Matematika I. Katedra matematiky a deskriptivní geometrie mdg.vsb.cz

Rozměr: px
Začít zobrazení ze stránky:

Download "Matematika I. Katedra matematiky a deskriptivní geometrie mdg.vsb.cz"

Transkript

1 Matematika I Úvod Mgr. Iveta Cholevová, Ph. D iveta.cholevova@vsb.cz A 829, Mgr. Jaroslav Drobek, Ph. D. jaroslav.drobek@vsb.cz, A 837, Mgr. Arnošt Žídek arnost.zidek@vsb.cz, A 832, Katedra matematiky a deskriptivní geometrie mdg.vsb.cz

2 Matematika I Úvod Mgr. Iveta Cholevová, Ph. D iveta.cholevova@vsb.cz A 829, Mgr. Jaroslav Drobek, Ph. D. jaroslav.drobek@vsb.cz, A 837, Mgr. Arnošt Žídek arnost.zidek@vsb.cz, A 832, Katedra matematiky a deskriptivní geometrie mdg.vsb.cz/wiki

3 Znalosti ze střední školy

4 Znalosti ze střední školy 1. Funkce: vlastnosti, definiční obor, funkce lineární, kvadratická, kubická, iracionální, lomená.

5 Znalosti ze střední školy 1. Funkce: vlastnosti, definiční obor, funkce lineární, kvadratická, kubická, iracionální, lomená. 2. Exponenciální a logaritmické funkce. Pravidla pro logaritmování, logaritmování a odlogaritmování výrazů. Exponenciální rovnice a nerovnice.

6 Znalosti ze střední školy 1. Funkce: vlastnosti, definiční obor, funkce lineární, kvadratická, kubická, iracionální, lomená. 2. Exponenciální a logaritmické funkce. Pravidla pro logaritmování, logaritmování a odlogaritmování výrazů. Exponenciální rovnice a nerovnice. 3. Goniometrické funkce, jejich grafy a hodnoty. Goniometrické rovnice a nerovnice.

7 Znalosti ze střední školy 1. Funkce: vlastnosti, definiční obor, funkce lineární, kvadratická, kubická, iracionální, lomená. 2. Exponenciální a logaritmické funkce. Pravidla pro logaritmování, logaritmování a odlogaritmování výrazů. Exponenciální rovnice a nerovnice. 3. Goniometrické funkce, jejich grafy a hodnoty. Goniometrické rovnice a nerovnice. 4. Úpravy algebraických výrazů: mnohočleny, zlomky, mocniny, odmocniny.

8 Znalosti ze střední školy 1. Funkce: vlastnosti, definiční obor, funkce lineární, kvadratická, kubická, iracionální, lomená. 2. Exponenciální a logaritmické funkce. Pravidla pro logaritmování, logaritmování a odlogaritmování výrazů. Exponenciální rovnice a nerovnice. 3. Goniometrické funkce, jejich grafy a hodnoty. Goniometrické rovnice a nerovnice. 4. Úpravy algebraických výrazů: mnohočleny, zlomky, mocniny, odmocniny. 5. Rovnice: lineární, lineární s parametrem, kvadratické (i v oboru komplexních čísel), iracionální, soustavy dvou lineárních rovnic o dvou neznámých

9 Znalosti ze střední školy 1. Funkce: vlastnosti, definiční obor, funkce lineární, kvadratická, kubická, iracionální, lomená. 2. Exponenciální a logaritmické funkce. Pravidla pro logaritmování, logaritmování a odlogaritmování výrazů. Exponenciální rovnice a nerovnice. 3. Goniometrické funkce, jejich grafy a hodnoty. Goniometrické rovnice a nerovnice. 4. Úpravy algebraických výrazů: mnohočleny, zlomky, mocniny, odmocniny. 5. Rovnice: lineární, lineární s parametrem, kvadratické (i v oboru komplexních čísel), iracionální, soustavy dvou lineárních rovnic o dvou neznámých 6. Nerovnice: lineární, v součinovém a podílovém tvaru (řešení pomocí nulových bodů), kvadratické, soustavy.

