Metody rekonstrukce obrazu a
|
|
- Vilém Mašek
- před 8 lety
- Počet zobrazení:
Transkript
1 Metody rekonstrukce obrazu a odstranění šumu z obrazu Jan Švihlík svihlj1@fel.cvut.cz České vysoké učení technické v Praze Fakulta elektrotechnická Katedra radioelektroniky
2 Obsah Konvoluce - Definice, vlastnosti, konvoluční teorém, implementace Modely šumů - Aditivní,, multiplikativní,, transformace modelů Druhy šumů v obraze - Gaussovský, Heavy-tailed tailed,, sůl s l a pepř, kvantizační, Poissonovský Potlačen ení aditivního šumu - Konvoluční filtrace, maska ve spektru, mediánov nová filtrace Potlačen ení signálov lově závislého šumu - Homomorfní filtr, Anscombova transformace Rekonstrukce obrazu - Inverzní filtr, Wienerův filtr
3 Konvoluce Definice 1D konvoluční integrál () () = ( τ ) ( τ ) f t g t f g t Definice 2D konvoluční integrál Vlastnosti konvoluce (, ) (, ) = (, ) (, ) f x y g x y f α β g x α y β dαdβ f g = g f - komutativnost ( ) cf cg= cc f g ( ) f g + g = f g + f g [ ] [ ] f f f = f f f Násobení konst. - Distributivnost vůčv ůči i sčítánís - asociativnost
4 Konvoluce Konvoluční teorém Konvoluci předmětů odpovídá součin jejich spekter a součinu předmp edmětů odpovídá konvoluce konvoluce spekter. { } (, ) = (, ) F uv FT f xy (, ) = FT gxy (, ) Guv { } (, ) (, ) (, ) (, ) f x y g x y F u v G u v (, ) (, ) (, ) (, ) f x y g x y F u v G u v Běžná filtrace lze díky d konvolučnímu teorému převp evést na násobenn sobení spekter filtrovaného signálu a impulsové odezvy filtru.
5 Konvoluce Diskrétn tní konvoluce Mr Nr ( ) = ( ) ( ) cij, rmn, hi mj, n, m= 0 n= 0 0 i< Mr+ Mh 1,0 j< Nr+ Nh 1, r a m představujp edstavují konvolvované matice, Mr a Nr jsou rozměry ry matice r, Mh a Nh jsou rozměry ry matice h. Implementace diskrétn tní konvoluce Posun konvolučního jádra přes p obrazovou matici, počítání součtů součin inů mezi koeficienty konv.. jádra j a obrazovou maticí.. Nutnost ošeto etřit okraje matice nuly, ozrcadlení pův.. signálu apod. Jádro Obrazová matice
6 ákladní metody pro potlačen ení šumu v obraze
7 Modely šumu Model aditivního šum y= x+ n Model multiplikativního šum Transformace modelů y = x n e = e = e e y x+ n x n ( y) = ( x n) = ( x) + ( n) log log log log
8 Druhy šumů v obraze se vyskytující Gaussovský šum Hustota pravděpodobnosti podobnosti Gaussovského rozptylem σ 2 je dánad ( ) ( x µ ) σ p x e x n šumu se středn ední ( ) =,, σ 2π hodnotou µ Gaussovský model lze použít t zejména na limitní případy pady některých n obrazových šumů,, kupř.. Poissonovský šum. Testovací obrázek Brada kontaminovaný Gaussovským aditivním šumem se σ = 20. a
9 Druhy šumů v obraze se vyskytující Heavy-tailed šum Hustota pravděpodobnosti podobnosti (tzv. dvojitá středn ední hodnotou µ a rozptylem σ 2 je dánad x µ 1 pn x e x 2σ exponenciála) σ ( ) =, (, ) Heavy-tailed šumu se Tento druh šumu vzniká zejména v případp padě nedokonalého splnění centráln lního limitního teorému (kupř.. náhodnn hodné proměnn nné přispívající ke generaci Gaussovské náhodné proměnn nné nejsou zcela nezávisl vislé). Porovnání hp Gaussovské a heavy-tailed tailed.. Z obr. je zřejmz ejmé, že Gaussovská hp jde k nule mnohem rychleji Heavy-Tailed Gaussian p n (x) x
