Toolboxy analýzy a modelování stochastických systémů
|
|
- Žaneta Švecová
- před 6 lety
- Počet zobrazení:
Transkript
1 Toolboxy analýzy a modelování stochastických systémů Ústav teorie informace a automatizace, AVČR Oddělen lení stochastické informatiky Petr Salaba
2 Toolboxy analýzy a modelování stochastických systémů Projekt: Analýza a modelování doby do poruchy, výzkum statistických metod Hlavní řešitel: datapartner s.r.o., České Budějovice Ústav teorie informace a automatizace, Praha 8 Oddělen lení stochastické informatiky Doc. Petr Volf, CSc. Mgr. Pavel Boček Ing. Karel Vrbenský Ing. Petr Salaba
3 Toolboxy analýzy a modelování stochastických systémů Využit ití statistických metod při p i modelování a analýze doby do poruchy Vizuáln lní zobrazení průběhu a výsledků Simulace poruch komplexního zařízen zení (FTA) Analýza souborů náhodných signálů (*.txt txt)
4 Simulace poruch komplexního zařízen zení (FTA)
5 Simulace poruch zařízen zení Simulace poruch komplexních zařízen zení Určen ení pravděpodobnosti podobnosti poruch jednotlivých členů Strom poruch zařízen zení (FTA analýza) Přenos a zpracování spojitých veličin in v FTA Distribuční funkce F(t) Rozložen ení pravděpodobnosti podobnosti poruchy p ( t) = df( t) dt B I Birnbaumova míra důled ležitosti součástky stky ( i t) = Určen ení významu součásti sti pro funkčnost nost systému h( p( t)) p ( t) i
6 Simulace poruch zařízen zení (FTA analýza)
7 Simulace poruch zařízen zení (FTA analýza)
8 Simulace poruch zařízen zení (FTA analýza)
9 Simulace poruch zařízen zení (FTA analýza)
10 Simulace poruch zařízen zení (FTA analýza)
11 Použit itá hradla FTA Hradlo AND Hradlo OR Hradlo K-outK out-of-n N (KN) Implementace do samostatných objektů SIMULINK Zpracování spojitých veličin in (distribuční funkce) Prakticky neomezené množstv ství vstupů
12 AND hradlo Brána je funkční pouze pokud jsou funkční všechny podřízen zené komponenty Příklad: počíta tač funguje pokud funguje napájen jení, procesor, paměť a disková jednotka n Pravděpodobnost funkčnosti nosti brány v čase t = p i ( t) i= 1 p i pravděpodobnosti podobnosti funkčnosti nosti n podřízených komponent
13 OR hradlo Brána je funkční pouze pokud alespoň jedna podřízen zená komponenta je funkční Příklad: pokud funguje alespoň jeden záloz ložní zdroj energie (zásuvka a generátor) n Pravděpodobnost funkčnosti nosti brány v čase t = 1 (1 p i ( t)) i= 1 p i pravděpodobnosti podobnosti funkčnosti nosti n podřízených komponent
14 K-out-of-N N hradlo Brána je funkční pouze pokud alespoň k podřízených komponent je funkčních Příklad: pokud pracují alespoň 3 disky z 6 Pravděpodobnost funkčnosti nosti brány v čase t = 1 (1 j ( K M j K M množina všech v k-prvkových kombinací podřízených komponent Bránu K-outK out-of-n N lze sestavit z bran typu AND a OR Jednodušší popis simulačního modelu a méněm prostoru p t) )
15 Simulace poruch zařízen zení (FTA analýza)
16 Analýza souboru náhodných n signálů
17 Analýza souboru náhodných n signálů Možnost určit většív množstv ství stochastických funkcí Parametricky určen ené funkce Neparametricky určen ené funkce Parametry distribuce p(t)
18 Parametricky určen ené stochastické funkce Hustota pravděpodobnosti podobnosti Distribuční funkce (kumulativní) Funkce přežitp ití Intenzita poruch Podmíněná pravděpodobnost podobnost T 1 = (T T 1 > t 1 ) Predikce životnosti v případp padě dosažen ení času t 1 Funkce přežitp ití S 1 (t) = S(t)/S(t 1 ) pro t > t 1
19 Neparametricky určen ené stochastické funkce Distribuční funkce (empirická) Histogram Středn ední doba do poruchy Rozptyl hodnot Kvantil Počet měřm ěření Maximáln lní čas Podmíněná pravděpodobnost podobnost (empiricky) Použijeme data ze souboru většív než t 1 Je e potřeba dostatečný počet dat hledané velikosti (desítky)
20 Analýza souboru náhodných n signálů