10 Znalosti ze střední školy 1. Funkce: vlastnosti, definiční obor, funkce lineární, kvadratická, kubická, iracionální, lomená. 2. Exponenciální a logaritmické funkce. Pravidla pro logaritmování, logaritmování a odlogaritmování výrazů. Exponenciální rovnice a nerovnice. 3. Goniometrické funkce, jejich grafy a hodnoty. Goniometrické rovnice a nerovnice. 4. Úpravy algebraických výrazů: mnohočleny, zlomky, mocniny, odmocniny. 5. Rovnice: lineární, lineární s parametrem, kvadratické (i v oboru komplexních čísel), iracionální, soustavy dvou lineárních rovnic o dvou neznámých 6. Nerovnice: lineární, v součinovém a podílovém tvaru (řešení pomocí nulových bodů), kvadratické, soustavy. 7. Absolutní hodnota. Geometrický význam absolutní hodnoty. Rovnice a nerovnice s absolutní hodnotou ( řešení pomocí nulových bodů).

11 Znalosti ze střední školy 1. Funkce: vlastnosti, definiční obor, funkce lineární, kvadratická, kubická, iracionální, lomená. 2. Exponenciální a logaritmické funkce. Pravidla pro logaritmování, logaritmování a odlogaritmování výrazů. Exponenciální rovnice a nerovnice. 3. Goniometrické funkce, jejich grafy a hodnoty. Goniometrické rovnice a nerovnice. 4. Úpravy algebraických výrazů: mnohočleny, zlomky, mocniny, odmocniny. 5. Rovnice: lineární, lineární s parametrem, kvadratické (i v oboru komplexních čísel), iracionální, soustavy dvou lineárních rovnic o dvou neznámých 6. Nerovnice: lineární, v součinovém a podílovém tvaru (řešení pomocí nulových bodů), kvadratické, soustavy. 7. Absolutní hodnota. Geometrický význam absolutní hodnoty. Rovnice a nerovnice s absolutní hodnotou ( řešení pomocí nulových bodů). 8. Analytická geometrie v rovině: vektory, přímka - typy rovnic, graf, kružnice - typy rovnic, určení středu a poloměru doplněním na čtverec.

12 Podmínky absolvování předmětu

13 Podmínky absolvování předmětu Zápočet 1. účast ve cvičení, 20% neúčasti lze omluvit, 2. odevzdání programů zadaných vedoucím cvičení v předepsané úpravě, 3. absolvování dvou písemných testů. Za splnění podmínek získá student 5 bodů. Za dva testy může získat student 0-15 bodů. Celkem maximálně 20 bodů.

14 Podmínky absolvování předmětu Zápočet Zkouška 1. účast ve cvičení, 20% neúčasti lze omluvit, 2. odevzdání programů zadaných vedoucím cvičení v předepsané úpravě, 3. absolvování dvou písemných testů. Za splnění podmínek získá student 5 bodů. Za dva testy může získat student 0-15 bodů. Celkem maximálně 20 bodů. 1. zisk aspoň 25 bodů z 60 možných za písemnou část, 2. zisk aspoň 5 bodů z 20 možných za ústní část. Celkem maximálně 80 bodů.

15 Podmínky absolvování předmětu Zápočet Zkouška 1. účast ve cvičení, 20% neúčasti lze omluvit, 2. odevzdání programů zadaných vedoucím cvičení v předepsané úpravě, 3. absolvování dvou písemných testů. Za splnění podmínek získá student 5 bodů. Za dva testy může získat student 0-15 bodů. Celkem maximálně 20 bodů. 1. zisk aspoň 25 bodů z 60 možných za písemnou část, 2. zisk aspoň 5 bodů z 20 možných za ústní část. Celkem maximálně 80 bodů. Součet bodů za zápočet a zkoušku musí být aspoň 51 bodů ze 100 možných. Známka: nevyhověl dobře velmi dobře výborně Body:

16 Základní Literatura Vrbenská, H., Němčíková, J.: Základy matematiky pro bakaláře I. Skriptum VŠB-TUO, Ostrava 1999

17 Základní Literatura Vrbenská, H., Němčíková, J.: Základy matematiky pro bakaláře I. Skriptum VŠB-TUO, Ostrava 1999 Vrbenská, H., Bělohlávková, J.: Základy matematiky pro bakaláře II. Skriptum VŠB-TUO, Ostrava 1998.