10 Druhy šumů v obraze se vyskytující Šum sůl s l a pepř Pravděpodobnost, že e dojde ke změně bitu V na W při i průchodu kanálem je dánad i ( ) P V W = 2 = ε, i= 0,1,..., B 1. Tento druh šumu vzniká zejména při p i přenosu p obrazu digitáln lním m kanálem, kdy se změní některé hodnoty pixelů na nulové, popř blízk zké nule nebo naopak na hodnoty blízk zké 255. γ γ P( y= a) = 1 γ, P( y= 0 ) =, P( y= 255 ) =, 2 2 Pouze změna MSB způsob sobí vznik černých a bílých b bodů.. MSE zapříčin iněné změnou MSB lze vyjádřit B-1 B-1 ε 2 = ε4 ( ) 2 Obrázek Brada kontaminovaný šumem sůl s l a pepř s γ = 0.05.
11 Druhy šumů v obraze se vyskytující Kvantizační šum Kvantizační šum je modelován n jako uniformní s kvant. krokem a hp p n ( x) 1, n = 2 2, 0, jinde x Tento druh šumu vzniká transformací spojité náhodné veličiny iny na diskretní náhodnou veličinu, inu, popř.. transformací diskretní náhodné veličiny iny na diskrétn tní náhodnou veličinu inu s menší bitovou hloubkou. Fixed threshold Random threshold Floyd-Steinberg dither p n (x)
12 Druhy šumů v obraze se vyskytující Poissonovský šum (Photon( counting) Hp Poissonovského šumu je dánad k λ λ e P( Ω= k) = pn ( k; λ) =, k = 0, 1, 2,... k! Tento druh šumu se vyskytuje kupř.. na sensorech,, které pracují jako čítač fotonů (CCD). Sensor v daném časovém m intervalu načítá náhodný počet fotonů pohybující se kolem středn ední hodnoty λ p n (k) k
13 Potlačen ení aditivního šumu Máme Chceme POTLAČEN ENÍ ŠUMU Konvoluční filtrace Patří mezi nejjednodušší metody pro potlačen ení šumu. Metoda je založena na odfiltrování kmitočtových tových složek mimo pásmo p užiteu itečného signálu. Redukujeme prostorovou rozlišovac ovací schopnost. Jednoduché konvoluční jádro provádějící průměrov rování. Gauss σ = 20 Filtrované
14 Potlačen ení aditivního šumu Maska ve spektráln lní rovině Patří mezi nejjednodušší metody pro potlačen ení šumu. Metoda je založena na aplikace masky ve spektru signálu. Na rozdíl l od konvolučních filtrů,, můžm ůže e maska realizovat libovolné typy filtrů. Masky, které mají ve spektru ostré rozhraní způsob sobí v prostorové doméně vznik nežádouc doucích ch artefaktů. C( u, v) = R( u, v) H( u, v) = R( u, v) H( u, v) Φ( u, v), Gauss σ = 20 Filtrované
15 Potlačen ení aditivního šumu Mediánov nová filtrace Patří mezi nelineárn rní metody. Obrazový bod je nahrazen mediánem spočteným v poli mediánu. Medián m náhodné proměnn nné X je dánd ( ) ( ) P X m 0.5 P X m. Jinak řečeno, eno, medián n posloupnosti (s lichým počtem členů) ) je definován n jako hodnota členu, pro který platí, že e polovina členů je většív a polovina menší než hodnota mediánu. Gauss σ = 20 Filtrované Medián n lépe l zachová hrany oproti konv. Filt. Hodí se zejména pro impulsní šumy.
