Přednáška 1 Úvod do předmětu

Rozměr: px
Začít zobrazení ze stránky:

Download "Přednáška 1 Úvod do předmětu"

Transkript

1 Přednáška 1 Úvod do předmětu Miroslav Lávička 1 lavicka@kma.zcu.cz 1 Katedra matematiky, Fakulta aplikovaných věd Západočeská univerzita v Plzni Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Přednáška /2012 Letní semestr 1 / 15

2 Plán předmětu K M A / G V S G E O M E T R I C K É V I DĚNÍ S VĚTA V AKADEMICKÉM ROCE 2013/2014 Semestr: letní Rozsah: (3 kredity) Harmonogram výuky TÝDEN DATUM TÉMA PŘEDNÁŠKY TÉMA CVIČENÍ Tvorba 3D modelu. Souřadnicové soustavy. Kartézská soustava souřadnic. Polární, cylindrické a sférické souřadnice. Globální a lokální Opakování vektorové a maticové algebry. Soustavy souřadnic a jejich použití. souřadnicové systémy Základy analytické geometrie v rovině a prostoru I. Analytická geometrie ve 2D a 3D polohové úlohy Základy analytické geometrie v rovině a prostoru II. Analytická geometrie ve 2D a 3D metrické úlohy Mnohostěny, polyedrické povrchy (Polyhedral Úlohy na tělesech. surfaces). Platónská a archimédovská tělesa, zlatý řez Boolovské operace. Feature Based Modelling. 1. zápočtový test (analytická geometrie) Promítání, Mongeova projekce a lineární Lineární perspektiva úlohy perspektiva Nelineární zobrazení, osvětlení, stínování. Osvětlení úlohy Geometrické transformace v rovině. Transformace ve 2D úlohy Geometrické transformace v prostoru. Transformace ve 3D úlohy Křivky (opakování a rozšíření) a plochy. Průniky křivek a ploch. Úlohy na průniky křivek a ploch. Transformace křivek a ploch Speciální třídy ploch I (rotační, translační, přímkové). 2. zápočtový test (geometrické transformace) Speciální třídy ploch II (rozvinutelné, šroubové, kanálové plochy). Vyšetřování vlastností ploch ve 3D Rezerva, řešení vzorové zkouškové písemky. Závěr, zápočty Přednáška /2012 Letní semestr 2 / 15

3 Plán předmětu Zápočet Požadavky k zápočtu Pro obdržení zápočtu je nutné splnit následující požadavky: Během semestru se píší dvě zápočtové práce (v rozsahu 40 min), přičemž za každou lze získat max. 10 bodů (termíny uvedené v harmonogramu jsou jen orientační a budou upřesněny na přednášce, resp. cvičení). První nutnou podmínkou obdržení zápočtu je v součtu zisk alespoň 11 bodů z obou prací. Přednáška /2012 Letní semestr 3 / 15

4 Plán předmětu Zkouška Požadavky ke zkoušce Závěrečná zkouška má dvě části, a to písemnou a ústní. Při hodnocení jsou posuzovány získané způsobilosti, zejména schopnost analyzovat a řešit specifické problémy vztahující se k probírané látce. Písemná část Čas 90 min. zadány jsou příklady z tematických okruhů, jež odrážejí obsahovou náplň předmětu (viz seznam probírané látky) Ústní část Nutnou podmínkou postupu k ústní části je nadpoloviční bodový zisk z části písemné. Vlastní průběh se skládá z rozboru písemné části a dále jsou položeny doplňující otázky orientované na obecné souvislosti přednášené látky. Přednáška /2012 Letní semestr 4 / 15