18 Základní Literatura Vrbenská, H., Němčíková, J.: Základy matematiky pro bakaláře I. Skriptum VŠB-TUO, Ostrava 1999 Vrbenská, H., Bělohlávková, J.: Základy matematiky pro bakaláře II. Skriptum VŠB-TUO, Ostrava Burda, P., Kreml, P.: Diferenciální počet funkcí jedné proměnné. Skriptum VŠB-TUO, Ostrava 2004.

19 Základní Literatura Vrbenská, H., Němčíková, J.: Základy matematiky pro bakaláře I. Skriptum VŠB-TUO, Ostrava 1999 Vrbenská, H., Bělohlávková, J.: Základy matematiky pro bakaláře II. Skriptum VŠB-TUO, Ostrava Burda, P., Kreml, P.: Diferenciální počet funkcí jedné proměnné. Skriptum VŠB-TUO, Ostrava studopory.vsb.cz/materialy.html Webové stránky VŠB-TUO.

20 Základní Literatura Vrbenská, H., Němčíková, J.: Základy matematiky pro bakaláře I. Skriptum VŠB-TUO, Ostrava 1999 Vrbenská, H., Bělohlávková, J.: Základy matematiky pro bakaláře II. Skriptum VŠB-TUO, Ostrava Burda, P., Kreml, P.: Diferenciální počet funkcí jedné proměnné. Skriptum VŠB-TUO, Ostrava studopory.vsb.cz/materialy.html Webové stránky VŠB-TUO. mdg.vsb.cz/wiki Webové stránky KMDG.

21 Používaná symbolika matematická logika Logické operace p, q... výroky negace p nikoliv p ( neplatí p ) konjunkce p q p a zároveň q disjunkce p q p nebo q implikace p q jestliže p, potom q ( z p vyplývá q ) ekvivalence p q p právě tehdy, když q

22 Používaná symbolika matematická logika Logické operace p, q... výroky negace p nikoliv p ( neplatí p ) konjunkce p q p a zároveň q disjunkce p q p nebo q implikace p q jestliže p, potom q ( z p vyplývá q ) ekvivalence p q p právě tehdy, když q Kvantifikátory existenční existuje! existuje právě jeden obecný pro všechna ( každý )

23 Používaná symbolika množiny Vztah prvku a množiny a... prvek, A, B... množiny a A a je prvkem A a A a není prvkem A

24 Používaná symbolika množiny Vztah prvku a množiny a... prvek, A, B... množiny a A a je prvkem A a A a není prvkem A Vztahy mezi množinami rovnost A = B A rovná se B inkluze A B A je podmnožinou B ostrá inkluze A B A je (vlastní) podmnožinou B

25 Používaná symbolika množiny Vztah prvku a množiny a... prvek, A, B... množiny a A a je prvkem A a A a není prvkem A Vztahy mezi množinami rovnost A = B A rovná se B inkluze A B A je podmnožinou B ostrá inkluze A B A je (vlastní) podmnožinou B Množinové operace sjednocení A B A sjednoceno s B průnik A B A průnik B rozdíl A \ B A mínus B kartézský součin A B A krát B doplněk A c A komplement

26 Používaná symbolika množiny Množinové zápisy... prázdná množina výčtem {1, 2, a, b} množina o prvcích 1, 2, a, b neúplným výčtem {5, 6, 7,... } množina o prvcích 5, 6, 7 atd. vlastností {a A : a B} množina všech prvků a A takových, že a B {2k + 1 : k je liché} množina všech prvků ve tvaru 2k + 1, kde k je liché číslo grafický čísla mezi 2 (včetně) a

