ekvivalentní: (i) Řádky matice
1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU
Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření
Pavel Horák LINEÁRNÍ ALGEBRA A GEOMETRIE 1 UČEBNÍ TEXT
Pavel Horák LINEÁRNÍ ALGEBRA A GEOMETRIE 1 UČEBNÍ TEXT 2 0 1 7 Obsah 1 Vektorové prostory 2 1 Vektorový prostor, podprostory........................ 2 2 Generování podprostor u............................
1 Lineární prostory a podprostory
Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C
7. Lineární vektorové prostory
7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární
2. Test 07/08 zimní semestr
2. Test 07/08 zimní semestr Příklad 1. Najděte tříprvkový poset (částečně uspořádanou množinu), která má právě dva maximální a právě dva minimální prvky. Řešení. Takový poset je až na izomorfismus jeden:
Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.
2. ZOBRAZENÍ A FUNKCE 2.1 Zobrazení 2. 1. 1 Definice: Nechť A a B jsou množiny. Řekneme že f je zobrazení množiny A do množiny B jestliže (i) f A B (ii) ke každému z množiny A eistuje právě jedno y z množiny
Symetrické a kvadratické formy
Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso
Operace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S.
1 Kapitola 1 Množiny 11 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky 111 Princip rovnosti
0. ÚVOD - matematické symboly, značení,
0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní
Aritmetika s didaktikou I.
Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 10 Dělení se zbytkem O čem budeme hovořit: Binární operace dělení se zbytkem v N Struktury zbytkových tříd podle modulu Seznámíme
Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin.
1.2. Cíle Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. Průvodce studiem Množina je jedním ze základních pojmů moderní matematiky. Teorii množin je možno budovat
Algebraická teorie diskrétního lineárního řízení vznikla jako speciální obor teorie
OKRUHY POLYNOMŮ PRO DISKRÉTNÍ LINEÁRNÍ ŘÍZENÍ 0. Úvod Algebraická teorie diskrétního lineárního řízení vznikla jako speciální obor teorie řízení začátkem sedmdesátých let dvacátého století. V této době
METRICKÉ A NORMOVANÉ PROSTORY
PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme
Základy teorie grup. Martin Kuřil
Základy teorie grup Martin Kuřil Abstrakt Text je vhodný pro samostudium a jako studijní opora pro studenty distanční a kombinované formy studia. V textu jsou vyloženy základy teorie grup od zavedení pojmu