5 Plán předmětu Kontakt/Informace/Pokyny/Aktuality Přednáška /2012 Letní semestr 5 / 15

6 Plán předmětu Kontakt/Informace/Pokyny/Aktuality Přednáška /2012 Letní semestr 6 / 15

7 Plán předmětu Kontakt/Informace/Pokyny/Aktuality To: Subject: GVS Přednáška /2012 Letní semestr 7 / 15

8 Obsah předmětu Úvod Geometrie tvoří jádro samotného procesu uchopení reálného světa (např. při designerské činnosti). Je přítomna od prvotního okamžiku návrhu až po finální konstrukční fázi. Představuje rovněž základní komunikační médium, tj. (jednotnou) grafickou reprezentaci získanou pomocí přesných geometrických (abstraktních) pravidel. Tradiční přednášky konstrukční geometrie byly založeny především na deskriptivní geometrii, moderní geometrické kurzy pro inženýry, designery, architekty apod. vycházejí z aktuálních metod, které nabízí výpočetní technika. Zatímco množství geometrických objektů efektivně uchopitelných tradičními geometrickými postupy je poměrně omezené, moderní počítačové technologie vedou k opravdové geometrické revoluci a nabízejí zcela nové postupy geometrického vidění a zpracování reálného světa kolem nás. Přednáška /2012 Letní semestr 8 / 15

9 Obsah předmětu Úvod Geometrie tvoří jádro samotného procesu uchopení reálného světa (např. při designerské činnosti). Je přítomna od prvotního okamžiku návrhu až po finální konstrukční fázi. Představuje rovněž základní komunikační médium, tj. (jednotnou) grafickou reprezentaci získanou pomocí přesných geometrických (abstraktních) pravidel. Tradiční přednášky konstrukční geometrie byly založeny především na deskriptivní geometrii, moderní geometrické kurzy pro inženýry, designery, architekty apod. vycházejí z aktuálních metod, které nabízí výpočetní technika. Zatímco množství geometrických objektů efektivně uchopitelných tradičními geometrickými postupy je poměrně omezené, moderní počítačové technologie vedou k opravdové geometrické revoluci a nabízejí zcela nové postupy geometrického vidění a zpracování reálného světa kolem nás. Přednáška /2012 Letní semestr 8 / 15

10 Obsah předmětu Úvod Geometrie tvoří jádro samotného procesu uchopení reálného světa (např. při designerské činnosti). Je přítomna od prvotního okamžiku návrhu až po finální konstrukční fázi. Představuje rovněž základní komunikační médium, tj. (jednotnou) grafickou reprezentaci získanou pomocí přesných geometrických (abstraktních) pravidel. Tradiční přednášky konstrukční geometrie byly založeny především na deskriptivní geometrii, moderní geometrické kurzy pro inženýry, designery, architekty apod. vycházejí z aktuálních metod, které nabízí výpočetní technika. Zatímco množství geometrických objektů efektivně uchopitelných tradičními geometrickými postupy je poměrně omezené, moderní počítačové technologie vedou k opravdové geometrické revoluci a nabízejí zcela nové postupy geometrického vidění a zpracování reálného světa kolem nás. Přednáška /2012 Letní semestr 8 / 15

11 Obsah předmětu Úvod Geometrie tvoří jádro samotného procesu uchopení reálného světa (např. při designerské činnosti). Je přítomna od prvotního okamžiku návrhu až po finální konstrukční fázi. Představuje rovněž základní komunikační médium, tj. (jednotnou) grafickou reprezentaci získanou pomocí přesných geometrických (abstraktních) pravidel. Tradiční přednášky konstrukční geometrie byly založeny především na deskriptivní geometrii, moderní geometrické kurzy pro inženýry, designery, architekty apod. vycházejí z aktuálních metod, které nabízí výpočetní technika. Zatímco množství geometrických objektů efektivně uchopitelných tradičními geometrickými postupy je poměrně omezené, moderní počítačové technologie vedou k opravdové geometrické revoluci a nabízejí zcela nové postupy geometrického vidění a zpracování reálného světa kolem nás. Přednáška /2012 Letní semestr 8 / 15