27 Používaná symbolika množiny Množinové zápisy... prázdná množina výčtem {1, 2, a, b} množina o prvcích 1, 2, a, b neúplným výčtem {5, 6, 7,... } množina o prvcích 5, 6, 7 atd. vlastností {a A : a B} množina všech prvků a A takových, že a B {2k + 1 : k je liché} množina všech prvků ve tvaru 2k + 1, kde k je liché číslo grafický čísla mezi 2 (včetně) a Číselné obory přirozená N {1, 2, 3,... } nezáporná celá N 0 {0, 1, 2, 3,... } celá Z {..., 3, 2, 1, 0, 1, 2, 3,... } racionální Q {..., 1 3, 0, 2 5, 11 12, 2,... } reálná R {..., 2, 1 1 2, 0, 2 3, π,... } komplexní C {..., 1, i, 1 + 2i, 0, 2 3, πi,... }

28 Používaná symbolika množiny Množinové zápisy... prázdná množina výčtem {1, 2, a, b} množina o prvcích 1, 2, a, b neúplným výčtem {5, 6, 7,... } množina o prvcích 5, 6, 7 atd. vlastností {a A : a B} množina všech prvků a A takových, že a B {2k + 1 : k je liché} množina všech prvků ve tvaru 2k + 1, kde k je liché číslo grafický Číselné obory čísla mezi 2 (včetně) a N N 0 Z Q R C přirozená N {1, 2, 3,... } nezáporná celá N 0 {0, 1, 2, 3,... } celá Z {..., 3, 2, 1, 0, 1, 2, 3,... } racionální Q {..., 1 3, 0, 2 5, 11 12, 2,... } reálná R {..., 2, 1 1 2, 0, 2 3, π,... } komplexní C {..., 1, i, 1 + 2i, 0, 2 3, πi,... }

1. ÚVOD. Arnošt Žídek, Iveta Cholevová. 15. října 2013 FBI VŠB-TUO

1. ÚVOD. Arnošt Žídek, Iveta Cholevová. 15. října 2013 FBI VŠB-TUO FBI VŠB-TUO 15. října 2013 Kontaktní informace Mgr. Iveta Cholevová, Ph. D. iveta.cholevova@vsb.cz A829, 597 324 146 Mgr. Arnošt Žídek, Ph. D. arnost.zidek@vsb.cz A832, 597 324 177 Předpokládané znalosti

Více

Bakalářská matematika I

Bakalářská matematika I do předmětu Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Podmínky absolvování předmětu Zápočet Zkouška 1 účast na přednáškách alespoň v minimálním rozsahu,

Více

MATEMATIKA I. Marcela Rabasová

MATEMATIKA I. Marcela Rabasová MATEMATIKA I Marcela Rabasová Obsah: 1. Úvod 1.1. Osnovy předmětu 1.2. Literatura 1.3. Podmínky absolvování předmětu 1.4. Použité označení a symbolika 2. Funkce jedné reálné proměnné 2.1. Definice 2.2.

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Základy matematiky pracovní listy

Základy matematiky pracovní listy Dagmar Dlouhá, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny pro předmět Základy matematiky vyučovaný Katedrou matematiky

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Matematika PRŮŘEZOVÁ TÉMATA

Matematika PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí

Více

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální

Více

SBÍRKA ÚLOH I. Základní poznatky Teorie množin. Kniha Kapitola Podkapitola Opakování ze ZŠ Co se hodí si zapamatovat. Přírozená čísla.

