DIFRAKCE SVTLA. Rozdlení ohybových jev. Ohybové jevy mžeme rozdlit na dv základní skupiny:
|
|
- Petr Švec
- před 10 lety
- Počet zobrazení:
Transkript
1 DIFRAKCE SVTLA V paprsové optice jsme se zabývali opticým zobrazováním (zrcadly, oami a jejich soustavami). Pedpoládali jsme, že se svtlo šíí pímoae podle záona pímoarého šíení svtla. Ve sutenosti je ale šíení svtla, podobn jao šíení zvuového vlnní, ovlivnno jeho vlnovými vlastnostmi. To znamená, že na peážách, teré jsou srovnatelné s jeho vlnovou délou, dochází ohybu svtla difraci. Tento je se projevuje ta, že se svtlo šíí ásten i do prostoru za peážou, am by se podle paprsové optiy nidy šíit nemlo, tzn. svtlo se šíí i do oblasti geometricého stínu. Hranice mezi svtlem a stínem potom není ostrá a na stínítu za peážou se vytváí ohybový (= difraní) obrazec. Podobn jao interferenní obrazec jej tvoí soustava nestejn široých svtlých a tmavých prouž. Tento obrazec mžeme považovat za výslede interference svtla, teré do uvažovaného místa na stínítu dopadají s rzným dráhovým rozdílem. Pozn.: Ohyb svtla pozoroval a jao první taé popsal olem rou 1660 italsý uitel matematiy Francesco Maria Grimaldi, terý do zatemnné místnosti nechal dopadat malým ruhovým otvorem slunení svtlo a do dráhy tohoto svtla umisoval rzné pedmty a studoval vlastnosti jejich stínu. Zjistil, že stíny jsou neostré a že jsou navíc ohraniené barevnými proužy. Ohyb svtla nastává, poud svtlo prochází malou peážou (štrbina, ruhový otvor, soustava štrbin nebo otvor) nebo poud prochází olem velmi ostrých hran pedmt (teného vlána, žilety, ruhového teríu). Rozdlení ohybových jev Ohybové jevy mžeme rozdlit na dv záladní supiny: 1. Fresnelovy ohybové jevy byly pojmenovány podle francouzsého fyzia Augustina Jeana Fresnela, terý jao první podal jejich úplné vysvtlení. Jejich popis vychází z Huygensova-Fresnelova principu, podle nhož se aždý bod vlnoplochy stává zdrojem elementárního svtelného vlnní; tyto vlnní pa dopadají do aždého bodu na stínítu s rznou fází, sládají se a vytváejí interferenní obrazec. Tzn., že rom zdroje svtla, peážy a stíníta se zde nevysytuje žádný další opticý prve (nap. oa).. Fraunhoferovy ohybové jevy jsou taové ohybové jevy, teré vzniají pi zobrazení zdroj svtla opticými soustavami. Pomocí oe se na stínítu vytvoí obraz zdroje svtla a do svazu paprs, teré vytváejí obraz zdroje, se vloží peáža. Elementární vlnní z oraj peážy nedopadají pímo na stíníto, ale procházejí další spojnou oou, terá je soustedí do jednotlivých bod stíníta. jejich popisu se vnoval Joseph von Fraunhofer. Interferenní obrazec vznine v obou pípadech za pedpoladu, že interferující svtla jsou oherentní, tj. mají stejnou vlnovou délu a v daném bod prostoru stálý, s asem nemnný dráhový ( taé fázový) rozdíl.
2 Ohyb svtla na hran Jestliže svtlo prochází olem ostrého oraje njaého pedmtu (nap. hrana žilety, tené neprhledné vláno, neprhledný terí), odchýlí se vlevo i vpravo od pedmtu, na stínítu za pedmtem interferuje a vzniá na nm ohybový obrazec, jehož tvar opíruje tvar pedmtu. íáme, že na stínítu dochází tzv. vícesvazové interferenci. Difraní obrazec tvoí soustava svtlých a tmavých prouž (svtlý prouže = interferenní maximum, tmavý prouže = interferenní minimum). Je tím výraznjší, ím se rozmry peážy blíží vlnové délce svtla. Obr. 1: Ohyb svtla na hran (pevzato z Obr. : Ohyb svtla na hran žilety (pevzato z []) Ohyb svtla na štrbin Pedpoládejme, že rovinná svtelná vlnoplocha o vlnové délce dopadá na štrbinu šíy a. Každý bod štrbiny se podle Huygensova principu stává zdrojem elementárního vlnní, teré se z nho šíí v elementárních vlnoplochách i do prostoru za peážou. Do aždého bodu na stínítu pa dopadá svtlo z aždého bodu štrbiny. Protože byla štrbina osvtlena rovinou monochromaticou vlnou, mžeme tato elementární vlnní považovat za oherentní a na stínítu vznine ohybový obrazec.
