Příklady ze Statistiky
|
|
- Pavla Fišerová
- před 6 lety
- Počet zobrazení:
Transkript
1 Příklady ze Statistiky Regrese Příklad 1 V továrně byla sledována závislost celkových nákladů "n" (v tis. Kč.) na produkci "p". Byly zaznamenány následující údaje p = [ ]; n = [ ]; a) Pomocí lineární regrese odhadněte náklady pro produkci 1000 výrobků. b) Pomocí lineární regrese odhadněte, pro jakou produkci budou náklady rovny Kč. param = , yp = xp = Příklad 3 Do vodní nádrže unikla jedovatá látka. Byl aplikován neutralizační prostředek a v okamžicích "xi" byla měřena zbytková koncentrace škodliviny "yi" v nádrži. Zjištěné údaje jsou (čas v minutách, koncentrace v promile) xi = [ ]; yi = [ ]; Vypočtěte korelační koeficient pro lineární regresi, posudte její vhodnost a odhadněte, kdy bude koncentrace škodliviny nulová. Korelační koeficient r = Parametry p = , Nulová koncentrace bude v x0 x0 = Příklad 5 Na sledovaném procesu byla naměřena data xi = [ ]; yi = [ ]; Pro tato data provedte polynomiální regresi "k"-tého stupně a exponenciální regresi. Pomocí chyby predikce určete, která z regresí je vhodnější. 1
2 k = 3; SEp = SEe = Polynomiální je lepší. Příklad 6 Na sledovaném procesu byla naměřena data x1i = [ ] ; x2i = [ ] ; yi = [ ] ; Pro tato data provedte vícenásobnou lineární regresi a testujte její vhodnost pomocí testu na bělost reziduí. SE = Regrese se jeví jako vhodná. Parametrické testy - Příklad 7 Za předpokladu, že výška dětí ve věku 10 let má normální rozdělení s rozptylem "sig2", určete interval al-i, ve kterém bude ležet neznámá střední hodnota výšky dětí, jestliže z výběru o rozsahu "n" byl vypočten průměr "mx". Interval určete jako a) oboustranný, b) pravostranný. sig2 = 38; n = 12; mx = 127.3; al =.01; CI_O = CI_L = Inf CI_P = -Inf Příklad 8 Za předpokladu, že výška dětí ve věku 10 let má normální rozdělení určete interval al-i, ve kterém bude ležet neznámá střední hodnota výšky dětí, jestliže z výběru o rozsahu n byl vypočten průměr mx a rozptyl s2x. Interval určete jako a) oboustranný, b) levostranný. n = 12; mx = 127.3; 2
3 s2x = 38; al =.01; CI_O = CI_L = Inf CI_P = -Inf Příklad 9 Pro zjištění přesnosti metody pro stanovení obsahu manganu v oceli byla provedena nezávislá měření vzorků. Chceme stanovit hranici, pro níž platí, že pravděpodobnost hodnoty skutečného rozptylu metody větší než tato hranice bude jen 5%. Změřené hodnoty x jsou x = [ ]; Hranice je Příklad 10 Na magistrále v úseku s doporučenou rychlostí 80 km/h jsme kontrolovali rychlost vozidel a získali údaje xi a ni (hodnoty a četnosti). Určete oboustranný al -interval pro rozptyl rychlostí, kterými řidiči v tomto úseku jezdí xi = [ ]; ni = [ ]; CI = Příklad 11 Na magistrále v úseku s doporučenou rychlostí 80 km/h jsme kontrolovali rychlost vozidel. Výběrem byly zjištěny rychlosti vozidel x. Určete oboustranný al -IS pro podíl řidičů, kteří překračují doporučenou rychlost o r km/h. x = [ ]; al=.05; r = 3; CI_obou = CI_levo =