SBÍRKA ÚLOH I. Základní poznatky Teorie množin. Kniha Kapitola Podkapitola Opakování ze ZŠ Co se hodí si zapamatovat. Přírozená čísla. Opakování ze ZŠ Co se hodí si zapamatovat Přírozená čísla Číselné obory Celá čísla Racionální čísla Reálná čísla Základní poznatky Teorie množin Výroková logika Mocniny a odmocniny Množiny Vennovy diagramy

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část 1. ročník a kvinta 4 hodiny týdně PC a dataprojektor, učebnice Základní poznatky Číselné

Více

Maturitní okruhy z matematiky - školní rok 2007/2008

Maturitní okruhy z matematiky - školní rok 2007/2008 Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,

Více

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Název předmětu: Vyrovnávací kurz z matematiky Zabezpečující ústav: Ústav

Více

0. ÚVOD - matematické symboly, značení,

0. ÚVOD - matematické symboly, značení, 0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní

Více

Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky.

Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Maturitní témata Matematika Školní rok 2016/17 Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Příprava ke zkoušce trvá 15 minut, ústní zkouška

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 72/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Technické lyceum (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

TEMATICKÝ PLÁN VÝUKY

TEMATICKÝ PLÁN VÝUKY TEMATICKÝ PLÁN VÝUKY Studijní obor: 23-41 - M/01 Strojírenství Zaměření: Předmět: Matematika Ročník: 1. Počet hodin 4 Počet hodin celkem: 136 týdně: Tento plán vychází z Rámcového vzdělávacího programu

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část

Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část 1. ročník 4 hodiny týdně PC a dataprojektor Číselné obory Přirozená a celá čísla Racionální

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Autoevaluační karta. Škola: Obchodní akademie Pelhřimov, Jirsíkova 875. obchodní akademie. ekonomika, účetnictví, daně. Školní rok: Jméno:

Autoevaluační karta. Škola: Obchodní akademie Pelhřimov, Jirsíkova 875. obchodní akademie. ekonomika, účetnictví, daně. Školní rok: Jméno: Autoevaluační karta Škola: Obchodní akademie Pelhřimov, Jirsíkova 875 Obor: obchodní akademie Zaměření: ekonomika, účetnictví, daně Školní rok: Předmět: matematika Třída: 1. A Jméno: TEMATICKÝ CELEK: Znalosti

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Učitelství 1. stupně ZŠ tématické plány předmětů matematika

Učitelství 1. stupně ZŠ tématické plány předmětů matematika Učitelství 1. stupně ZŠ tématické plány předmětů matematika Povinné předměty: Matematika I aritmetika (KMD/MATE1) 2 Matematika 3 aritmetika s didaktikou (KMD/MATE3) 3 Matematika 5 geometrie (KMD/MATE5)

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021 Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd.

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd. MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro nástavbové studium (hodinová dotace: varianta A 4 až 5 celkových týd. hodin, varianta B 6 celkových týd. hodin) Schválilo

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);

Více

Maturitní zkouška z matematiky (v profilové části) Informace o zkoušce, hodnocení zkoušky, povolené pomůcky a požadavky

Maturitní zkouška z matematiky (v profilové části) Informace o zkoušce, hodnocení zkoušky, povolené pomůcky a požadavky Maturitní zkouška z matematiky (v profilové části) Informace o zkoušce, hodnocení zkoušky, povolené pomůcky a požadavky A. Informace o zkoušce Písemná maturitní zkouška z matematiky v profilové části se

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11 Témata k ústní maturitní zkoušce z předmětu Účetnictví profilové části maturitní zkoušky Školní rok 2012/2013 třída: 4.T 1. Legislativní úprava účetnictví 2. Účetní dokumentace 3. Manažerské účetnictví

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

Informace k jednotlivým zkouškám na jednotlivých oborech:

Informace k jednotlivým zkouškám na jednotlivých oborech: Informace k jednotlivým zkouškám na jednotlivých oborech: Obor Obchodní akademie 63-41-M/004 1. Praktická maturitní zkouška Praktická maturitní zkouška z odborných předmětů ekonomických se skládá z obsahu

Více

Matematika II. dvouletý volitelný předmět

Matematika II. dvouletý volitelný předmět Název předmětu: Zařazení v učebním plánu: O7A, C3A, S5A, O8A, C4A, S6A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem umožnit studentům dosáhnout lepší výsledky ve společné