21 Testované distribuce pravděpodobnosti podobnosti Exponenciální Weibullovo Normální Log-normální Gamma Kolmogorov - Smirnovův test shody dat s distribucí pravděpodobnosti podobnosti (>> kstest) Vizuáln lně porovnáním m kumulované distribuční funkce Automatický průběh h K-S K S testu pro všechny v fitované distribuce pravděpodobnosti podobnosti
22 Testování shody dat fitovaných distribucí
23 Testování shody dat fitovaných distribucí
24 Toolboxy analýzy a modelování stochastických systémů Určen ení pravděpodobnosti podobnosti poruchy systémů Modelování systémů jako stromových struktur Samostatná analýza a úprava souborů náhodných signálů Možnost implementace do průmyslov myslového software PATRIOT
25 Toolbox analýzy a modelování
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Téma 2: Pravděpodobnostní vyjádření náhodných veličin
0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipa.cz Pravděpodobnost a matematická statistika 2010 1.týden 20.09.-24.09. Data, tp dat, variabilita, frekvenční analýza histogram,
Téma 2: Pravděpodobnostní vyjádření náhodných veličin
0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
6. Testování statistických hypotéz. KGG/STG Zimní semestr 6. Testování statistických hypotéz
6. Testování statistických Testování statistických Princip: Ověř ěřování určit itého předpokladu p zjišťujeme, zda zkoumaný výběr r pochází ze základnz kladního souboru, který mám určit ité rozdělen lení
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
Definice spojité náhodné veličiny zjednodušená verze
Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f
TLOUŠŤKOVÁ A VÝŠKOVÁ STRUKTURA A JEJÍ MODELOVÁNÍ
TLOUŠŤKOVÁ A VÝŠKOVÁ STRUKTURA A JEJÍ MODELOVÁNÍ 1 Vlastnosti tloušťkové struktury porostu tloušťky mají vyšší variabilitu než výšky světlomilné dřeviny mají křivku početností tlouštěk špičatější a s menší
Kapacita jako náhodná veličina a její měření. Ing. Igor Mikolášek, Ing. Martin Bambušek Centrum dopravního výzkumu, v. v. i.
Kapacita jako náhodná veličina a její měření Ing. Igor Mikolášek, Ing. Martin Bambušek Centrum dopravního výzkumu, v. v. i. Obsah Kapacita pozemních komunikací Funkce přežití Kaplan-Meier a parametrické
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
A6M33SSL: Statistika a spolehlivost v lékařství Teorie spolehlivosti Přednáška 2
A6M33SSL: Statistika a spolehlivost v lékařství Teorie spolehlivosti Přednáška 2 Vojta Vonásek vonasek@labe.felk.cvut.cz České vysoké učení technické v Praze Fakulta elektrotechnická Katedra kybernetiky
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě
ití empirických modelů při i optimalizaci procesu mokré granulace léčivl ková SVK ÚOT
Využit ití empirických modelů při i optimalizaci procesu mokré granulace léčivl Jana Kalčíkov ková 5. ročník Školitel: Doc. Ing. Zdeněk k Bělohlav, B CSc. Granulace Prášek Granule Vlhčivo Promíchávání
pravděpodobnosti, popisné statistiky
8. Modelová rozdělení pravděpodobnosti, popisné statistiky Rozdělení pravděpodobnosti Normální rozdělení jako statistický model Přehled a aplikace modelových rozdělení Popisné statistiky Anotace Klasickým
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl
charakteristiky KGG/STG Zimní semestr Základní statistické charakteristiky, Teoretická rozdělení 1
3. ZákladnZ kladní statistické charakteristiky rozdělení 1 charakteristiky Dva hlavní druhy základnz kladních charakteristik statistického souboru: charakteristiky úrovně,, polohy (středn ední hodnoty)
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 3 Jak a kdy použít parametrické a
NEDODÁVKY ELEKTRICKÉ ENERGIE
FAKULTNÍ NEMOCNICE HRADEC KRÁLOV LOVÉ A JEJÍ PŘIPRAVENOST V RÁMCI R ŘEŠENÍ NEDODÁVKY ELEKTRICKÉ ENERGIE 1 ZAJIŠTĚNÍ DODÁVKY ELEKTRICKÉ ENERGIE zajištění dodávky elektrické energie začíná zvolenou tzv.
y = 0, ,19716x.
Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému
Základní statistické modely Statistické vyhodnocování exp. dat M. Čada ~ cada
Základní statistické modely 1 Statistika Matematická statistika se zabývá interpretací získaných náhodných dat. Snažíme se přiřadit statistickému souboru vhodnou distribuční funkci a najít základní číselné
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
Návrh a vyhodnocení experimentu
Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav
Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I
Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Příklad Tahová síla papíru používaného pro výrobu potravinových sáčků je důležitá charakteristika kvality. Je známo, že síla
Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan
1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Úvod do teorie pravděpodobnosti Náhoda a pravděpodobnost, náhodný jev, náhodná veličina rozdělení pravděpodobnosti
Statistická analýza jednorozměrných dat
Univerzita Pardubice Fakulta chemicko-technologická, Katedra analytické chemie Licenční studium GALILEO Interaktivní statistická analýza dat Semestrální práce z předmětu Statistická analýza jednorozměrných
Návrh a vyhodnocení experimentu
Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav
Ekonomické modelování pro podnikatelskou praxi
pro podnikatelskou praxi Ing. Jan Vlachý, Ph.D. vlachy@atlas.cz Dlouhý, M. a kol. Simulace podnikových procesů Vlachý, J. Řízení finančních rizik Scholleová, H. Hodnota flexibility: Reálné opce Sylabus
technologie v podpoře e národnn registrů vybraných onemocnění
Informační a komunikační technologie v podpoře e národnn rodních registrů vybraných onemocnění P. Hanzlíček, V. Faltus, J. Zvárov rová EuroMISE centrum, Oddělen lení medicínsk nské informatiky, Ústav informatiky
SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení
SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI 7. cvičení Intenzita poruch Funkce modelující dobu do výskytu události životnost, dobu do poruchy, dobu do relapsu (návratu onemocnění), apod. používáme spolu s distribuční
Porovnání dvou výběrů
Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
DRINK CONSULTING s.r.o. im 2006
DRINK CONSULTING s.r.o. Vyvážený pitný režim im 2006 1 Představení společnosti Drink Consulting s.r.o. poradenská a marketingová společnost Spolupracuje: Instituce: - SZÚ Praha odbor výživy a zdraví,,
NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:
NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika Podrobnější rozpis okruhů otázek pro třetí část SZZ Verze: 13. června 2013 1 Úvodní poznámky 6 Smyslem SZZ by nemělo být toliko
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Stochastické modelování (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního
Semestrální práce z předmětu Pravděpodobnost, statistika a teorie informace
České vysoké učení technické v Praze Fakulta elektrotechnická Semestrální práce z předmětu Pravděpodobnost, statistika a teorie informace Životnost LED diod Autor: Joel Matějka Praha, 2012 Obsah 1 Úvod
6.1 Normální (Gaussovo) rozdělení
6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů
Cvičení 3. Posudek únosnosti ohýbaného prutu. Software FREET Simulace metodou Monte Carlo Simulace metodou LHS
Spolehlivost a bezpečnost staveb, 4. ročník bakalářského studia (všechny obory) Cvičení 3 Posudek únosnosti ohýbaného prutu Software FREET Simulace metodou Monte Carlo Simulace metodou LHS Katedra stavební
STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák
STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.
VYBRANÁ ROZDĚLENÍ. SPOJITÉ NÁH. VELIČINY Martina Litschmannová
VYBRANÁ ROZDĚLENÍ SPOJITÉ NÁH. VELIČINY Martina Litschmannová Opakování hustota pravděpodobnosti f(x) Funkce f(x) je hustotou pravděpodobností (na intervalu a x b), jestliže splňuje následující podmínky:
Funkční vzorek. Zdeněk Slanina
17.10.2011 Popis výsledku (40( bodů) - Jedná se o obdobu prototypu s tím t m rozdílem (jediným), že e za výrobou či i vývojem funkčního vzorku bezprostředn edně nenásleduje sériovs riová nebo hromadná
VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI
VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové
Počítačová simulace logistických procesů II 9. přednáška Stochastické procesy a jejich zohlednění v modelu, optimalizace na bázi simulace
Počítačová simulace logistických procesů II 9. přednáška Stochastické procesy a jejich zohlednění v modelu, optimalizace na bázi simulace Jan Fábry 28.10.2017 Počítačová simulace logistických procesů II
Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech.