4 Příklad 12 Ze souboru ocelových nosníků stejné nominální délky jsme provedli náhodný výběr s délkami x. Výrobce zaručuje rozptyl výrobků na hodnotě sig2. Na hladině významnosti al testujte tvrzení: Nominální délka nosníků je d. x = [ ]; d = 6.5; sig2 =.8; pv = Příklad 13 Ze souboru ocelových nosníků stejné nominální délky jsme provedli náhodný výběr n nosníků a vypočetli průměr mx a směrodatnou odchylku sx. Na hladině významnosti al testujte tvrzení: Nominální délka nosníků je d. n = 50; mx = 5.77; sx =.8; d = 6; pv = Příklad 15 Přesnost nastavení obráběcího stroje se zjistí z rozptylu průměrů vyráběných součástek. Stroj je nutné znovu nastavit, jestliže jeho rozptyl je větší než sig2. Provedli jsme výběr a zjistili hodnoty průměrů nx - četnosti, mx - průměry. Je třeba stroj znovu nastavit? Testujte na hladině al. nx = [ ]; mx = [ ]; sig2 = 28; pv = Příklad 16 Pevnost materiálu se ověřuje pomocí metod A a B. Tentýž materiál byl podroben testování oběma metodami. Výsledky testů jsou xa a xb. Na hladině významnosti al testujte 4
5 shodu obou testů. Rozptyly lze povařžovat za shodné. xa = [ ]; xb = [ ]; pv = Příklad 17 Testujeme sjetí pneumatik na nevé a pravé straně u předních kol automobilů. U náhodně vybraných automobilů byly změřeny vždy oba údaje s výsledky xl a xp. Testujte na hladině al. xl = [ ]; xp = [ ]; pv = Příklad 18 Na magistrále v úseku s doporučenou rychlostí 80 km/h jsme kontrolovali rychlost vozidel. Výběrem byly zjištěny rychlosti vozidel x. Na hladině významnosti al testujte hypotézu: Podil řídičů, kteří překračují doporučenou rychlost o r km/h. není větší než P procent. x = [ ]; al=.05; r = 3; P = 20; pv = Příklad 19 Na magistrále v úseku s doporučenou rychlostí 80 km/h jsme kontrolovali rychlost vozidel směrem do Prahy a ven z Prahy. Výběrem jsme získali rychlosti do Prahy a z Prahy. Rychlosti jsme roztřídili a zanamenali jako četnosti nd a nz a hodnoty rd a rz (D je do Prahy a Z je z Prahy). Na hladině al testujte hypotézu: Z Prahy jezdí auta rychleji. nd = [ ]; rd = [ ]; nz = [ ]; 5
6 rz = [ ]; al =.01; pv = Příklad 20 Byla provedena namátková kontrola seřízení předních světel automobilů. U každého automobilu byla kontrolována obě světla s výsledky v centimetrech (+ nad a - pod optimální úrovní). Získané hodnoty jsou xp (pravé) a xl (levé reflektory). Na hladině al testujte tvrzení, že jednotlivé automobily mají oba reflektory seřízeny stejně. xp = [ ]; xl = [ ]; al =.1; pv = Příklad 21 Byla provedena namátková kontrola seřízení předních světel automobilů. U každého automobilu byla kontrolována obě světla s výsledky v centimetrech (+ nad a - pod optimální úrovní). Získané hodnoty jsou xp (pravé) a xl (levé reflektory). Na hladině al testujte tvrzení, že levé reflektory jsou u automobilů méně sklopeny než pravé. xp = [ ]; xl = [ ]; al =.1; pv = Příklad 22 Na křižovatce jsme po určitou dobu zaznamenávali počty automobilů jedoucích rovně (R) a odbočujících doleva (L) a doprava (P). Zjištěné hodnoty byly xr, xl a xp. Na hladině al testujte tvrzení, že podíl automobilů jedoucích rovně je stejný jako těch, kteří odbočují. xr = 62; xl = 39; xp = 46; al =.1; 6
7 pv = Příklad 23 Na křižovatce jsme opakovaně zaznamenávali počty automobilů jedoucích rovně (R) a odbočujících doleva (L) a doprava (P). Zjištěné hodnoty jsou xr, xl a xp. Na hladině al testujte tvrzení, že průměrné množství automobilů odbočujících je větší než těch, kteří jedou rovně. xr = [ ]; xl = [ ]; xp = [ ]; pv = 1.130D-69 Anova Příklad 24 Sledujeme tři stroje. Náhodně zjištujeme jejich hodinové produkce "x1", "x2" a "x3". Je prvdivé tvrzení, že na hladině významnosti "al" jsou průměrné produkce všech tří strojů shodné? al = 0.05; x1 = [ ]; x2 = [ ]; x3 = [ ]; pv = Příklad 25 V měsíci bezpečnosti sledujeme počet nehod na pěti pražských křižovatkách. Výsledky jsou v následující tabulce rok: počet_ počet_ počet_ počet_ počet_ Lze na hladině významnosti "al" tvrdit, že průměrný počet nehod je na všech křižovatkách stejný? al = 0.01; 7