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

EKOLOGIE A ŽIVOTNÍ PROSTŘEDÍ

EKOLOGIE A ŽIVOTNÍ PROSTŘEDÍ Přílohy školního vzdělávacího programu EKOLOGIE A ŽIVOTNÍ PROSTŘEDÍ - inovace platné od 1.9.2011 Střední průmyslová škola keramická a sklářská Karlovy Vary adresa: nám. 17.listopadu 12, 360 05 Karlovy

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

3.4.1. Tabulace učebního plánu

3.4.1. Tabulace učebního plánu 3.4.1. Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět: MATEMATIKA Ročník: Kvinta, 1. ročník Tématická Číselné obory Druhy čísel (N, Z, Q, R, I) - prezentuje přehled číselných oborů Mocniny

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu matematika a ve volitelných předmětech Deskriptivní geometrie,

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

V tomto předmětu se využívá stejných výchovných a vzdělávacích strategií jako v předmětu Matematika. Gymnázium Pierra de Coubertina, Tábor

V tomto předmětu se využívá stejných výchovných a vzdělávacích strategií jako v předmětu Matematika. Gymnázium Pierra de Coubertina, Tábor Název ŠVP Motivační název Datum 15.6.2009 Název RVP Verze 01 Dosažené vzdělání Střední vzdělání s maturitní zkouškou Platnost od 1.9.2009 Forma vzdělávání Koordinátor Délka studia v letech: denní forma

Více

Ukázkový návrh úpravy ŠVP a rozložení výuky matematiky pro obory M/L0 alespoň 10 hodin (týdenních)

Ukázkový návrh úpravy ŠVP a rozložení výuky matematiky pro obory M/L0 alespoň 10 hodin (týdenních) Ukázkový návrh úpravy ŠVP a rozložení výuky matematiky pro obory M/L0 alespoň 10 hodin (týdenních) Na základě Opatření č.2 ministra školství z 22. června 2017, a opatření ministra školství č.5 z 21. prosince

Více

Matematika I (KMI/5MAT1)

Matematika I (KMI/5MAT1) Přednáška první aneb Úvod do algebry (opakování ze SŠ a možná i ZŠ) Seznámení s předmětem Osnova přednášky seznámení s předmětem množiny pojem množiny operace s množinami číselné obory intervaly mocniny

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou

Více

Informace k jednotlivým zkouškám na jednotlivých oborech:

Informace k jednotlivým zkouškám na jednotlivých oborech: Informace k jednotlivým zkouškám na jednotlivých oborech: I. Obor Ekonomické lyceum 78-42-M/002 1. Práce s obhajobou z ekonomiky nebo společenských věd: Témata pro práci s obhajobou budou žáci zpracovávat

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Matematika Název a adresa školy: Název ŠVP: Hodinová dotace: Platnost ŠVP: Pojetí a cíle vyučovacího předmětu Vyučovací metody, strategie

Matematika Název a adresa školy: Název ŠVP: Hodinová dotace: Platnost ŠVP: Pojetí a cíle vyučovacího předmětu Vyučovací metody, strategie Dodatek č. 14. Školního vzdělávacího programu Obchodní akademie Lysá nad Labem, obor 6-41-M/02 Obchodní akademie, platného od 1. 9. 2012 - platnost dodatku je od 1. 9. 2018 Úpravy ŠVP v souladu s Opatřením

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Ministerstvo školství, mládeže a tělovýchovy. Praha 21. prosince 2017 č. j.: MSMT-31863/2017-1

Ministerstvo školství, mládeže a tělovýchovy. Praha 21. prosince 2017 č. j.: MSMT-31863/2017-1 Ministerstvo školství, mládeže a tělovýchovy Praha 21. prosince 2017 č. j.: MSMT-31863/2017-1 Opatření č. 7 ministra školství, mládeže a tělovýchovy, kterým se mění rámcové vzdělávací programy oborů středního

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Základní cvičení z matematiky,

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

Pravidla pro hodnocení a klasifikaci v jednotlivých předmětech a seminářích

Pravidla pro hodnocení a klasifikaci v jednotlivých předmětech a seminářích Pravidla pro hodnocení a klasifikaci v jednotlivých předmětech a seminářích Povinností žáka je napsat seminární práci nejpozději ve 3.ročníku (septima) v semináři (dle zájmu žáka). Práce bude ohodnocena

Více

Miroslav Bartošek, František Procházka, Miroslav Staněk. autoři návrhu.