Statistics ToolBox Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. [manual ST] 1. PROBABILITY DISTRIBUTIONS Statistics
Náhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek
Náhodná veličina Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 10. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 71 Obsah 1 Náhodná veličina 2 Diskrétní náhodná veličina 3
U Úvod do modelování a simulace systémů
U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení
Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
Jednofaktorová analýza rozptylu
I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých
AVDAT Náhodný vektor, mnohorozměrné rozdělení
AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky PRAVDĚPODOBNOST A STATISTIKA Zadání 1 JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL
Kvantová informatika pro komunikace v budoucnosti
Kvantová informatika pro komunikace v budoucnosti Antonín Černoch Regionální centrum pokročilých technologií a materiálů Společná laboratoř optiky University Palackého a Fyzikálního ústavu Akademie věd
tními neziskovými organizacemi: konference Víme V
Výroční seminář psychologické služby HZS ČR Spolupráce s nestátn tními neziskovými organizacemi: konference Víme V o sobě? kpt. Mgr. Jana Majzlíkov ková mjr. PhDr. Marie Mezníkov ková 26. listopadu 2013
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
1. Přednáška. Ing. Miroslav Šulai, MBA
N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy
PRAVDĚPODOBNOST A STATISTIKA. Testování hypotéz o rozdělení
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz o rozdělení Testování hypotéz o rozdělení Nechť X e náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládeme, že neznáme tvar distribuční funkce
Nestranný odhad Statistické vyhodnocování exp. dat M. Čada
Nestranný odhad 1 Parametr θ Máme statistický (výběrový) soubor, který je realizací náhodného výběru 1, 2, 3,, n z pravděpodobnostní distribuce, která je kompletně stanovena jedním nebo více parametry
Robustní odhady statistických parametrů
Robustní odhady statistických parametrů ěkdy pracují dobře, jinde ne. Typická data - pozorování BL Lac 100 mag 40 0 0.41 0.40 JD date 0.39 0.38 0.38223-1.586 0.017 0.40550-1.530 0.019 0.39453-1.610 0.024
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: SMAD Cvičení Ostrava, AR 2016/2017 Popis datového souboru Pro dlouhodobý
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)
VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p
MOŽNOSTI APROXIMACE ROZDĚLENÍ KOLEKTIVNÍHO RIZIKA
MOŽNOSTI APROXIMACE ROZDĚLENÍ KOLEKTIVNÍHO RIZIKA a) Viera Pacáková, b) Veronika Balcárková a) Univerzita Pardubice, Fakulta ekonomicko-správní, Ústav matematiky, b)univerzita Pardubice, Fakulta ekonomicko-správní,
Téma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí
Téma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká škola
Národní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality STATISTICKÁ REGULACE POMOCÍ VÝBĚROVÝCH PRŮMĚRŮ Z NENORMÁLNĚ ROZDĚLENÝCH DAT Ing. Jan Král, RNDr. Jiří Michálek, CSc., Ing. Josef Křepela Duben, 20 Co je
Revize EN stav, změny, souvislosti s jinými normami a předpisy ZČU Plzeň, Karel Beneš
K aktuálním problémům zabezpečovací techniky v dopravě XI Revize EN 50129 - stav, změny, souvislosti s jinými normami a předpisy ZČU Plzeň, 25.5.2016 Karel Beneš Průběh prací na revizi - SGA15 Související
1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,
KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce
PRAVDĚPODOBNOST A STATISTIKA 1 Metodický list č 1.