12 Obsah předmětu Prerekvizity KMA/GVS elementární středoškolské znalosti z matematiky a geometrie základy lineární algebry (KMA/ZM1) vektorová algebra, maticová algebra, determinanty základy kalkulu (KMA/ZM1) funkce, limita, spojitost, derivace základy deskriptivní geometrie (KMA/ZDG) Mongeova projekce, axonometrie Přednáška /2012 Letní semestr 9 / 15

13 Obsah předmětu Prerekvizity KMA/GVS elementární středoškolské znalosti z matematiky a geometrie základy lineární algebry (KMA/ZM1) vektorová algebra, maticová algebra, determinanty základy kalkulu (KMA/ZM1) funkce, limita, spojitost, derivace základy deskriptivní geometrie (KMA/ZDG) Mongeova projekce, axonometrie Přednáška /2012 Letní semestr 9 / 15

14 Obsah předmětu Prerekvizity KMA/GVS elementární středoškolské znalosti z matematiky a geometrie základy lineární algebry (KMA/ZM1) vektorová algebra, maticová algebra, determinanty základy kalkulu (KMA/ZM1) funkce, limita, spojitost, derivace základy deskriptivní geometrie (KMA/ZDG) Mongeova projekce, axonometrie Přednáška /2012 Letní semestr 9 / 15

15 Obsah předmětu Prerekvizity KMA/GVS elementární středoškolské znalosti z matematiky a geometrie základy lineární algebry (KMA/ZM1) vektorová algebra, maticová algebra, determinanty základy kalkulu (KMA/ZM1) funkce, limita, spojitost, derivace základy deskriptivní geometrie (KMA/ZDG) Mongeova projekce, axonometrie Přednáška /2012 Letní semestr 9 / 15

16 Cíle předmětu Geometrické vidění světa motivace 1 Geri s Game (1997) by Jan Pinkava Přednáška /2012 Letní semestr 10 / 15

17 Cíle předmětu Geometrické vidění světa motivace 1 ukázka... Přednáška /2012 Letní semestr 11 / 15

18 Cíle předmětu Geometrické vidění světa motivace 2... a co geometrie za oponou? Přednáška /2012 Letní semestr 12 / 15

19 Cíle předmětu Přednáška /2012 Letní semestr 13 / 15

20 Cíle předmětu Přednáška /2012 Letní semestr 13 / 15

21 Cíle předmětu Přednáška /2012 Letní semestr 13 / 15

22 Cíle předmětu Přednáška /2012 Letní semestr 13 / 15

23 Cíle předmětu Přednáška /2012 Letní semestr 13 / 15

24 Cíle předmětu Přednáška /2012 Letní semestr 13 / 15

25 Cíle předmětu Přednáška /2012 Letní semestr 13 / 15

26 Cíle předmětu Přednáška /2012 Letní semestr 13 / 15

27 Cíle předmětu Přednáška /2012 Letní semestr 13 / 15

28 Cíle předmětu Přednáška /2012 Letní semestr 13 / 15

29 Cíle předmětu Přednáška /2012 Letní semestr 13 / 15

30 Literatura... pro více informací Pottmann, H., Asperl, A., Hofer, M., Kilian, A.: Architectural Geometry. Bentley Institute Press, Přednáška /2012 Letní semestr 14 / 15

Počítačová geometrie I

Počítačová geometrie I 0 I RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Osnova předmětu Pojem výpočetní geometrie, oblasti

Více

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021 Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

MATEMATIKA I. Marcela Rabasová

MATEMATIKA I. Marcela Rabasová MATEMATIKA I Marcela Rabasová Obsah: 1. Úvod 1.1. Osnovy předmětu 1.2. Literatura 1.3. Podmínky absolvování předmětu 1.4. Použité označení a symbolika 2. Funkce jedné reálné proměnné 2.1. Definice 2.2.