3 Obr. 3: Ohyb svtla na štrbin (pevzato z []) Matematicý popis ohybu svtla se zdá být velmi složitý malá štrbina, na ní velé množství zdroj svtla, teré dopadají na stíníto. Matematicý popis ovšem mžeme zjednodušit bez ztráty pesnosti výsledu. Zvolme na stínítu libovolný bod P. Sestrojíme dva paprsy, teré dopadají do bodu P. První (r 1 ) z nich prochází horním orajem štrbiny, druhý (r ) prochází stedem štrbiny. Zárove sestrojíme opticou osu štrbiny, terá prochází jejím stedem. Paprse (r ) se od této osy odchyluje o úhel. O výsledu interference rozhoduje dráhový rozdíl obou paprs, terý potebujeme urit. Pozn.: Obrázy 3 5 jsou pevzaty z pvodn anglicé uebnice fyziy. Proto je na obrázu úhel, o terý se paprse odchýlí, oznaen místo. Pedpoládejme, že šía štrbiny a je malá (ádov desetiny až setiny mm), to znamená, že je zanedbatelná ve srovnání se vzdáleností stíníta l od mížy. Proto oba paprsy mžeme považovat za rovnobžné. Obr. 4: Ohyb svtla na štrbin (pevzato z []) Dráhový rozdíl obou paprs vypoteme z pravoúhlého trojúhelnía NBS. Platí tedy: a l. Má-li v bod P nastat difraní maximum, musí být dráhový rozdíl mezi paprsy
4 roven sudému násobu poloviny vlnové dély: l a. íslo nazýváme ád ohybového maxima a nabývá hodnot 0, 1,, 3, Pro difraní minimum platí podobná podmína: celový dráhový rozdíl musí být roven lichému násobu poloviny vlnové dély: a l (1). Rozložení intenzity svtla (= množství svtla), teré dopadne do uritého bodu na stínítu), je na obrázu. 5. Obr. 5: Rozložení intenzity svtla pi ohybu svtla na štrbin (pevzato z ím je šía štrbiny menší, tím je užší je centrální maximum. Rozložení ohybových maxim a minim vša závisí taé na vlnové délce použitého svtla. ím je vlnová déla svtla vtší, tím více se projevují vlnové vlastnosti svtla a difraní obrazec je výraznjší. Mžete se o tom pesvdit na následujícím java apletu. Na tomto java apletu si mžete vyzoušet, ja závisí výslede ohybu svtla na dvou štrbinách na jejich vzdálenosti a na vzdálenosti stíníta od štrbin. Ohyb svtla na opticé mížce Soustavu velého potu štrbin nazýváme opticá míža. Jejími záladními parametry jsou: šía štrbiny a a vzdálenost sted sousedních štrbin tzv. mížová onstanta b. Opticé mížy se vyrábjí dvma záladními zpsoby: rytím nebo holograficou metodou.
5 Opt nás bude zajímat, ja vypadá ohybový obrazec v pípad, že opticou mížu osvtlíme rovinnou vlnou o vlnové délce. Obr. 6: Ohyb svtla na opticé mížce (pevzato z []) Podobn jao pi popisu ohybového obrazce, terý vzniá na stínítu za jedinou štrbinou, ta i zde použijeme urité zjednodušení. Vybereme si paprsy, teré procházejí odpovídajícími body na štrbinách a dopadají do uritého bodu P na stínítu. Protože mížová onstanta i šía štrbiny jsou zanedbatelné ve srovnání se vzdáleností stíníta od mížy, mžeme opt tyto paprsy považovat za rovnobžné. Obr. 7: Ohyb svtla na opticé mížce (pevzato z []) Dráhový rozdíl sousedních paprs vypoteme opt z pravoúhlého trojúhelnía: Platí: l b. Aby v bod P nastalo ohybové maximum -tého ádu, musí být tento dráhový rozdíl roven sudému násobu poloviny vlnové dély:
6 l b, de je ohybový úhel maximu -tého ádu, je ád ohybového maxima (nabývá hodnot 0, 1,, ). Je-li svtlo dopadající na opticou mížu monochromaticé, pa mají maxima stejnou barvu jao je barva svtla. Obr. 8: Ohybová maxima pi ohybu svtla na mížce Jestliže mížu osvtlíme bílým svtlem, bude maximum nultého ádu bílé a maxima vyšších ád jsou duhov zbarvená, piemž nejvíce se ohýbá svtlo barvy ervené a nejmén svtlo fialové. Obr. 9: Ohybová maxima pi ohybu bílého svtla na mížce (pevzato z sunra.lbl.gov) Podmínu pro difraní minimum odvodíme opt velmi snadno: celová dráhový rozdíl dvou sousedních paprs musí být roven lichému násobu poloviny vlnové dély: l b (1), de je v tomto pípad ád ohybového minima. Barva ohybových minim nezávisí na vlnové délce použitého svtla všechna jsou tmavá.