Metodický list č 1. Název tématického celku: Elementární statistické zpracování 1 - Kolekce a interpretace statistických dat, základní pojmy deskriptivní statistiky. Cíl: Základním cílem tohoto tematického
STATISTICKÉ PROGRAMY
Slezská univerzita v Opavě Obchodně podnikatelská fakulta v Karviné STATISTICKÉ PROGRAMY VYUŽITÍ EXCELU A SPSS PRO VĚDECKO-VÝZKUMNOU ČINNOST Elena Mielcová, Radmila Stoklasová a Jaroslav Ramík Karviná
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
ÚMRTNOST OBYVATELSTVA ČESKÉ A SLOVENSKÉ REPUBLIKY; NÁVRH KONSTRUKCE NOVÝCH ÚMRTNOSTNÍCH TABULEK
ÚMRTNOST OBYVATELSTVA ČESKÉ A SLOVENSKÉ REPUBLIKY; NÁVRH KONSTRUKCE NOVÝCH ÚMRTNOSTNÍCH TABULEK Boris Burcin 1, Klára Hulíková 1, David Kománek 2 1 Katedra demografie a geodemografie, Přírodovědecká fakulta
E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
Národní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality Využití metody bootstrapping při analýze dat II.část Doc. Ing. Olga TŮMOVÁ, CSc. Obsah Klasické procedury a statistické SW - metody výpočtů konfidenčních
Cvičení 5. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.
5 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v
4 Parametrické odhady
4 Parametrické odhady Předpokládané výstupy z výuky: 1. Student zná základní rozdělení pravděpodobnosti dat přežití 2. Student rozumí principu odhadu funkce přežití a rizikové funkce s využitím metody
Biostatistika Cvičení 7
TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,
Simulace systému hromadné obsluhy Nejčastější chyby v semestrálních pracích
Simulace systému hromadné obsluhy Nejčastější chyby v semestrálních pracích Nedostatešný popis systému a jeho modelu vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělit fyzickou nebo
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
sympatický kožní reflex - lze použít t v praxi? rová,, Martin Bareš Brno
sympatický kožní reflex - lze použít t v praxi? Eduard Minks,, Hana Streitová Ivica Husárov rová,, Martin Bareš Brno úvod Sympatický kožní reflex (SSR) je akční potenciál l snímatelný povrchovými elektrodami
IDENTIFIKACE BIMODALITY V DATECH
IDETIFIKACE BIMODALITY V DATECH Jiří Militky Technická universita v Liberci e- mail: jiri.miliky@vslib.cz Milan Meloun Universita Pardubice, Pardubice Motto: Je normální předpokládat normální data? Zvláštnosti
Organizace dat v počítači
Organizace dat v počíta tači Číslo projektu Název školy Předmět CZ.1.07/1.5.00/34.0425 INTEGROVANÁ STŘEDN EDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov IKT Tematický okruh Téma Počíta tač
Statistika. Testování hypotéz statistická indukce Neparametrické testy. Roman Biskup
Statistika Testování hypotéz statistická indukce Neparametrické testy Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by
Metoda Monte Carlo a její aplikace v problematice oceňování technologií. Manuál k programu
Metoda Monte Carlo a její aplikace v problematice oceňování technologií Manuál k programu This software was created under the state subsidy of the Czech Republic within the research and development project
Statistika. cílem je zjednodušit nějaká data tak, abychom se v nich lépe vyznali důsledkem je ztráta informací!
Statistika aneb známe tři druhy lži: úmyslná neúmyslná statistika Statistika je metoda, jak vyjádřit nejistá data s přesností na setinu procenta. den..00..00 3..00..00..00..00..00..00..00..00..00..00 3..00..00..00..00..00..00..00
Přednáška č. 11 PRODEJNÍ ČINNOST PODNIKU. 9.12. 2008 doc.ing. Roman ZámeZ
Přednáška č. 11 PRODEJNÍ ČINNOST PODNIKU 9.12. 2008 doc.ing. Roman ZámeZ mečník, PhD. 1 Osnova přednášky 1. PŘEDMĚT T A OBSAH PRODEJE 2. TVORBA STRATEGIE A PLÁNOV NOVÁNÍ PRODEJE 3. ORGANIZAČNÍ ZAČLEN LENĚNÍ
Význam ekonomického modelování
Základy ekonomického modelování Ing. Jan Vlachý, Ph.D. vlachy@atlas.cz Dlouhý, M. a kol. Simulace podnikových procesů Hnilica, J., Fotr, J. Aplikovaná analýza rizika Scholleová, H. Hodnota flexibility:
Intervalové Odhady Parametrů
Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze
PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 1
PRAVDĚPODOBNOST A STATISTIKA Neparametrické testy hypotéz čast 1 Neparametrické testy hypotéz - úvod Neparametrické testy statistických hypotéz se používají v případech, kdy neznáme rozdělení pozorované