Více

Základy matematiky pracovní listy

Základy matematiky pracovní listy Dagmar Dlouhá, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny pro předmět Základy matematiky vyučovaný Katedrou matematiky

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Deskriptivní geometrie

Deskriptivní geometrie Deskriptivní geometrie Úvodní informace Petr Liška Mendelova univerzita 20.9.2016 Petr Liška (Mendelova univerzita) Deskriptivní geometrie 20.9.2016 1 / 31 Podmínky ukončení Přednáška nepovinná účast méně

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Požadavky ke zkoušce

Požadavky ke zkoušce Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 2 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

Učitelství 2. stupně ZŠ tématické plány předmětů matematika

Učitelství 2. stupně ZŠ tématické plány předmětů matematika Učitelství 2. stupně ZŠ tématické plány předmětů matematika Povinné předměty: Matematická analýza I (KMD/MANA1)...2 Úvod do teorie množin (KMD/TMNZI)...4 Algebra 2 (KMD/ALGE2)...6 Konstruktivní geometrie

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Konstruktivní geometrie a TK

Konstruktivní geometrie a TK Konstruktivní geometrie a TK Úvodní informace Petr Liška Mendelova univerzita 15.2.2016 Petr Liška (Mendelova univerzita) Konstruktivní geometrie a TK 15.2.2016 1 / 26 Podmínky ukončení Přednáška nepovinná

Více

Matematika I. dvouletý volitelný předmět

Matematika I. dvouletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Matematika I O7A, C3A, O8A, C4A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem usnadnit absolventům gymnázia přechod na vysoké školy

Více

Karta předmětu prezenční studium

Karta předmětu prezenční studium Karta předmětu prezenční studium Název předmětu: Číslo předmětu: 714-0513 Garantující institut: Garant předmětu: Vybrané kapitoly z matematiky (VKM) Katedra matematiky a deskriptivní geometrie doc. RNDr.

Více

BA008 Konstruktivní geometrie pro kombinované studium

BA008 Konstruktivní geometrie pro kombinované studium BA008 Konstruktivní geometrie pro kombinované studium Jana Slaběňáková Jan Šafařík Ústav matematiky a deskriptivní geometrie Vysoké učení technické v Brně 10. února 2017 Kontakt RNDr. Jana Slaběňáková

Více

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při

Více

Obsah a průběh zkoušky 1PG

Obsah a průběh zkoušky 1PG Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dvě konstrukční úlohy dle části po. bodech a jedna úloha výpočetní úloha dle části za bodů. Ústní část jedna

Více

Učitelství 1. stupně ZŠ tématické plány předmětů matematika

Učitelství 1. stupně ZŠ tématické plány předmětů matematika Učitelství 1. stupně ZŠ tématické plány předmětů matematika Povinné předměty: Matematika I aritmetika (KMD/MATE1) 2 Matematika 3 aritmetika s didaktikou (KMD/MATE3) 3 Matematika 5 geometrie (KMD/MATE5)

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Význam a výpočet derivace funkce a její užití

Význam a výpočet derivace funkce a její užití OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat

Více

Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ. 1 Deskriptivní geometrie na VUT do 2. světové války

Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ. 1 Deskriptivní geometrie na VUT do 2. světové války 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ Abstrakt Příspěvek se zabývá historií výuky deskriptivní geometrie na Vysokém učení technickém.

Více

Matematický ústav UK Matematicko-fyzikální fakulta

Matematický ústav UK Matematicko-fyzikální fakulta Geometrické modelování Zbyněk Šír Matematický ústav UK Matematicko-fyzikální fakulta 5. října 2016 Zbyněk Šír (MÚ UK) - Geometrické modelování 5. října 2016 1 / 14 Obsah dnešní přednášky Co je to geometrické

Více

Ing. Jitka Řezníčková, CSc., Ing. Jan Šleichrt, Ing. Jan Vyčichl, Ph.D.