7 V závislosti na potu štrbin opticé mížy nemusí být všechna interferenní minima patrná mížová spetra nterých vyšších ád se mohou perývat. K ohybu svtla mže docházet taé na ruhovém otvoru, na obdélníovém otvoru, atd. Jao ohybová míža mže sloužit taé CD dis nebo DVD dis: Obr. 10: Ohybová maxima pi ohybu bílého svtla na CD disu Ohyb svtla má opt využití ve spetrální analýze láte (ve spetrosopu nahradíme rozladný hranol ohybovou mížou), v opticé holografii (trojrozmrná metoda zaznamenání obrazu). ešené pílady 1) Vypotte, pod jaým úhlem vzniá maximum. ádu pi osvtlení ohybové mížy s periodou m svtlem o vlnové délce 750 nm. b = m, = 750 nm, =, =? ešení: Pi ešení budeme vyjdeme z podmíny pro ohybové maximum na opticé mížce: b. Z této podmíny vyjádíme us ohybového úhlu :. b
8 Po dosazení íselných hodnot zísáme výslede: ,75, a tedy 48,6. Ohybové maximum. ádu vzniá pod ohybovým úhlem 48,6. ) Na ohybovou mížu dopadá žluté svtlo o vlnové délce 590 nm Urete, oli vryp má míža na 1 mm dély, jestliže se svtlo ve smru e 3. maximu odchyluje od smru olmého rovin mížy o úhel 60. = 590 nm, = 3, = 60, N =? ešení: Z rovnice pro ohybové maximum na opticé mížce vyjádíme mížovou onstantu: b b. Po dosazení íselných hodnot: b m, m. Poet vryp na 1 mm dély vypoteme ta, že 1 mm vydlíme mížovou onstantou. Je teba mít na pamti, že všechny veliiny musí být vyjádeny v hlavních jednotách! 0,001 m 0,001 m N b, m Ohybová míža má pibližn 489 vryp na jeden mm dély. Použitá literatura: [1] BARTUŠKA, K. Sbíra ešených úloh z fyziy IV. 1. vyd. Praha: Prometheus 000 [] HALLIDAY, D., RESNICK, R., WALKER, J.: Fyzia. 1. vyd. Brno: VUTIUM, 000 [3] HORÁK, Z., KRUPKA, F.: Fyzia.. vyd. Praha: SNTL, 1976 [4] JAVORSKIJ, B. M., SELEZN V, J. A. Pehled elementární fyziy. 1. vyd., Praha: SNTL, 1989 [5] LEPIL, O. Fyzia pro gymnázia Optia. 3. vyd. Praha: Prometheus, 00 [6] PIŠÚT, J. a ol. Fyzia pro IV. roní gymnázií. 1. vyd. Praha: SPN, 1987 [7] ŠEDIVÝ, P. Ohyb svtla. 1. vyd. Hradec Králové: MAFY, 1996 [8] VON LAUE, M. Djiny fyziy. 1. vyd. Praha: Orbis, 1958
Obr. 1: Elektromagnetická vlna
svtla Svtlo Z teorie elektromagnetického pole již víte, že svtlo patí mezi elektromagnetická vlnní, a jako takové tedy má dv složky: elektrickou složku, kterou pedstavuje vektor intenzity elektrického
ZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA
OBRAOVACÍ ROVNICE OKY A KULOVÉHO RCADLA vtšení optického zobrzení pedešlých kpitol již víme, že pi zobrzení okmi nebo kulovými zrcdly mohou vznikt zvtšené nebo zmenšené obrzy pedmt. Pro jejich mtemtický
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 OHYB SVĚTLA
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 OHYB SVĚTLA V paprskové optice jsme se zabývali optickým zobrazováním (zrcadly, čočkami a jejich soustavami).