Miroslav Bartošek, František Procházka, Miroslav Staněk. autoři návrhu. Modelový návrh úpravy ŠVP a rozložení výuky matematiky pro obory M/L0 alespoň 10 hodin (týdenních) Na základě Opatření č. 2 ministra školství z 22. června 2017 a Opatření ministra školství č. 5 z 21. prosince

Více

ŠABLONY INOVACE OBSAH UČIVA

ŠABLONY INOVACE OBSAH UČIVA ŠABLONY INOVACE OBSAH UČIVA Číslo a název projektu CZ.1.07/1.5.00/34. 0185 Moderní škola 21. století Číslo a název šablony IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické klíčové aktivity

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Maturitní okruhy z matematiky ve školním roce 2010/2011

Maturitní okruhy z matematiky ve školním roce 2010/2011 Vyučující: RNDr. Ivanka Dvořáčková Třída: 8.A Maturitní okruhy z matematiky ve školním roce 2010/2011 Otázka Okruh 1 1. Výroky a operace s nimi 2. Množiny a operace s nimi 2 3. Matematické věty a jejich

Více

Úvod, základní pojmy, funkce

Úvod, základní pojmy, funkce Úvod, základní pojmy, funkce Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 1. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 69 Obsah 1 Matematická logika 2 Množiny 3 Funkce,

Více

Matematika - rovnice a nerovnice

Matematika - rovnice a nerovnice Operační program: Vzdělávání pro konkurenceschopnost Projekt: CZ.1.07/1.5.00/34.0906 EU peníze SŠPřZe Nový Jičín Číslo a název šablony klíčové aktivity: SADA DIGITÁLNÍCH UČEBNÍCH MATERIÁLŮ Šablona_číslo

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 1. přednáška 22.9.2016 Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 19 Organizační pokyny přednášející:

Více

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy

Více

Čtyřleté gymnázium MATEMATIKA. Charakteristika vyučovacího předmětu:

Čtyřleté gymnázium MATEMATIKA. Charakteristika vyučovacího předmětu: 1 z 14 Čtyřleté gymnázium MATEMATIKA Charakteristika vyučovacího předmětu: Obsahové vymezení: Vyučovací předmět matematika pokrývá vzdělávací oblast Matematika a její aplikace, stanovenou RVPGV. Vzdělávací

Více

Opakovací kurs středoškolské matematiky podzim

Opakovací kurs středoškolské matematiky podzim . Opakovací kurs středoškolské matematiky podzim František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou

Více

Učební osnova předmětu matematika. Pojetí vyučovacího předmětu

Učební osnova předmětu matematika. Pojetí vyučovacího předmětu Učební osnova předmětu matematika Obor vzdělání: 23 41 M/01 Strojírenství, 2 41 M/01 Elektrotechnika Délka a forma studia: 4 roky denní studium Celkový počet týdenních hodin za studium: 12 Platnost: od

Více

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA G5 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;

Více

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška: Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní

Více

Učební osnova předmětu Matematika. Pojetí vyučovacího předmětu

Učební osnova předmětu Matematika. Pojetí vyučovacího předmětu Obor vzdělání: 26 41 M/01 Elektrotechnika Délka a forma studia: 4 roky denní studium Celkový počet týdenních hodin za studium: 14 Platnost: od 1. 9. 2014 Učební osnova předmětu Matematika Pojetí vyučovacího

Více

Matematika vzorce. Ing. Petr Šídlo. verze

Matematika vzorce. Ing. Petr Šídlo. verze Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............