16 Potlačen ení signálov lově závislého šumu Multiplikativní Homomorfní filtr Po zlogaritmování aplikujeme běžb ěžné algoritmy pro odstranění aditivního šumu. Po odstranění šumu se na obrazovou matici aplikuje exponenciáln lní převodní charakteristika. y= x n Poissonovský Anscombova transformace ( y) = ( x) + ( n) log log log Anscombova transformace provede tzv. stabilisaci variance a transformuje Poissonovská data I(λ) na přiblip ibližně Gaussovské s distribuční funkcí N(0,1). 3 AT{ I ( λ) } = 2 I ( λ) +. 8 Pro odstranění Poissonovského šumu lze rovněž použít průměrov rování v čase přímý odhad λ.. Je nutné mít t více v realizací snímku. Popř.. delší exposice.
17 Základní metody rekonstrukce obrazu
18 Rekonstrukce obrazu Obrazový systém Zobraz. systém Obrazový sensor Zprac. a přenos Zobraz. Průchod signálu obrazovým systémem způsob sobí informace. degradaci obrazu a ztrátu tu Lineárn rní funkční bloky se chovají většinou jako filtr DP, což způsob sobí omezení kmitočtov tového pásma. p Lineárn rní bloky zanáší šum do signálu. Impulsní odezva PSF(x,y) neznáme, máme m me pouze degradovaný snímek.
19 Rekonstrukce obrazu Inverzní filtr Inverzní filtr kompensuje přenosovou p frekvenční charakteristiku obrazového systému H(u,v) (dekonvoluce). C(u,v) představuje spektrum degradovaného obrazu. Cuv (, ) = Ruv (, ) Huv (, ) + Nuv (, ) Inverzní filtr pro systém m bez aditivního šumu N(u,v) lze rekonstrukční filtr H R (u,v) zapsat takto. 1 Cuv (, ) HR( u, v) = CR( u, v) = = R( u, v) H( uv, ) Huv (, ) Rekonstruovaný obraz C R (u,v) ze systému s aditivním šumem N(u,v) lze zapsat takto. Nuv (, ) CR( u, v) = R( u, v) + H ( uv, ) V případp padě, že e frekvenční přenosová charakteristika systému je DP, potom inverzní filtr je HP jehož přenos roste s kmitočtem tem nade všechny v meze šumové složky jsou v horní části pásma p mimořádn dně zesíleny => šumová katastrofa. R
20 Rekonstrukce obrazu Wienerův filtr Wienerův filtr je filtr při p i jehož použit ití nedochází k šumové katastrofě.. Princip filtru vychází z minimalizace středn ední kvadratické chyby mezi původnp vodní r(x,y) obrazovou maticí a rekonstruovanou obrazovou maticí c r (x,y). [ (, ) (, )] 2 MSE = E r x y c x y r H R ( u, v) = * H ( u, v) SN ( u, v) (, ) (, ) + SR( u, v) * H u v H u v Nejjednodušší způsob jak odhadnout spektráln lní výkonovou hustotu původnp vodního nezkresleného obrazu S R (u,v) je uvažovat spektráln lní hustotu šumu S N (u,v) = σ 2 z čehož lze určit 2 S ( u, v) S ( u, v) σ R Rozptyl šumu můžm ůžeme odhadnout kupř.. z jednolitých ploch v obraze. C
21 Doporučen ená literatura [1] Klíma, M. Bernas, M. Hozman, J. Dvořák, P.: Zpracování obrazové informace. První vydání. Praha: ČVUT, stran. ISBN [2] Gonzales, C Woods, R.: Digital Image Processing. Second edition. New Jersey, ISBN