Podpora rozvoje praktické výchovy ve fyzice a chemii
VLNOVÁ DÉLKA A FREKVENCE SVĚTLA 1) Vypočítejte frekvenci fialového světla, je-li jeho vlnová délka 390 nm. Rychlost světla ve vakuu je 3 10 8 m s 1. = 390 nm = 390 10 9 m c = 3 10 8 m s 1 f=? (Hz) Pro
INTERFERENCE SVTLA. Obr. 1: Interference svtla. Troška historie
INTERFERENCE SVTLA Každý z nás již jist vid oejové skvrny na mokré vozovce nebo mýdové bubiny. Píinou jejich duhového zbarvení je jev, který nazýváme interference svta a patí mezi zákadní jevy tzv. vnové
VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník
VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají
Laboratorní úloha č. 7 Difrakce na mikro-objektech
Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového
27. Vlnové vlastnosti svtla
7. Vlnové vlastnosti svtla Základní vlastnosti svtla Viditelné svtlo = elektromagnetické vlnní s vlnovými délkami 400 760 nm Pozn.: ultrafialové záení (neviditelné) 400nm (fialové) 760nm (ervené) infraervené
Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední
Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední a ta jej zase předá svému sousedovi. Částice si tedy
Fyzika II. Marek Procházka Vlnová optika II
Fyzika II Marek Procházka Vlnová optika II Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení složek vlnění s různou
Laboratorní práce č. 3: Měření vlnové délky světla
Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 3: Měření vlnové délky světla G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Gymnázium G Hranice Test
Difrakce na mřížce. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod: Úloha č. 7
Úloha č. 7 Difrakce na mřížce Úkoly měření: 1. Prostudujte difrakci na mřížce, štěrbině a dvojštěrbině. 2. Na základě měření určete: a) Vzdálenost štěrbin u zvolených mřížek. b) Změřte a vypočítejte úhlovou
23. Mechanické vlnní. Postupné vlnní:
3. Mechanické vlnní Mechanické vlnní je dj, pi které ástice pružného prostedí kitají kole svých rovnovážných poloh a tento kitavý pohyb se penáší postupuje) od jedné ástice k druhé vlnní že vzniknout pouze
2 HODINY. ? Na kolik trojúhelník Ti úhlopíka rozdlí AC lichobžník ABCD? Na dva trojúhelníky ABC, ACD
K O N S T R U K E L I H O B Ž N Í K U 2 HOINY Než istouíš samotným onstrucím, zoauj si nejdíve vše, co víš o lichobžnících co to vlastn lichobžní je, záladní druhy lichobžní a jejich vlastnosti. ále si
MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU
Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové
OPTIKA Světelné jevy TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
OPTIKA Světelné jevy TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Rozklad světla Když světlo prochází hranolem, v důsledku dvojnásobného lomu na rozhraních
6. Měření Youngova modulu pružnosti v tahu a ve smyku
6. Měření Youngova modulu pružnosti v tahu a ve smyu Úol : Určete Youngův modul pružnosti drátu metodou přímou (z protažení drátu). Prostudujte doporučenou literaturu: BROŽ, J. Zálady fyziálních měření..
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má
0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ. as ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umt použít
0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ as e studiu apitoly: 30 minut Cíl: Po prostudování této apitoly budete umt použít záladní pojmy ombinatoriy vztahy pro výpoet ombinatoricých úloh - 6 - 0.1 Kombinatoria
13. Vlnová optika I. Interference a ohyb světla
13. Vlnová optika I. Interference a ohyb světla Od časů Isaaca Newtona si lidstvo láme hlavu problémem, je-li světlo vlnění nebo proud částic. Tento spor rozdělil svět vědy na dva zdánlivě nesmiřitelné
2. Vlnění. π T. t T. x λ. Machův vlnostroj
2. Vlnění 2.1 Vlnění zvláštní případ pohybu prostředí Vlnění je pohyb v soustavě velkého počtu částic navzájem vázaných, kdy částice kmitají kolem svých rovnovážných poloh. Druhy vlnění: vlnění příčné
SPEKTRUM ELEKTROMAGNETICKÉHO ZÁENÍ
SPEKTRUM ELEKTROMAGNETICKÉHO ZÁENÍ Elektromagnetická vlna Z elektiny a magnetismu již víte, že v elektrickém obvodu, do kterého je zapojen kondenzátor a cívka, vzniká elektromagnetické kmitání, které lze
Vlnové vlastnosti světla. Člověk a příroda Fyzika
Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická
MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM
MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM Difrakce (ohyb) světla je jedním z několika projevů vlnových vlastností světla. Z těchto důvodů světlo při setkání s překážkou nepostupuje dále vždy
PENOS ENERGIE ELEKTROMAGNETICKÝM VLNNÍM
PNO NRG LKTROMAGNTCKÝM VLNNÍM lktromagntické vlnní, stjn jako mchanické vlnní, j schopno pnášt nrgii Tuto nrgii popisujm pomocí tzv radiomtrických, rsp fotomtrických vliin Rozdlní vyplývá z jdnoduché úvahy:
2 HODINY. - jedná se o další velmi dležitou množinu bod urité vlastnosti. P: Narýsuj si kružnici k se stedem S a polomrem 6 cm.