8 Jednofaktorová anova pv = Dvoufaktorová anova Shoda v křižovatkách Shoda v čase Neparametrické testy Příklad 26 Na křižovatce jsme v různých intervalech zaznamenávali počty projíždějících automobilů. Změřená hodnoty jsou "di" - delka intervalu pozorování (min) a "xi" - počet pozorovaných automobilů d = [ ]; x = [ ]; Na hladině "al" testujte tvrzení, že automobily projíždějí rovnoměrně. pv = Příklad 27 Následující tabulka udává četnosti drobných nehod ve velké továrně, pozorované během jednoho dne doba 8-10h h h h. počet Na hladině "al" testujte tvrzení, že nehody jsou rozloženy rovnoměrně. pv = Příklad 28 Zjištovala se závislost mezi barvou očí a vlasů u mužů. Ve výběru dotázaných mužů byly zjištěny následující četnosti oči \ vlasy světlé hnědé tmavé modré šedé
9 hnědé Na hladině "al" testujte tvrzení, že barva očí a vlasů je navzájem nezávislá. pv = Příklad 29 Na dvou strojích se pravidelně střídají dva operátoři. Výrobky, které se na strojích vyrobí projdou kontrolou a každý vadný je označen podle stroje (S) a operátora (O). Byly zjištěny následující údaje stroj operátor Na hladině "al" testujte tvrzení, že operátoři a stjoje jsou při výrobě zmetků nezávislí. pv = Příklad 30 Two doctors recommend curing the cold with two different methods. The (number of days of the treatment) are x1 and x2. Test equality of the methods. x1=[ ]; x2=[ ]; Kr = 24. U = 48.5 pv = 1. Příklad 31 Osm sportovců z jistého sportovního klubu podstoupilo test výkonnosti. Každý z nich hodil oštěpem a poté byl podroben intenzivnímu tréningu. Druhý den házel podruhé. Obě délky hodu byly zaznamenány jako x1 a x2. Trenér očekává, že jeden den trénigu je málo na zvýšení výkonnosti. Testujte na hladině al. x1=[ ]; x2=[ ]; 9
10 kr = 8.1 W = 36. pv = 1. 10
11 Příklad 32 Testujte jestli jeleni a myši mají stejně dlouhé obě přední nohy. Změřená data jsou x1 (levé) a x2 (pravé). x1=[ ]; x2=[ ]; kr = 8.1 W = 34. pv = 1. Příklad 33 Tři kontroloři hodnotí úroveň pěti stýnků s rychlým občerstvením. Každý kontrolor ohodnotí každý stánek. Výskledky jsou v tabulce Tab. Řádky odpovídají kontrolorům, sloupce stánkům. Hodnocení je 1 až 10 (10 je nejlepší). Testujte, zda stánky mají stejnou kvalitu. Tab=[ ]; W = Inf T = pv = Příklad 34 Továrna vyrábí výrobky, které by měly mít stejnou váhu. Pro výrobu jsou použity čtyři stroje. Od každého stroje jsme odebrali několik výrobků s vahami x1 až x4. Testujte, zda výhy výrobků z jednotlivých strojů jsou shodné. x1=[ ]; x2=[ ]; x3=[ ]; x4=[ ]; pv =
Příklady ze Statistiky
Příklady ze Statistiky Regrese Příklad 1 V továrně byla sledována závislost celkových nákladů "n" (v tis. Kč.) na produkci "p". Byly zaznamenány následující údaje p = [532 297 378 121 519 613 592 497];
Příklad 81b. Předpokládejme, že výška chlapců ve věku 9,5 až 10 roků má normální rozdělení N(mi;sig2)
Příklad 1. Za předpokladu, že výška dětí ve věku 10 let má normální rozdělení s rozptylem 38, určete pravostranný 99% interval spolehlivosti, ve kterém bude ležet neznámá střední hodnota výšky dětí, jestliže
se bude objevovat jen v 5% pokusů. Výsledky měření jsou: 0,31; 0,30; 0,29; 0,32.
Typ úlohy: A - IS pro střední hodnotu 1. Předpokládejme, že výška chlapců ve věku 9,5 až 10 roků má normální rozdělení N(µ; σ 2 )s neznámou střední hodnotou a rozptylem rovným 39,112. Změřili jsme výšku
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
Zeptali jsme se 10 osob, kolik minut provolají měsíčně s rodinou a jejich odpovědi jsme zaznamenali do tabulky:
Cvičení 10 Opakování probraných testů 1 Příklad z-test V souvislosti s rozsáhlou rekonstrukci tramvajových tratí dopravní podnik provádí průzkum, zda neklesl počet cestujících autobusovou linkou č.87689
Řešení: máme diskrétní N.V. vzdělání bez maturity, s maturitou, vysokoškoláci, PhD.
Cvičení 13 Opakování 1 Příklad χ 2 test dobré shody Průzkumem bylo zjištěno, že v roce 2005 bylo ve městě 18% lidí bez maturity, 56% s maturitou, 22% absolventů vysokoškolského studia, zbytek tvořili absolventi
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Testování hypotéz. 4. přednáška 6. 3. 2010
Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.
1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,
II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal
Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,
Doporučené příklady k procvičení k 2. Průběžnému testu
Doporučené příklady k procvičení k 2. Průběžnému testu - Statistika v příkladech Marek a kol. (2013) - kapitola 2.3, 9 řešené příklady 2.52-2.53, 2.58a,b - kapitola 3.1 o řešené příklady: 3.1, 3.2, 3.4
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
MATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 12 Testování hypotéz Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola báňská Technická univerzita
MÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
4ST201 STATISTIKA CVIČENÍ Č. 8
4ST201 STATISTIKA CVIČENÍ Č. 8 analýza závislostí kontingenční tabulky test závislosti v kontingenční tabulce analýza rozptylu regresní analýza lineární regrese Analýza závislostí Budeme ověřovat existenci
Jednostranné intervaly spolehlivosti
Jednostranné intervaly spolehlivosti hledáme jen jednu z obou mezí Princip: dle zadání úlohy hledáme jen dolní či jen horní mez podle oboustranného vzorce s tou změnou, že výraz 1-α/2 ve vzorci nahradíme
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
Korelační a regresní analýza
Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY
VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový
Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
Příklady na testy hypotéz o parametrech normálního rozdělení
Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost
S E M E S T R Á L N Í
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie S E M E S T R Á L N Í P R Á C E Licenční studium Statistické zpracování dat při managementu jakosti Předmět ANOVA analýza rozptylu
Lineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11
Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:
Testování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
Aproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,
11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup
Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009
Biostatistika Cvičení 7
TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
ÚVOD DO TEORIE ODHADU. Martina Litschmannová
ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY
VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový
Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 1
PRAVDĚPODOBNOST A STATISTIKA Neparametrické testy hypotéz čast 1 Neparametrické testy hypotéz - úvod Neparametrické testy statistických hypotéz se používají v případech, kdy neznáme rozdělení pozorované
Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13
Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test
Testy statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Cvičící Kuba Kubina Kubinčák Body u závěrečného testu
1. Příklad U 12 studentů jsme sledovali počet dosažených bodů na závěrečném testu (od 0 do 60). Vždy 4 z těchto studentů chodili k jednomu ze 3 cvičících panu Kubovi, panu Kubinovi, nebo panu Kubinčákovi.
Testování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
5 Parametrické testy hypotéz
5 Parametrické testy hypotéz 5.1 Pojem parametrického testu (Skripta str. 95-96) Na základě výběru srovnáváme dvě tvrzení o hodnotě určitého parametru θ rozdělení f(x, θ). První tvrzení (které většinou
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ Ústav aplikované matematiky (K611) SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU STATISTIKA TÉMA: Děti a dopravní pravidla Ekaterina Koshkina 2 32 Zuzana Prekalova
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Statistické metody uţívané při ověřování platnosti hypotéz
Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy
PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.
Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou
Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Statistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení dvanácté aneb Regrese a korelace Statistika (KMI/PSTAT) 1 / 18 V souboru 25 jedinců jsme měřili jejich výšku a hmotnost. Výsledky jsou v tabulce a grafu. Statistika (KMI/PSTAT)
VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
NEPARAMETRICKÉ TESTY
NEPARAMETRICKÉ TESTY Výhodou neparametrických testů je jejich použitelnost bez ohledu na typ rozdělení, z něhož výběr pochází. K testování se nepoužívají parametry výběru (např.: aritmetický průměr či
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce ANOVA 2015
Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky
Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného
Testování statistických hypotéz. Obecný postup
poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu 016 9 Testování statistických hypotéz Obecný postup (I) Vyslovení hypotézy O datech vyslovíme doměnku, kterou chceme ověřit statistickým
Poznámky k předmětu Aplikovaná statistika, 11. téma
Poznámky k předmětu Aplikovaná statistika, 11. téma Testy založené na χ 2 rozdělení V přehledu významných rozdělení jsme si uvedli, že Poissonovým rozdělením se modeluje počet událostí, které nastanou
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Test dobré shody v KONTINGENČNÍCH TABULKÁCH
Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když
Jednofaktorová analýza rozptylu
I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Analýza rozptylu. Ekonometrie. Jiří Neubauer. Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel
Analýza rozptylu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO Brno) Analýza rozptylu 1 / 30 Analýza
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace )
Příklad č. 1 Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace ) Zadání : Stanovení manganu ve vodách se provádí oxidací jodistanem v kyselém prostředí až na manganistan. (1) Sestrojte
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ STATISTIKA. Semestrální práce
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ STATISTIKA Semestrální práce Lukáš Sůva, Jakub Culek (2 31) 20/2013 Ú vod Předmětem naší semestrální práce jsme si zvolili průzkum překračování povolené
Sever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty
Neparametrické testy (motto: Hypotézy jsou lešením, které se staví před budovu a pak se strhává, je-li budova postavena. Jsou nutné pro vědeckou práci, avšak skutečný vědec nepokládá hypotézy za předmětnou
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Cvičení 12: Binární logistická regrese
Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,
(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination.
Neparametricke testy (motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination. Andrew Lang) 1. Příklad V následující tabulce jsou
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
Aplikovaná statistika v R - cvičení 2
Aplikovaná statistika v R - cvičení 2 Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 5.6.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 5.6.2014 1 / 18 Přehled Rkových
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ FAKULTA DOPRAVNÍ
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ FAKULTA DOPRAVNÍ SEMESTRÁLNÍ PRÁCE ZE STATISTIKY Znalosti pravidel silničního provozu žáků páté až deváté třídy 1. ZŠ Podbořany Skupina: 2 38 Ak. rok: 2011/2012 Autoři: Ladislav
4EK211 Základy ekonometrie
4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb
TLOUŠŤKOVÁ A VÝŠKOVÁ STRUKTURA A JEJÍ MODELOVÁNÍ
TLOUŠŤKOVÁ A VÝŠKOVÁ STRUKTURA A JEJÍ MODELOVÁNÍ 1 Vlastnosti tloušťkové struktury porostu tloušťky mají vyšší variabilitu než výšky světlomilné dřeviny mají křivku početností tlouštěk špičatější a s menší
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: SMAD Cvičení Ostrava, AR 2016/2017 Popis datového souboru Pro dlouhodobý
Cvičení 9: Neparametrické úlohy o mediánech
Cvičení 9: Neparametrické úlohy o mediánech Úkol 1.: Párový znaménkový test a párový Wilcoxonův test Při zjišťování kvality jedné složky půdy se používají dvě metody označené A a B. Výsledky: Vzorek 1
Statistické testování hypotéz II
PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení
SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík
SEMESTRÁLNÍ PRÁCE Leptání plasmou Ing. Pavel Bouchalík 1. ÚVOD Tato semestrální práce obsahuje písemné vypracování řešení příkladu Leptání plasmou. Jde o praktickou zkoušku znalostí získaných při přednáškách