22 Děkuji za pozornost?
NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe. Adam Novozámský (novozamsky@utia.cas.cz)
NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe Adam Novozámský (novozamsky@utia.cas.cz) TEORIE Šum a jeho odstranění ŠUM Co je to šum v obrázku a jak vzniká? Jaké známe typy šumu? ŠUM V obrázku
ROZ1 - Cv. 3 - Šum a jeho odstranění ÚTIA - ZOI
Šum Co je to šum v obrázku? Šum Co je to šum v obrázku? V obrázku je přidaná falešná informace nahodilého původu Jak vzniká v digitální fotografii? Šum Co je to šum v obrázku? V obrázku je přidaná falešná
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
Jasové transformace. Karel Horák. Rozvrh přednášky:
1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace
Vlastnosti a modelování aditivního
Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),
Restaurace (obnovení) obrazu při známé degradaci
Restaurace (obnovení) obrazu při známé degradaci Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
ROZ II cv. 01 Dekonvoluce KM - FJFI - ČVUT
ROZ II cv. 01 Dekonvoluce KM - FJFI - ČVUT ZS 2013 ÚTIA - ZOI zoi.utia.cas.cz Kontakty Ústav teorie informace a automatizace AV ČR, v.v.i. http://www.utia.cas.cz Zpracování obrazové informace http://zoi.utia.cas.cz
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
ROZ II cv. 01 Dekonvoluce KM - FJFI - ČVUT
ROZ II cv. 01 Dekonvoluce KM - FJFI - ČVUT ZS ÚTIA - ZOI zoi.utia.cas.cz Kontakty Ústav teorie informace a automatizace AV ČR, v.v.i. http://www.utia.cas.cz Zpracování obrazové informace http://zoi.utia.cas.cz
APLIKACE DWT PRO POTLAČENÍ ŠUMU V OBRAZE
APLIKACE DWT PRO POTLAČENÍ ŠUMU V OBRAZE J.Švihlík ČVUT v Praze Fakulta elektrotechnická Katedra radioelektroniky Abstrakt Šum je v obraze prakticky vždy přítomen což způsobuje degradaci obrazu. Existuje
Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita
Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové
Operace s obrazem I. Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno. prezentace je součástí projektu FRVŠ č.
Operace s obrazem I Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova 1 Filtrování obrazu 2 Lineární a nelineární filtry 3 Fourierova
2010 Josef Pelikán, CGG MFF UK Praha
Filtrace obrazu 21 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ 1 / 32 Histogram obrázku tabulka četností jednotlivých jasových (barevných) hodnot spojitý případ hustota pravděpodobnosti
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací
Předzpracování obrazů v prostoru obrazů, operace v lokálním sousedství
Předzpracování obrazů v prostoru obrazů, operace v lokálním sousedství Václav Hlaváč České vysoké učení technické v Praze Český institut informatiky, robotiky a kybernetiky 166 36 Praha 6, Jugoslávských
r Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F.
Systé my, procesy a signály I - sbírka příkladů NEŘ EŠENÉPŘ ÍKADY r 223 Odvoď te přenosovou funkci obvodů na obr26, je-li vstupem napě tí u a výstupem napě tí Uvaž ujte Ω, H a F u u u a) b) c) u u u d)
Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.
Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman
Šum a jeho potlačení. Michal Švanda. Astronomický ústav MFF UK Astronomický ústav AV ČR. Spektroskopie (nejen) ve sluneční fyzice LS 2011/2012
Šum a jeho potlačení Spektroskopie (nejen) ve sluneční fyzice LS 2011/2012 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Šum Náhodná veličina Aditivivní měření=signál+šum Obvykle nekorelovaný
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských
A/D převodníky - parametry
A/D převodníky - parametry lineární kvantování -(kritériem je jednoduchost kvantovacího obvodu), parametry ADC : statické odstup signálu od kvantizačního šumu SQNR, efektivní počet bitů n ef, dynamický
Vlnková transformace a její aplikace ve zpracování obrazu
Vlnková transformace a její aplikace ve zpracování obrazu Jan Švihlík svihlj1@fel.cvut.cz +40 4 35 113 České vysoké učení technické v Praze Fakulta elektrotechnická Katedra radioelektroniky Obsah Proč
Stavový model a Kalmanův filtr
Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,
3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU
3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU V současné době se pro potlačení šumu u řečového signálu používá mnoho různých metod. Jedná se například o metody spektrálního odečítání, Wienerovy filtrace,
Signál v čase a jeho spektrum
Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě
charakteristiky KGG/STG Zimní semestr Základní statistické charakteristiky, Teoretická rozdělení 1
3. ZákladnZ kladní statistické charakteristiky rozdělení 1 charakteristiky Dva hlavní druhy základnz kladních charakteristik statistického souboru: charakteristiky úrovně,, polohy (středn ední hodnoty)
Základy zpracování obrazů
Základy zpracování obrazů Martin Bruchanov BruXy bruxy@regnet.cz http://bruxy.regnet.cz 23. března 29 1 Jasové korekce........................................................... 1 1.1 Histogram........................................................
Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722
Základy a aplikace digitálních modulací Josef Dobeš Katedra radioelektroniky (13137), blok B2, místnost 722 dobes@fel.cvut.cz 6. října 2014 České vysoké učení technické v Praze, Fakulta elektrotechnická
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
Transformace obrazu Josef Pelikán KSVI MFF UK Praha
Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
ZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH. Jiří Tůma
ZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH SYSTÉMŮ UŽITÍM FFT Jiří Tůma Štramberk 1997 ii Anotace Cílem této knihy je systematicky popsat metody analýzy signálů z mechanických systémů a strojních zařízení. Obsahem
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
Laplaceova transformace
Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP pondělí 23. března
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky Při návrhu elektroakustických soustav, ale i jiných systémů, je vhodné nejprve
KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni
KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace
Definice spojité náhodné veličiny zjednodušená verze
Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f
Analýza a zpracování digitálního obrazu
Analýza a zpracování digitálního obrazu Úlohy strojového vidění lze přibližně rozdělit do sekvence čtyř funkčních bloků: Předzpracování veškerých obrazových dat pomocí filtrací (tj. transformací obrazové
8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované
Multimediální systémy
Multimediální systémy Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Získání obsahu Jan Outrata (Univerzita Palackého v Olomouci) Multimediální systémy Olomouc, září prosinec
Zpracování obrazů. Honza Černocký, ÚPGM
Zpracování obrazů Honza Černocký, ÚPGM 1D signál 2 Obrázky 2D šedotónový obrázek (grayscale) Několikrát 2D barevné foto 3D lékařské zobrazování, vektorová grafika, point-clouds (hloubková mapa, Kinect)
TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY
TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY V PROSTŘEDÍ MATLAB K. Nováková, J. Kukal FJFI, ČVUT v Praze ÚPŘT, VŠCHT Praha Abstrakt Při rozpoznávání D binárních objektů z jejich diskrétní realizace se využívají
FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth
FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické
Kompresní metody první generace
Kompresní metody první generace 998-20 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Stillg 20 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca / 32 Základní pojmy komprese
Náhodné signály. Honza Černocký, ÚPGM
Náhodné signály Honza Černocký, ÚPGM Signály ve škole a v reálném světě Deterministické Rovnice Obrázek Algoritmus Kus kódu } Můžeme vypočítat Málo informace! Náhodné Nevíme přesně Pokaždé jiné Především
Úvod do analýzy časových řad
Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2... } se nazývá stochastický
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
NOVÉ METODY HODNOCENÍ OBRAZOVÉ KVALITY
NOVÉ METODY HODNOCENÍ OBRAZOVÉ KVALITY Stanislav Vítek, Petr Páta, Jiří Hozman Katedra radioelektroniky, ČVUT FEL Praha, Technická 2, 166 27 Praha 6 E-mail: svitek@feld.cvut.cz, pata@feld.cvut.cz, hozman@feld.cvut.cz
z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin
Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme
Pravděpodobnost a statistika I KMA/K413
Pravděpodobnost a statistika I KMA/K413 Konzultace 3 Přírodovědecká fakulta Katedra matematiky jiri.cihlar@ujep.cz Kovariance, momenty Definice kovariance: Kovariance náhodných veličin Dále můžeme dokázat:,
teorie elektronických obvodů Jiří Petržela analýza šumu v elektronických obvodech
Jiří Petržela co je to šum? je to náhodný signál narušující zpracování a přenos užitečného signálu je to signál náhodné okamžité amplitudy s časově neměnnými statistickými vlastnostmi kde se vyskytuje?