T H A L E T O V A K R U Ž N I E 2 HODINY - jedná se o další velmi dležitou množinu bod urité vlastnosti P: Narýsuj si ružnici se stedem S a polomrem 6 cm. 1. Sestroj libovolný prmr ružnice Krajní body
Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu
Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce
Digitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/3.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím
frekvence f (Hz) perioda T = 1/f (s)
1.) Periodický pohyb - každý pohyb, který se opakuje v pravidelných intervalech Poet Poet cykl cykl za za sekundu sekundu frekvence f (Hz) perioda T 1/f (s) Doba Doba trvání trvání jednoho jednoho cyklu
Interference vlnění
8 Interference vlnění Umět vysvětlit princip interference Umět vysvětlit pojmy interferenčního maxima a minima 3 Umět vysvětlit vznik stojatého vlnění 4 Znát podobnosti a rozdíly mezi postupnýma stojatým
Fyzikální praktikum č.: 1
Datum: 5.5.2005 Fyziální pratium č.: 1 ypracoval: Tomáš Henych Název: Studium činnosti fotonásobiče Úol: 1. Stanovte závislost oeficientu seundární emise na napětí mezi dynodami. yneste do grafu závislost
Cvičení Kmity, vlny, optika Část interference, difrakce, fotometrie
Cvičení Kmity, vlny, optika Část interference, difrakce, fotometrie přednášející: Zdeněk Bochníček Tento text obsahuje příklady ke cvičení k předmětu F3100 Kmity, vlny, optika. Příklady jsou rozděleny
R O V N O B Ž N Í K (2 HODINY)
R O V N O B Ž N Í K (2 HODINY)? Co to vlastn rovnobžník je? Na obrázku je dopravní znaka, která íká, že vzdálenost k železninímu pejezdu je 1 m (dva pruhy, jeden pruh pedstavuje vzdálenost 80 m): Pozorn
ODRAZ A LOM SVTLA. Odraz svtla lom svtla index lomu úplný odraz svtla píklady
ODRAZ A LOM SVTLA Odraz svtla lo svtla idex lou úplý odraz svtla píklady Každý z Vás se urit kdy díval do vody. Na klidé vodí hladi vidl kro svého obrazu také kaey ebo písek a d. Na základí škole jste
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Zrcadla Zobrazení zrcadlem Zrcadla jistě všichni znáte z každodenního života ráno se do něj v koupelně díváte,
Název: Odraz a lom světla
Název: Odraz a lom světla Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika, Informatika) Tematický celek: Optika Ročník:
Optika pro mikroskopii materiálů I
Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických
Geometrická zobrazení
Pomocný text Geometricá zobrazení hodná zobrazení hodná zobrazení patří nejjednodušším zobrazením na rovině. Je jich vša hrozně málo a často se stává, že musíme sáhnout i po jiných, nědy výrazně složitějších
( ) ( ) 2 2 B A B A ( ) ( ) ( ) B A B A B A
Vzdálenost dvou bod, sted úseky Ž Vzdálenost dvou bod Pi vyšetování vzájemné polohy bod, pímek a rovin lze použít libovolnou vhodn zvolenou soustavu souadnic (afinní). však pi vyšetování metrických vlastností
OBECNÁ FYZIKA III (KMITY, VLNY, OPTIKA), FSI-TF-3
OBECNÁ FYZIKA III (KMITY, VLNY, OPTIKA), FSI-TF-3 GARANT PEDMTU: Prof. RNDr. Jií Petráek, Dr. (ÚFI) VYUUJÍCÍ PEDMTU: Prof. RNDr. Jií Petráek, Dr. (ÚFI), CSc., Mgr. Vlastimil Kápek, Ph.D. (ÚFI) JAZYK VÝUKY:
MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:
MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,
Mocnost bodu ke kružnici
3..0 ocnost bodu e ružnici Předpolady: 309 Př. : Je dána ružnice a bod, ležící vně ružnice. Veď bodem dvě různé sečny ružnice p a p. Průsečíy sečny p,. Průsečíy sečny p,. Změř potřebné vzdálenosti a spočti
Mocnost bodu ke kružnici
3.. ocnost bodu e ružnici Předpolady: 03009 Př. : Je dána ružnice a bod, ležící vně ružnice. Veď bodem dvě různé sečny ružnice p a p. Průsečíy sečny p s ružnicí označ A, B. Průsečíy sečny p s ružnicí označ
Hezká fyzika z po íta e
J. Hubeák: Hezká fyzika z poítae Hezká fyzika z poítae JOSEF HUBEÁK Univerzita Hradec Králové Poíta je univerzální nástroj a studenti, žáci a uitelé jej bžn používají. I když doslouží, je stále zajímavým
Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -
Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické
MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:
MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,
Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
2.1 Pokyny k otev eným úlohám. 2.2 Pokyny k uzav eným úlohám. Testový sešit neotvírejte, po kejte na pokyn!
MATEMATIKA základní úrove obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bod Hranice úspšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. asový limit pro ešení
Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA
Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA
Sylabus přednášky Kmity a vlny. Optika
Sylabus přednášky Kmity a vlny. Optika Semestr zimní 4/2 PS, (4 společné konzultace + 2 pracovní semináře po 4 hodinách) z, zk - 7 KB Doporučeno pro 2. rok bakalářského studia. A. Kmity a vlny 1. Volné
ELEKTRONICKÉ ČÁSTI HERNÍCH KOMPONENT
ELEKTRONICKÉ ČÁSTI HERNÍCH KOMPONENT Laserová zbraň (phaser) je Iniciátor laserového paprsu podobně jao laserové uazováto. Pomocí přijímací IR diody čte signál z vesty protihráče a vyhodnotí zásah. Přijímací
Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky
Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky Úkol : 1. Určete mřížkovou konstantu d optické mřížky a porovnejte s hodnotou udávanou výrobcem. 2. Určete vlnovou délku λ jednotlivých
FYZIKA PRO IV. ROČNÍK GYMNÁZIA - OPTIKA 2. VLNOVÁ OPTIKA
FYZIKA PRO IV. ROČNÍK GYMNÁZIA - OPTIKA 2. VLNOVÁ OPTIKA Mgr. Monika Bouchalová Gymnázium, Havířov-Město, Komenského 2, p.o. Tento digitální učební materiál (DUM) vznikl na základě řešení projektu OPVK,
L I C H O B Ž N Í K (2 HODINY) ? Co to vlastn lichobžník je? Podívej se napíklad na následující obrázky:
L I C H O B Ž N Í K (2 HODINY)? Co to vlastn lichobžník je? Podívej se napíklad na následující obrázky: Na obrázcích je vyobrazena hospodáská budova a židlika, kterou urit mají tvoji rodie na chodb nebo
Název: Čočková rovnice
Název: Čočková rovnice Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Optika Ročník: 5. (3.
λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny
Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává
4. EZY NA KUŽELÍCH 4.1. KUŽELOVÁ PLOCHA, KUŽEL
4. EZY NA KUŽELÍCH 4.1. KUŽELOVÁ PLOCHA, KUŽEL Definice : Je dána kružnice k ležící v rovin a mimo ni bod V. Všechny pímky jdoucí bodem V a protínající kružnici k tvoí kruhovou kuželovou plochu. Tyto pímky
4.4. Vlnové vlastnosti elektromagnetického záření
4.4. Vlnové vlastnosti elektromagnetického záření 4.4.1. Interference 1. Charakterizovat význačné vlastnosti koherentních paprsků.. Umět definovat optickou dráhu v souvislosti s dráhovým rozdílem a s fázovým
6.2.6 Dvojštěrbinový experiment
66 Dvojštěrbinový eperiment Předpoklady: 06005 Pedagogická poznámka: Následující dvě hodiny jsou z převážné části převyprávěním dvou kapitol z Feynmanových přednášek z fyziky V klasických učebnicích nic
( ) Příklady na otočení. Předpoklady: Př. 1: Je dána kružnice k ( S ;5cm)
3.5.9 Přílady na otočení Předpolady: 3508 Př. 1: Je dána ružnice ( ;5cm), na teré leží body, '. Vně ružnice leží bod L, uvnitř ružnice bod M. Naresli obrazy bodů L, M v zobrazení řeš bez úhloměru. R (
6. Optika. Konstrukce vlnoploch pro světlo:
6. Opi 6. Záldní pojmy Těles, erá vysíljí svělo, jsou svěelné zdroje. Zářivá energie v nich vzniá přeměnou z energie elericé, chemicé, jderné. Zdrojem svěl mohou bý i osvělená ěles (vidíme je díy odrzu
Interference světla Vlnovou podstatu světla prokázal až roku 1801 Thomas Young, když pozoroval jeho interferenci (tj. skládání). Youngův experiment interference světla na dvou štěrbinách (animace) http://micro.magnet.fsu.edu
3.2.5 Odraz, lom a ohyb vlnění
3..5 Odraz, lom a ohyb vlnění Předpoklady: 304 Odraz a lom vlnění na rozhranní dvou prostředí s různou rychlostí šíření http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=16.0 Rovinná vlna dopadá šikmo
Diamantová suma - řešení příkladů 1.kola
Diamantová suma - řešení příladů.ola. Doažte, že pro aždé přirozené číslo n platí.n + 2.n + + n.n < 2. Postupujeme matematicou inducí. Levou stranu nerovnosti označme s n. Nejmenší n, pro než má smysl
0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ. as ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umt použít
0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ as e studiu apitoly: 30 minut Cíl: Po prostudování této apitoly budete umt použít záladní pojmy ombinatoriy vztahy pro výpoet ombinatoricých úloh - 6 - Výlad: 0.1 Kombinatoria
Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)
Bucinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Formalizace rozměrové analýzy ( výsledné jednoty na obou stranách musí souhlasit ). Rozměr fyziální veličiny Mějme nějaou třídu jednote, napřílad [(g,
7.3.9 Směrnicový tvar rovnice přímky
7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:
7.3.9 Směrnicový tvar rovnice přímky
739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná
DRUHY ROVNOBŽNÍK A JEJICH VLASTNOSTI 1 HODINA
DRUHY ROVNOBŽNÍK A JEJICH VLASTNOSTI HODINA Podívej se na následující obrázek: Na obrázku je rovnobžník s vyznaeným pravým úhlem. Odpovídej na otázky:? Jaká je velikost vnitního úhlu pi vrcholu C? Je rovna
27. Vlnové vlastnosti světla
27. Vlnové vlastnosti světla Základní vlastnosti světla (rychlost světla, šíření světla v různých prostředích, barva tělesa) Jevy potvrzující vlnovou povahu světla Ohyb a polarizace světla (ohyb světla
Pravdpodobnost výskytu náhodné veliiny na njakém intervalu urujeme na základ tchto vztah: f(x)
NÁHODNÁ VELIINA Náhodná veliina je veliina, jejíž hodnota je jednoznan urena výsledkem náhodného pokusu (je-li tento výsledek dán reálným íslem). Jde o reálnou funkci definovanou na základním prostoru
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P05 MECHANICKÉ VLNĚNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P05 MECHANICKÉ VLNĚNÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH 1 Úvod...5
Definice : Jsou li povrchové pímky kolmé k rovin, vzniká kolmá kruhová válcová plocha a pomocí roviny také kolmý kruhový válec.