Ing. Jitka Řezníčková, CSc., Ing. Jan Šleichrt, Ing. Jan Vyčichl, Ph.D. Statika (18SAT) letní semestr 2016/2017 přednášky: Ing. Daniel Kytýř, Ph.D. cvičení: Ing. Tomáš Doktor, Ing. Petr Koudelka, Ing. Nela Krčmářová, Ing. Jitka Řezníčková, CSc., Ing. Jan Šleichrt, Ing. Jan

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Geometrie pro počítačovou grafiku - PGR020

Geometrie pro počítačovou grafiku - PGR020 Geometrie pro počítačovou grafiku - PGR020 Zbyněk Šír Matematický ústav UK Zbyněk Šír (MÚ UK) - Geometrie pro počítačovou grafiku - PGR020 1 / 18 O čem předmět bude Chceme podat teoretický základ nezbytný

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

V tomto předmětu se využívá stejných výchovných a vzdělávacích strategií jako v předmětu Matematika. Gymnázium Pierra de Coubertina, Tábor

V tomto předmětu se využívá stejných výchovných a vzdělávacích strategií jako v předmětu Matematika. Gymnázium Pierra de Coubertina, Tábor Název ŠVP Motivační název Datum 15.6.2009 Název RVP Verze 01 Dosažené vzdělání Střední vzdělání s maturitní zkouškou Platnost od 1.9.2009 Forma vzdělávání Koordinátor Délka studia v letech: denní forma

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 1. přednáška 22.9.2016 Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 19 Organizační pokyny přednášející:

Více

NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Doba řešení: 3 hodiny

NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Doba řešení: 3 hodiny NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Závěrečná zkouška verze cvičná 9.1.2013 Doba řešení: 3 hodiny Přednášející: L. Barto, J. Tůma Křestní jméno: Příjmení: Instrukce Neotvírejte

Více

Mongeova projekce KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Mongeova projekce ZS / 102

Mongeova projekce KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Mongeova projekce ZS / 102 Mongeova projekce KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Mongeova projekce ZS 2008 1 / 102 Obsah 1 Úvod 2 Zobrazení bodu 3 Zobrazení přímky 4 Určení roviny 5 Polohové úlohy Vzájemná poloha dvou

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14.června

Více

Matematika PRŮŘEZOVÁ TÉMATA

Matematika PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí

Více

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné

Více

Požadavky ke zkoušce. Ukázková písemka

Požadavky ke zkoušce. Ukázková písemka Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 1 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní

Více

Matematika 2 (2016/2017)

Matematika 2 (2016/2017) Matematika 2 (2016/2017) Co umět ke zkoušce Průběh zkoušky Hodnocení zkoušky Co umět ke zkoušce Vybrané partie diferenciálního počtu funkcí více proměnných Vybrané partie integrálního počtu funkcí více

Více

DEFINICE,VĚTYADŮKAZYKÚSTNÍZKOUŠCEZMAT.ANALÝZY Ib

DEFINICE,VĚTYADŮKAZYKÚSTNÍZKOUŠCEZMAT.ANALÝZY Ib INFORMACE O PRŮBĚHU A POŽADAVKY KE ZKOUŠCE Z MAT. ANALÝZYIbVLS2010/11 Ke zkoušce mohou přistoupit studenti, kteří získali zápočet. Do indexu jej zapíši na zkoušce, pokud cvičící potvrdí, že na něj student

Více

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Název předmětu: Vyrovnávací kurz z matematiky Zabezpečující ústav: Ústav

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

Bakalářská matematika I

Bakalářská matematika I do předmětu Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Podmínky absolvování předmětu Zápočet Zkouška 1 účast na přednáškách alespoň v minimálním rozsahu,

Více

Diskrétní matematika. DiM /01, zimní semestr 2017/2018

Diskrétní matematika. DiM /01, zimní semestr 2017/2018 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2017/2018 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

TEMATICKÝ PLÁN VÝUKY

TEMATICKÝ PLÁN VÝUKY STŘEDNÍ P RŮMYSLOVÁ ŠKOLA, Praha 10, Na Třebešíně 22 TEMATICKÝ PLÁN VÝUKY Studijní 78 42 - M/01 Technické Zaměření: obor: lyceum Předmět: Matematika MAT Ročník: Počet hodin týdně: 4 3. Počet hodin celkem:

Více

Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2

Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Diferenciální počet funkcí více proměnných 1. Funkce více proměnných (a)

Více

Matematika II. dvouletý volitelný předmět

Matematika II. dvouletý volitelný předmět Název předmětu: Zařazení v učebním plánu: O7A, C3A, S5A, O8A, C4A, S6A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem umožnit studentům dosáhnout lepší výsledky ve společné

Více

ZS: 2017/2018 NMAF061 F/2 J. MÁLEK. Matematika pro fyziky I. Posluchárna: T2 T1 Konzultační hodiny: pátek 9:40-10:30, posluchárna T5

ZS: 2017/2018 NMAF061 F/2 J. MÁLEK. Matematika pro fyziky I. Posluchárna: T2 T1 Konzultační hodiny: pátek 9:40-10:30, posluchárna T5 ZS: 2017/2018 NMAF061 F/2 J. MÁLEK Matematika pro fyziky I OBECNÉ INFORMACE A SYLABUS Přednášející: Cvičící: Josef Málek Michal Báthory, Tomáš Los, Michal Pavelka, Vít Průša Termíny přednášek: Čtvrtek

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/ III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická geometrie

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/ III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická geometrie SEZNAM ANOTACÍ Číslo projektu Číslo a název šablony klíčové aktivity Označení sady DUM Tematická oblast CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická

Více

Netradiční výklad tradičních témat

Netradiční výklad tradičních témat Netradiční výklad tradičních témat J. Musilová, P. Musilová: Matematika pro porozumění i praxi I. VUTIUM, Brno 2006 (291 s.), 2009 (349 s.). J. Musilová, P. Musilová: Matematika pro porozumění i praxi

Více

Matematika 1 Jiˇr ı Fiˇser 19. z aˇr ı 2016 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 19. z aˇr ı / 19

Matematika 1 Jiˇr ı Fiˇser 19. z aˇr ı 2016 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 19. z aˇr ı / 19 Matematika 1 Jiří Fišer 19. září 2016 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 19. září 2016 1 / 19 Zimní semestr KMA MAT1 1 Úprava algebraických výrazů. Číselné obory. 2 Kombinatorika, základy teorie

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 24/25 2. prosince 24 Předmluva iii

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE DYNAMIKA VÁZANÝCH MECHANICKÝCH SYSTÉMŮ

ÚVOD DO MODELOVÁNÍ V MECHANICE DYNAMIKA VÁZANÝCH MECHANICKÝCH SYSTÉMŮ ÚVOD DO MODELOVÁNÍ V MECHANICE Přednáška č. 4 DYNAMIKA VÁZANÝCH MECHANICKÝCH SYSTÉMŮ Ing. Michal Hajžman, Ph.D. Harmonogram UMM Úvod do modelování v mechanice (UMM) 1) Úvodní přednáška (Dr. Hajžman) 2)

Více

současně ale zkracoval dosavadní devítiletou základní školu na osm roků (první stupeň byl zkrácen na čtyři roky)

současně ale zkracoval dosavadní devítiletou základní školu na osm roků (první stupeň byl zkrácen na čtyři roky) v roce 1968 dochází k přeměně a rozšíření tříletých SVVŠ (střední všeobecná vzdělávací škola) na čtyřletá gymnázia 1970 čtyřletá gymnázia celkem mají celkem 4 hodiny týdně na přírodovědné větvi a humanitní

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd.

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd. MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro nástavbové studium (hodinová dotace: varianta A 4 až 5 celkových týd. hodin, varianta B 6 celkových týd. hodin) Schválilo

Více

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace

Více

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2, Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se

Více

Matematický ústav UK Matematicko-fyzikální fakulta

Matematický ústav UK Matematicko-fyzikální fakulta Geometrické modelování Zbyněk Šír Matematický ústav UK Matematicko-fyzikální fakulta 2. října 2018 Zbyněk Šír (MÚ UK) - Geometrické modelování 2. října 2018 1 / 15 Obsah dnešní přednášky Co je to geometrické