Více

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta 1. Mnohočleny 2. Rovnice rovné nule 3. Nerovnice různé od nuly 4. Lomený výraz 5. Krácení lomených výrazů 6. Rozšiřování lomených výrazů 7. Sčítání lomených výrazů 8. Odčítání lomených výrazů 9. Násobení

Více

Bakalářské studijní programy (obory), které budou v akademickém roce 2017/2018 na VŠB-TU Ostrava otevřeny:

Bakalářské studijní programy (obory), které budou v akademickém roce 2017/2018 na VŠB-TU Ostrava otevřeny: Podmínky přijetí ke studiu v univerzitních studijních programech Vysoké školy báňské - Technické univerzity Ostrava pro akademický rok 2017/2018 typ studia bakalářské Bakalářské studijní programy (obory),

Více

PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy

PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy PŘEDMĚT: MATEMATIKA ROČNÍK: PRVNÍ/KVINTA Školní výstupy Učivo Průřezová témata Poznámky, přesahy Žák určuje číselný obor daného čísla (N, Z, Q, R) a rozlišuje základní vlastnosti číselných oborů pracuje

Více

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí 1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální

Více

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA G5 VÝSTUP 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;

Více

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA G5 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;

Více

Podmínky přijetí ke studiu v univerzitním studijním programu. Aplikované vědy a technologie

Podmínky přijetí ke studiu v univerzitním studijním programu. Aplikované vědy a technologie Podmínky přijetí ke studiu v univerzitním studijním programu Aplikované vědy a technologie pro akademický rok 2015/2016 V akademickém roce 2015/2016 budou na VŠB-TU Ostrava otevřeny: bakalářský program

Více

Obsahové, časové a organizační vymezení vyučovacího předmětu

Obsahové, časové a organizační vymezení vyučovacího předmětu Matematika Charakteristika vyučovacího předmětu Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Výuka matematiky přispívá k pochopení kvantitativních a prostorových vztahů reálného

Více

5. 8. MATEMATIKA A JEJÍ APLIKACE

5. 8. MATEMATIKA A JEJÍ APLIKACE 5. 8. MATEMATIKA A JEJÍ APLIKACE 5. 8. 1 Charakteristika předmětu A. Obsahové vymezení P edmět Matematika a její aplikace pro vyšší cyklus víceletých gymnázií navazuje obsahem učiva na nižší cyklus víceletých

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

TEMATICKÝ PLÁN VÝUKY

TEMATICKÝ PLÁN VÝUKY STŘEDNÍ P RŮMYSLOVÁ ŠKOLA, Praha 10, Na Třebešíně 22 TEMATICKÝ PLÁN VÝUKY Studijní 78 42 - M/01 Technické Zaměření: obor: lyceum Předmět: Matematika MAT Ročník: Počet hodin týdně: 4 3. Počet hodin celkem:

Více

1. Učební osnovy Matematika a její aplikace. ŠVP - učební osnovy - Karlínské gymnázium, Praha 8, Pernerova 25

1. Učební osnovy Matematika a její aplikace. ŠVP - učební osnovy - Karlínské gymnázium, Praha 8, Pernerova 25 1. Učební osnovy 1.1. Matematika a její aplikace Charakteristika vzdělávací oblasti Výuka na gymnáziu rozvíjí a prohlubuje pochopení kvantitativních a prostorových vztahů reálného světa, utváří kvantitativní

Více

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Planimetrie 2. část, Funkce, Goniometrie 2. ročník a sexta 4 hodiny týdně PC a dataprojektor, učebnice Planimetrie II. Konstrukční úlohy Charakterizuje

Více

Matematick y semin aˇ r RNDr. Edita Kol aˇ rov a USTAV MATEMATIKY

Matematick y semin aˇ r RNDr. Edita Kol aˇ rov a USTAV MATEMATIKY Matematický seminář RNDr. Edita Kolářová ÚSTAV MATEMATIKY Matematický seminář Obsah Přehled použité symboliky 4 Základní pojmy matematické logiky a teorie množin 5. Elementy matematické logiky.........................

Více