3. EZY NA VÁLCÍCH 3.1. VÁLCOVÁ PLOCHA, VÁLEC Definice : Je dána kružnice k ležící v rovin a pímka a rznobžná s rovinou. Všechny pímky rovnobžné s pímkou a protínající kružnici k tvoí kruhovou válcovou
5.3.6 Ohyb na mřížce. Předpoklady: 5305
5.3.6 Ohy na mřížce Předpoklady: 5305 Optická mřížka = soustava rovnoěžných velmi lízkých štěrin. Realizace: Skleněná destička s rovnoěžnými vrypy, přes vryp světlo neprochází, prochází přes nepoškraaná
Měření rozložení optické intenzity ve vzdálené zóně
Rok / Year: Svazek / Volume: Číslo / Number: 1 1 5 Měření rozložení optické intenzity ve vzdálené zóně Measurement of the optial intensity distribution at the far field Jan Vitásek 1, Otakar Wilfert, Jan
PLANIMETRIE ÚHLY V KRUŽNICÍCH KRUŽNICE
Předmět: Roční: Vytvořil: Datum: MTEMTIK DRUHÝ Mgr Tomáš MŇÁK 17 větna 2012 Název zpracovaného celu: PLNIMETRIE ÚHLY V KRUŽNICÍCH KRUŽNICE Kružnice je množina všech bodů X v rovině, teré mají od daného
GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE
GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE Relace Cheb, 006 Radek HÁJEK Prohlášení Prohlašuji, že jsem seminární práci na téma: Relace vypracoval zcela sám za použití pramen uvedených v piložené bibliograii na poítai
9. Kombinatorika, pravd podobnost a statistika
9. Kombinatorika, pravdpodobnost a statistika VÝCHOZÍ TEXT K ÚLOZE 1 V kódu je na prvním míst jedno z písmen A, B, C nebo D. Na dalších dvou pozicích je libovolné dvojciferné íslo od 11 do 45. (Existují
Youngův dvouštěrbinový experiment
Youngův dvouštěrbinový experiment Cíl laboratorní úlohy: Cílem laboratorní úlohy je pochopit princip dvouštěrbinové interference a určit vlnovou délku světla na základě rozteče pozorovaných interferenčních
Člověk a příroda Fyzika Cvičení z fyziky Laboratorní práce z fyziky 4. ročník vyššího gymnázia
Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická
FYZIKA II. Marek Procházka 1. Přednáška
FYZIKA II Marek Procházka 1. Přednáška Historie Dělení optiky Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení
! " # $ % # & ' ( ) * + ), -
! " # $ % # & ' ( ) * + ), - INDIVIDUÁLNÍ VÝUKA MATEMATIKA METODIKA Kuželosek Mgr. Petra Dunovská bezen 9 Obtížnost této kapitol matematik je dána tím, že se pi výkladu i ešení úloh komplexn vužívají vdomosti
DOPRAVNÍ INŽENÝRSTVÍ
VYSOKÉ UENÍ TECHNICKÉ V BRN FAKULTA STAVEBNÍ ING. MARTIN SMLÝ DOPRAVNÍ INŽENÝRSTVÍ MODUL 4 ÍZENÉ ÚROVOVÉ KIŽOVATKY ÁST 1 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Dopravní inženýrství
M I K R O S K O P I E
Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066
VYUŽITÍ GRAPHICAL USER INTERFACE PROGRAMU MATLAB PŘI VÝUCE OPTIKY
VYUŽITÍ GRAPHICAL USER INTERFACE PROGRAMU MATLAB PŘI VÝUCE OPTIKY Jiří Tesař, Petr Bartoš Jihočeská univerzita v Českých Budějovicích, Katedra fyziky Jeronýmova 10, 371 15 České Budějovice Abstrakt Program
Úlohy domácího kola kategorie B
54. roční Matematicé olympiády Úlohy domácího ola ategorie 1. Určete všechny dvojice (a, b) reálných čísel, pro teré má aždá rovnic x + ax + b 0, x + (a + 1)x + b + 1 0 dva růné reálné ořeny, přičemž ořeny
7 FYZIKÁLNÍ OPTIKA. Interference Ohyb Polarizace. Co je to ohyb? 27.2 Ohyb