Více

Matematika I. Katedra matematiky a deskriptivní geometrie mdg.vsb.cz

Matematika I. Katedra matematiky a deskriptivní geometrie mdg.vsb.cz Matematika I Úvod Mgr. Iveta Cholevová, Ph. D iveta.cholevova@vsb.cz A 829, 597 324 146 Mgr. Jaroslav Drobek, Ph. D. jaroslav.drobek@vsb.cz, A 837, 597 324 101 Mgr. Arnošt Žídek arnost.zidek@vsb.cz, A

Více

INOVACE MATEMATIKY PRO EKONOMY NA VŠE. Anketavroce2008

INOVACE MATEMATIKY PRO EKONOMY NA VŠE. Anketavroce2008 INOVACE MATEMATIKY PRO EKONOMY NA VŠE Anketavroce2008 Dne 11.12.2008 se obrátil člen katedry matematiky doc. RNDr. Jiří Henzler, CSc. na všechny učitele Vysoké školy ekonomické v Praze s následující výzvou:

Více

Maturitní okruhy z matematiky - školní rok 2007/2008

Maturitní okruhy z matematiky - školní rok 2007/2008 Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,

Více

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)

Více

Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky.

Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Maturitní témata Matematika Školní rok 2016/17 Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Příprava ke zkoušce trvá 15 minut, ústní zkouška

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 2017-2018 Vybrané kapitoly z matematiky 2017-2018 1 / 19 Základní informace předmět: 714-0513, 5 kreditů přednáší: Radek Kučera kontakt: radek.kucera@vsb.cz,

Více

MATEMATIKA B. Lineární algebra I. Cíl: Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a

MATEMATIKA B. Lineární algebra I. Cíl: Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a MATEMATIKA B metodický list č. 1 Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači se seznámí

Více

6. Základy výpočetní geometrie

6. Základy výpočetní geometrie 6. Základy výpočetní geometrie BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D. 2010-11 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení

Více

Využití programu GeoGebra v Matematické analýze

Využití programu GeoGebra v Matematické analýze Využití programu GeoGebra v Matematické analýze Zuzana Morávková, KMDG, VŠB-TUO 29.3.2012 Obsah přednášky všeobecné informace o programu GeoGebra vybrané problematické pojmy z Matematické analýzy - interaktivní

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální

Více

Historický vývoj geometrických transformací

Historický vývoj geometrických transformací Historický vývoj geometrických transformací Věcný rejstřík In: Dana Trkovská (author): Historický vývoj geometrických transformací. (Czech). Praha: Katedra didaktiky matematiky MFF UK, 2015. pp. 171 174.

Více

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni Abstrakt Současný trend snižování počtu kontaktních hodin ve výuce nutí vyučující

Více

Matematický seminář. OVO ŠVP Tématický celek Učivo ŠVP Integrace Mezipředmětové vztahy. jejich soustavy. Spojitost funkce v bodě. Limita funkce v bodě

Matematický seminář. OVO ŠVP Tématický celek Učivo ŠVP Integrace Mezipředmětové vztahy. jejich soustavy. Spojitost funkce v bodě. Limita funkce v bodě Řeší s porozumněním rovnice s parametrem Rovnice, nerovnice a jejich soustavy Řovnice, nerovnice a jejich soustavy Třetí, 24 hodin Zvolí vhodnou metodu řešení rovnice nebo nerovnice Vysvětlí zvolený způsob

Více

MATEMATIKA B 2. Metodický list č. 1. Význam první derivace pro průběh funkce

MATEMATIKA B 2. Metodický list č. 1. Význam první derivace pro průběh funkce Metodický list č. 1 Cíl: Význam první derivace pro průběh funkce V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 014/015. prosince 014 Předmluva iii

Více

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);

Více

Počítačová grafika 1 (POGR 1)

Počítačová grafika 1 (POGR 1) Počítačová grafika 1 (POGR 1) Pavel Strachota FJFI ČVUT v Praze 8. října 2015 Kontakt Ing. Pavel Strachota, Ph.D. Katedra matematiky Trojanova 13, místnost 033a E-mail: WWW: pavel.strachota@fjfi.cvut.cz

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

Afinní zobrazení, jeho regularita a (totální) singularita. Asociovaný homomorfismus. Analytické

Afinní zobrazení, jeho regularita a (totální) singularita. Asociovaný homomorfismus. Analytické Slezská univerzita v Opavě Matematický ústav v Opavě Na Rybníčku 1 746 01 Opava Tel. 553 684 661 ANALYTICKÁ GEOMETRIE Téma 3. Afinní zobrazení Opakování Dělicí poměr; Homomorfismus vektorových prostorů,

Více

MATEMATIKA A Metodický list č. 1

MATEMATIKA A Metodický list č. 1 Metodický list č. 1 Název tématického celku: Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou

Více

Cvičení z Lineární algebry 1

Cvičení z Lineární algebry 1 Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice

Více

Zpracování elektronických studijních opor pro nově otevíranou kombinovanou formu učitelského studia matematiky

Zpracování elektronických studijních opor pro nově otevíranou kombinovanou formu učitelského studia matematiky Zpracování elektronických studijních opor pro nově otevíranou kombinovanou formu učitelského studia matematiky IP 12251 Alena Kopáčková (KMD) 24. 1. 2017 Projekt č. 12251 Návaznost na DZ TUL 2016-2020

Více

1. Fakulta aplikovaných věd a katedra matematiky

1. Fakulta aplikovaných věd a katedra matematiky Kvaternion 1 (2012), 45 52 45 VÝUKA MATEMATICKÉ ANALÝZY NA ZÁPADOČESKÉ UNIVERZITĚ V PLZNI GABRIELA HOLUBOVÁ a JAN POSPÍŠIL Abstrakt. Cílem příspěvku je představit výuku matematické analýzy na Fakultě aplikovaných

Více

11 Zobrazování objektů 3D grafiky

11 Zobrazování objektů 3D grafiky 11 Zobrazování objektů 3D grafiky Studijní cíl Tento blok je věnován základním algoritmům zobrazení 3D grafiky. Postupně budou probrány základní metody projekce kolmé promítání, rovnoběžné promítání a

Více

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,

Více

7 Transformace 2D. 7.1 Transformace objektů obecně. Studijní cíl. Doba nutná k nastudování. Průvodce studiem

7 Transformace 2D. 7.1 Transformace objektů obecně. Studijní cíl. Doba nutná k nastudování. Průvodce studiem 7 Transformace 2D Studijní cíl Tento blok je věnován základním principům transformací v rovinné grafice. V následujícím textu bude vysvětlen rozdíl v přístupu k transformacím u vektorového a rastrového

Více

Stavební mechanika 1 (K132SM01)

Stavební mechanika 1 (K132SM01) Stavební mechanika 1 (K132SM01) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz http://mech.fsv.cvut.cz/~leps/teaching/index.html Organizace předmětu

Více

Základní vlastnosti ploch

Základní vlastnosti ploch plocha zpravidla se definuje jako výsledek spojitého pohybu jisté tvořící křivky podél zadané trajektorie lze obohatit o možnost spojitých změn tvaru tvořící křivky x v průběhu pohybu podél trajektorie

Více

Geometrické transformace pomocí matic

Geometrické transformace pomocí matic Geometrické transformace pomocí matic Pavel Strachota FJFI ČVUT v Praze 2. dubna 2010 Obsah 1 Úvod 2 Geometrické transformace ve 2D 3 Geometrické transformace ve 3D Obsah 1 Úvod 2 Geometrické transformace

Více

1 Připomenutí vybraných pojmů

1 Připomenutí vybraných pojmů 1 Připomenutí vybraných pojmů 1.1 Grupa Definice 1 ((Komutativní) grupa). Grupou (M, ) rozumíme množinu M spolu s operací na M, která má tyto vlastnosti: i) x, y M; x y M, Operace je neomezeně definovaná

Více