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné
Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti
Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů
Integrální transformace obrazu
Integrální transformace obrazu David Bařina 26. února 2013 David Bařina Integrální transformace obrazu 26. února 2013 1 / 74 Obsah 1 Zpracování signálu 2 Časově-frekvenční rozklad 3 Diskrétní Fourierova
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31
filtry FIR zpracování signálů FIR & IIR Tomáš Novák
filtry FIR 1) Maximální překývnutí amplitudové frekvenční charakteristiky dolní propusti FIR řádu 100 je podle obr. 1 na frekvenci f=50hz o velikosti 0,15 tedy 1,1dB; přechodové pásmo je v rozsahu frekvencí
Toolboxy analýzy a modelování stochastických systémů
Toolboxy analýzy a modelování stochastických systémů Ústav teorie informace a automatizace, AVČR Oddělen lení stochastické informatiky Petr Salaba Toolboxy analýzy a modelování stochastických systémů Projekt:
Apriorní rozdělení. Jan Kracík.
Apriorní rozdělení Jan Kracík jan.kracik@vsb.cz Apriorní rozdělení Apriorní rozdělení (spolu s modelem) reprezentuje informaci o neznámém parametru θ, která je dostupná předem, tj. bez informace z dat.
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Číslicové filtry. Honza Černocký, ÚPGM
Číslicové filtry Honza Černocký, ÚPGM Aliasy Digitální filtry Diskrétní systémy Systémy s diskrétním časem atd. 2 Na co? Úprava signálů Zdůraznění Potlačení Detekce 3 Zdůraznění basy 4 Zdůraznění výšky
Obraz matematický objekt. Spojitý obraz f c : (Ω c R 2 ) R
Obraz matematický objekt Spojitý obraz f c : (Ω c R 2 ) R Obraz matematický objekt Spojitý obraz f c : (Ω c R 2 ) R Diskrétní obraz f d : (Ω {0... n 1 } {0... n 2 }) {0... f max } Obraz matematický objekt
Časové řady, typy trendových funkcí a odhady trendů
Časové řady, typy trendových funkcí a odhady trendů Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Jiří Neubauer (Katedra ekonometrie UO Brno) Časové
Laboratorní úloha č. 8: Elektroencefalogram
Laboratorní úloha č. 8: Elektroencefalogram Cíle úlohy: Rozložení elektrod při snímání EEG signálu Filtrace EEG v časové oblasti o Potlačení nf a vf rušení o Alfa aktivita o Artefakty Spektrální a korelační
Časové řady, typy trendových funkcí a odhady trendů
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces
1. Základy teorie přenosu informací
1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.
I. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály Systémy: definice, několik příkladů Vlastnosti systémů
Základy výpočetní tomografie
Základy výpočetní tomografie Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika Základní principy výpočetní tomografie Výpočetní tomografie - CT (Computed Tomography) CT je obecné označení
p(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I
Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Příklad Tahová síla papíru používaného pro výrobu potravinových sáčků je důležitá charakteristika kvality. Je známo, že síla
1. Přednáška: Obecné Inf. + Signály a jejich reprezentace
1. Přednáška: Obecné Inf. + Signály a jejich reprezentace 1 Obecné informace Změna rozvrhů Docházka na cvičení 2 Literatura a podklady Základní učební texty : Prchal J., Šimák B.: Digitální zpracování
1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení
VI Přednáška Další rozdělení SNP Limitní věty Speciální typy rozdělení Rovnoměrné rozdělení R(a,b) Příklad Obejít celý areál trvá strážnému 30 minut. Jaká je pravděpodobnost, že u vrátnice budete čekat
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
AVDAT Nelineární regresní model
AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných
1 Zpracování a analýza tlakové vlny
1 Zpracování a analýza tlakové vlny 1.1 Cíl úlohy Prostřednictvím této úlohy se naučíte a zopakujete: analýzu biologických signálů v časové oblasti, analýzu biologických signálů ve frekvenční oblasti,
Univerzita Karlova v Praze procesy II. Zuzana. funkce
Náhodné 1 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze email: praskova@karlin.mff.cuni.cz 11.-12.3. 2010 1 Outline Lemma 1: 1. Nechť µ, ν jsou konečné míry na borelovských
Vektorové obvodové analyzátory
Radioelektronická měření (MREM, LREM) Vektorové obvodové analyzátory 9. přednáška Jiří Dřínovský Ústav radioelektroniky FEKT VUT v Brně Úvod Jedním z nejběžnějších inženýrských problémů je měření parametrů
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace 22.z-3.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ druhá část tématu předmětu pokračuje. oblastí matematických pomůcek
Biofyzikální ústav LF MU Brno. jarní semestr 2011
pro obor Ošetřovatelská péče v gerontologii Biofyzikální ústav LF MU Brno jarní semestr 2011 Obsah letmý dotyk teorie systémů klasifikace a analýza biosignálů Co je signál? Co je biosignál? Co si počít
X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky
X3EO - Elektrické obvody Kmitočtové charakteristiky Doc. Ing. Petr Pollák, CSc. Letní semestr 5/6!!! Volné šíření není povoleno!!! Fázory a spektra Fázor harmonického průběhu Û m = U m e jϕ ut) = U m sinωt
Akvizice dat. Dekonvoluce Registrace. zobrazení INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
a analýza signálů v perfúzním zobrazení Ústav biomedicínského inženýrství FEKT, VUT v Brně 22. 5. 2009 INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Osnova Úvod 1 Úvod 2 3 4 5 Úvod diagnostika a průběh terapie nádorových
Digitalizace převod AS DS (analogový diskrétní signál )
Digitalizace signálu v čase Digitalizace převod AS DS (analogový diskrétní signál ) v amplitudě Obvykle převod spojité předlohy (reality) f 1 (t/x,...), f 2 ()... připomenutí Digitalizace: 1. vzorkování
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné
VYBRANÁ ROZDĚLENÍ. SPOJITÉ NÁH. VELIČINY Martina Litschmannová
VYBRANÁ ROZDĚLENÍ SPOJITÉ NÁH. VELIČINY Martina Litschmannová Opakování hustota pravděpodobnosti f(x) Funkce f(x) je hustotou pravděpodobností (na intervalu a x b), jestliže splňuje následující podmínky:
ÚPGM FIT VUT Brno,
Systémy s diskrétním časem Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 LTI systémy v tomto kursu budeme pracovat pouze se systémy lineárními a časově invariantními. Úvod k nim jsme viděli již
FILTRACE VE FOURIEROVSKÉM SPEKTRU
1/18 FILTRACE VE FOURIEROVSKÉM SPEKTRU (patří do lineárních integrálních transformací) Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz
Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Číslicová filtrace FIR filtry IIR filtry Tyto materiály vznikly za podpory Fondu rozvoje
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
Operace s obrazem. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013
Operace s obrazem Biofyzikální ústav LF MU Obraz definujeme jako zrakový vjem, který vzniká po dopadu světla na sítnici oka. Matematicky lze obraz chápat jako vícerozměrný signál (tzv. obrazová funkce)
Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction
Analýza lineárních regulačních systémů v časové doméně V Modelice (ale i v Simulinku) máme blok TransfeFunction Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz, Kamenice 3, 4. patro, dv.č.424 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. FREKVENČNÍ TRASFORMACE SPOJITÉ