1 7 FYZIKÁLNÍ OPTIKA Interference Ohyb Polarizace Co je to ohyb? 27.2 Ohyb Ohyb vln je jev charakterizovaný odchylkou od přímočarého šíření vlnění v témže prostředí. Ve skutečnosti se nejedná o nový jev
7 Optická difrakce jako přenos lineárním systémem
113 7 Opticá difrace jao přenos lineárním systémem 7.1 Impulsová odezva pro Fresnelovu difraci 7. Přenosová funce pro Fresnelovu difraci jao Fourierova transformace impulsové odezvy 7.3 Fourierovsý rozlad
GYMNÁZIUM CHEB. SEMINÁRNÍ PRÁCE Grafy funkcí sbírka ešených úloh. Radek HÁJEK, 8.A Radka JIROUŠKOVÁ, 8.A Cheb, 2006 Petr NEJTEK, 8.
GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE Grafy funkcí sbírka ešených úloh Radek HÁJEK, 8.A Radka JIROUŠKOVÁ, 8.A Cheb, 006 Petr NEJTEK, 8.A Prohlášení Prohlašujeme, že jsme seminární práci na téma: Grafy funkcí
5.3.5 Ohyb světla na překážkách
5.3.5 Ohyb světla na překážkách Předpoklady: 3xxx Světlo i zvuk jsou vlnění, ale přesto jsou mezi nimi obrovské rozdíly. Slyšíme i to, co se děje za rohem x Co se děje za rohem nevidíme. Proč? Vlnění se
Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/
Střední půmyslová šola a Vyšší odboná šola technicá Bno, Soolsá 1 Šablona: Inovace a zvalitnění výuy postřednictvím ICT Název: Téma: Auto: Číslo: Anotace: Mechania, pužnost pevnost Záladní duhy namáhání,
1 KOMBINATORIKA, KLASICKÁ PRAVDPODOBNOST
1 KOMBINATORIKA, KLASICKÁ PRAVDPODOBNOST Kombinatorické pravidlo o souinu Poet všech uspoádaných k-tic, jejichž první len lze vybrat n 1 zpsoby, druhý len po výbru prvního lenu n 2 zpsoby atd. až k-tý
3.2 Rovnice postupné vlny v bodové řadě a v prostoru
3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který
Název: Měření vlnové délky světla pomocí interference a difrakce
Název: Měření vlnové délky světla pomocí interference a difrakce Autor: Doc. RNDr. Milan Rojko, CSc. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: fyzika, matematika
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou
O P A K O V Á N Í A P R O H L O U B E N Í U I V A O J E D N O D U C H Ý C H K O N S T R U K C Í C H 1,5 HODINY
O P A K O V Á N Í A P R O H L O U B E N Í U I V A O J E D N O D U C H Ý C H K O N S T R U K C Í C H 1,5 HODINY Díve, než spolen pikroíme k uivu o množinách bod, pokusíme se zopakovat nkteré jednoduché
OPTIKA - NAUKA O SVĚTLE
OPTIKA OPTIKA - NAUKA O SVĚTLE - jeden z nejstarších oborů yziky - studium světla, zákonitostí jeho šíření a analýza dějů při vzájemném působení světla a látky SVĚTLO elektromagnetické vlnění λ = 380 790
2.1 Pokyny k otev eným úlohám. 2.2 Pokyny k uzav eným úlohám. Testový sešit neotvírejte, po kejte na pokyn!
MATEMATIKA DIDAKTICKÝTEST MAMZD3C0T0 Maximálníbodovéhodnocení:50bod Hraniceúspšnosti:33% Základníinformacekzadánízkoušky Didaktickýtestobsahuje26úloh. asovýlimitproešenídidaktickéhotestu jeuvedennazáznamovémarchu.
Mikrovlny. 1 Úvod. 2 Použité vybavení
Mikrovlny * P. Spáčil, ** J. Pavelka, *** F. Jareš, **** V. Šopík Gymnázium Vídeňská Brno; ** Gymnázium tř. Kpt. Jaroše; *** Arcibiskupské gymnázium; **** Gymnázium Jeseník; pavelspacil@tiscali.cz; **
β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:
GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového