Gravitace na vesmírné stanici. odstředivá síla

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Gravitace na vesmírné stanici. odstředivá síla"

Transkript

1 Gravitace na vesmírné stanici odstředivá síla

2 O čem to bude Ukážeme si, jak by mohla odstředivá síla nahradit sílu tíhovou. Popíšeme si, jak by mohl vypadat život na vesmírné stanici, která se otáčí. 2/44

3 Uvedení do situace Seriál Stav beztíže S01E04 3/44

4 Diskuse Odstředivá síla v ukázce nahrazuje tíhovou sílu, můžeme zjistit, jak dlouhé je rameno s kajutami, a odhadnout, jak dlouhá může být vesmírná loď Antares. (Délka lodi je desetkrát větší než otočné rameno.) 4/44

5 Diskuse Odstředivá síla v ukázce nahrazuje tíhovou sílu, můžeme zjistit, jak dlouhé je rameno s kajutami, a odhadnout, jak dlouhá může být vesmírná loď Antares. (Délka lodi je desetkrát větší než otočné rameno.) Můžeme se také zamyslet nad tím, jak by život na podobné lodi mohl vypadat a co by bylo nezvyklé. 5/44

6 Získaná data Rameno s kajutami se otočí o otáčky za. perioda bude 6/44

7 Získaná data Rameno s kajutami se otočí o otáčky za. perioda bude 7/44

8 Získaná data Rameno s kajutami se otočí o otáčky za. perioda bude odstředivé zrychlení v kajutách 8/44

9 Výpočet odstředivé zrychlení poloměr otočné části 9/44

10 Výpočet odstředivé zrychlení poloměr otočné části po dosazení 10/44

11 Výpočet odstředivé zrychlení poloměr otočné části po dosazení 11/44

12 Závěr Rameno by mělo mít délku. 12/44

13 Závěr Rameno by mělo mít délku. Délka celé lodi by mohla(z posledního záběru ukázky) být. 13/44

14 Závěr Rameno by mělo mít délku. Délka celé lodi by mohla (z posledního záběru ukázky) být. Délka uvedená autorem Stephenem Geaghanjem je. 14/44

15 Magnetická síla nahrazující tíhu Film 2001: Vesmírná odysea 15/44

16 Otázky Jak by mohl vypadat život na vesmírné lodi, kde by byla tíha nahrazena odstředivou silou? Jaká by byla odstředivá síla ve středu takové lodi? Jak by se pohybovalo těleso padající ze středu k povrchu? Jak by se popisoval pád těles z vyšších výšek? 16/44

17 Otázky Po jaké trajektorii by se pohyboval míč hozený z povrchu do výšky? (Uvažujme v soustavě spojené s povrchem.) Jak by byl ovlivněn běžec při běhu ve směru nebo protisměru otáčení? Jak by se chovala atmosféra na takové lodi? Jaký by byl tlak vzduchu na povrchu a v ose otáčení lodi, nebyla-li by atmosféra v nerotujících částech lodi pod tlakem? 17/44

18 Ráma (A.C.Clarke) Počítačová simulace od Erica Brunetona, [ 18/44

19 Babylon 5 Seriál Babylon 5 S02E22 The Fall of Night 19/44

20 Babylon 5 Podle ukázky by mělo na povrchu být odstředivé zrychlení. To je v rozporu s pohybem lidí, kteří se pohybují jako na povrchu Země. Rychlost otáčení by měla být třikrát větší než, je v ukázce popsáno. 20/44

21 Pohyb v rotační části Film 2001: Vesmírná odysea 21/44

22 Pohyb v rotační části Film Mission to Mars 22/44

23 Odpovědi Jak by mohl vypadat život na vesmírné lodi, kde by byla tíha nahrazena odstředivou silou? Nad hlavou by bylo možné vidět lidi chodit vzhůru nohama. Mraky a oblačnost by se tvořila v blízkosti rotační osy. 23/44

24 Odpovědi Jaká by byla odstředivá síla ve středu takové lodi? V ose otáčení by byl stav beztíže. 24/44

25 Odpovědi Jak by se pohybovalo těleso padající ze středu k povrchu? Těleso by nepadalo v soustavě spojené s povrchem po přímce, ale po spirální trajektorii. To však jen v případě, že by těleso mělo počáteční rychlost, jinak by těleso bylo v klidu, pokud by nepůsobil odpor vzduchu. 25/44

26 Odpovědi Jak by se popisoval pád těles z vyšších výšek? Volný pád z pohledu rotujícího pozorovatele na povrchu lodi by byl popsán rovnicemi a doba dopadu je poloměr otočné části vesmírné lodi, je úhlová rychlost a je čas. je výška, ze které těleso padá, 26/44

27 Otázky Po jaké trajektorii by se pohyboval míč hozený z povrchu do výšky? Rovnice trajektorie šikmého vrhu z pohledu rotujícího pozorovatele na povrchu a dobou dopadu je poloměr otočné části vesmírné lodi, je úhlová rychlost, je čas, je úhel, pod kterým těleso vrháme, je obvodová rychlost a je rychlost, kterou těleso vrháme 27/44

28 Trajektorie pádu a vrhu 28/44

29 Trajektorie pádu a vrhu 29/44

30 Otázky Jak by byl ovlivněn běžec při běhu ve směru nebo protisměru otáčení? Běžec by při pohybu ve směru rotace měl větší obvodovou rychlost, a tím pádem by se cítil díky větší odstředivé síle těžší. 30/44

31 Otázky Jak by byl ovlivněn běžec při běhu ve směru nebo protisměru otáčení? Běžec by při pohybu ve směru rotace měl větší obvodovou rychlost, a tím pádem by se cítil díky větší odstředivé síle těžší. Při pohybu v protisměru rotace by se obvodová rychlost zmenšovala, a tím pádem by se díky snížené odstředivé síle cítil lehčí. 31/44

32 Otázky Jak by byl ovlivněn běžec při běhu ve směru nebo protisměru otáčení? V krajním případě, kdyby běžec byl schopen dosáhnout obvodové rychlosti, by se mohl ocitnout ve stavu beztíže a po odrazu od povrchu by se začal pohybovat rovnoměrně přímočaře uvnitř lodi, dokud by opět nenarazil na rotující povrch. 32/44

33 Otázky Jak by se chovala atmosféra na takové lodi? U osy rotace by byl nižší tlak než na vnitřním povrchu. 33/44

34 Otázky Jak by se chovala atmosféra na takové lodi? U osy rotace by byl nižší tlak než na vnitřním povrchu. Vlhkost by pravděpodobně vytvářela oblaka par mezi osou rotace a povrchem. 34/44

35 Otázky Jak by se chovala atmosféra na takové lodi? U osy rotace by byl nižší tlak než na vnitřním povrchu. Vlhkost by pravděpodobně vytvářela oblaka par mezi osou rotace a povrchem. Déšť by padal po spirální trajektorii. 35/44

36 Odvození tlaku vzduchu stavová rovnice 36/44

37 Odvození tlaku vzduchu stavová rovnice Pascalův zákon 37/44

38 Odvození tlaku vzduchu stavová rovnice Pascalův zákon po úpravách a dosazení po integraci 38/44

39 Odvození tlaku vzduchu po dosazení bude tlak v ose 39/44

40 Otázky Jaký by byl tlak vzduchu na povrchu a v ose otáčení lodi? Předpokládejme větší loď, například Rámu s poloměrem a periodou otáčení. 40/44

41 Otázky Jaký by byl tlak vzduchu na povrchu a v ose otáčení lodi? Předpokládejme větší loď, například Rámu s poloměrem a periodou otáčení. Pak tlak na povrchu bude 5 větší než v ose. 41/44

42 Otázky Jaký by byl tlak vzduchu na povrchu a v ose otáčení lodi? Předpokládejme větší loď například Rámu s poloměrem a periodou otáčení. Pak tlak na povrchu bude 5 větší než v ose. Pokud je na povrchu, pak v ose bude. 42/44

43 Otázky Jaký by byl tlak vzduchu na povrchu a v ose otáčení lodi? Pokud je na povrchu, pak v ose bude. Bez kyslíku tam nebude možné dýchat, je to méně než na Mount Everestu. 43/44

44 Otázky Jaký by byl tlak vzduchu na povrchu a v ose otáčení lodi? Pokud je na povrchu, pak v ose bude. Bez kyslíku tam nebude možné dýchat, je to méně než na Mount Everestu. Ale přibližně stejně jako ve skafandru pro výstup do vesmíru. (Při tak nízkém tlaku musí kosmonaut dýchat čistý kyslík, aby se nemusel několik dní aklimatizovat.) 44/44

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles. 5. GRAVITAČNÍ POLE 5.1. NEWTONŮV GRAVITAČNÍ ZÁKON Gravitace Gravitace je všeobecná vlastnost těles. Newtonův gravitační zákon Znění: Dva hmotné body se navzájem přitahují stejně velkými gravitačními silami

Více

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

2. Kinematika bodu a tělesa

2. Kinematika bodu a tělesa 2. Kinematika bodu a tělesa Kinematika bodu popisuje těleso nebo také bod, který se pohybuje po nějaké trajektorii, křivce nebo jinak definované dráze v závislosti na poloze bodu na dráze, rychlosti a

Více

KINEMATIKA. 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost. Mgr. Jana Oslancová VY_32_INOVACE_F1r0218

KINEMATIKA. 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost. Mgr. Jana Oslancová VY_32_INOVACE_F1r0218 KINEMATIKA 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost Mgr. Jana Oslancová VY_32_INOVACE_F1r0218 Úkol 1: Roztřiď do dvou sloupců, které veličiny, popisující pohyb, jsou u všech bodů otáčejícího

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.

Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Ze zadaných třinácti příkladů vypracuje každý posluchač samostatně

Více

GRAVITAČNÍ POLE. Všechna tělesa jsou přitahována k Zemi, příčinou tohoto je jevu je mezi tělesem a Zemí

GRAVITAČNÍ POLE. Všechna tělesa jsou přitahována k Zemi, příčinou tohoto je jevu je mezi tělesem a Zemí GRAVITAČNÍ POLE Všechna tělesa jsou přitahována k Zemi, příčinou tohoto je jevu je mezi tělesem a Zemí Přitahují se i vzdálená tělesa, například, z čehož vyplývá, že kolem Země se nachází gravitační pole

Více

Newtonův gravitační zákon. antigravitace

Newtonův gravitační zákon. antigravitace Newtonův gravitační zákon antigravitace O čem to bude Ukážeme si vlastnosti hypotetické látky pojmenované kavoritin, která dokáže odstínit gravitační pole. 2/47 O čem to bude Ukážeme si vlastnosti hypotetické

Více

ELEKTRICKÉ STROJE - POHONY

ELEKTRICKÉ STROJE - POHONY ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.1 OBECNÉ ZÁKLADY EL. POHONŮ 2. ELEKTRICKÉ POHONY Pod pojmem elektrický pohon rozumíme soubor elektromechanických vazeb a vztahů mezi elektromechanickou

Více

7. Gravitační pole a pohyb těles v něm

7. Gravitační pole a pohyb těles v něm 7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:

Více

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.

Více

Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Mechanika 1. ročník, kvinta 2 hodiny Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky Úvod Žák vyjmenuje základní veličiny

Více

DYNAMIKA ROTAČNÍ POHYB

DYNAMIKA ROTAČNÍ POHYB DYNAMIKA ROTAČNÍ POHYB Dynamika rotačního pohybu hmotného bodu kolem pevné osy - při rotační pohybu hmotného bodu kolem stálé osy stálými otáčkami kolem pevné osy (pak hovoříme o rovnoměrném rotačním pohybu)

Více

FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D.

FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D. 1. KŠPA Kladno, s. r. o., Holandská 2531, 272 01 Kladno, www.1kspa.cz FYZIKA Kapitola 3.: Kinematika Mgr. Lenka Hejduková Ph.D. Kinematika obor, který zkoumá pohyb bez ohledu na jeho příčiny klid nebo

Více

Ing. Oldřich Šámal. Technická mechanika. kinematika

Ing. Oldřich Šámal. Technická mechanika. kinematika Ing. Oldřich Šámal Technická mechanika kinematika Praha 018 Obsah 5 OBSAH Přehled veličin A JEJICH JEDNOTEK... 6 1 ÚVOD DO KINEMATIKY... 8 Kontrolní otázky... 8 Kinematika bodu... 9.1 Hmotný bod, základní

Více

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická

Více

MECHANIKA TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny

Více

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles. 2.4 Gravitační pole R2.211 m 1 = m 2 = 10 g = 0,01 kg, r = 10 cm = 0,1 m, = 6,67 10 11 N m 2 kg 2 ; F g =? R2.212 F g = 4 mn = 0,004 N, a) r 1 = 2r; F g1 =?, b) r 2 = r/2; F g2 =?, c) r 3 = r/3; F g3 =?

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

Měření tíhového zrychlení matematickým a reverzním kyvadlem

Měření tíhového zrychlení matematickým a reverzním kyvadlem Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

KINEMATIKA. 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda. Mgr. Jana Oslancová VY_32_INOVACE_F1r0217

KINEMATIKA. 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda. Mgr. Jana Oslancová VY_32_INOVACE_F1r0217 KINEMATIKA 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda Mgr. Jana Oslancová VY_32_INOVACE_F1r0217 OPAKOVÁNÍ Otázka 1: Uveď příklady takových hmotných bodů, které vykonávají rovnoměrný pohyb

Více

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. BIOMECHANIKA 4, Kinematika pohybu I. (zákl. pojmy - rovnoměrný přímočarý pohyb, okamžitá a průměrná rychlost, úlohy na pohyb těles, rovnoměrně zrychlený a zpomalený pohyb, volný pád) Studijní program,

Více

Počty testových úloh

Počty testových úloh Počty testových úloh Tematický celek rok 2009 rok 2011 CELKEM Skalární a vektorové veličiny 4 lehké 4 těžké (celkem 8) 4 lehké 2 těžké (celkem 6) 8 lehkých 6 těžkých (celkem 14) Kinematika částice 6 lehkých

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

Fyzika - Kvinta, 1. ročník

Fyzika - Kvinta, 1. ročník - Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální

Více

Kinematika hmotného bodu

Kinematika hmotného bodu KINEMATIKA Obsah Kinematika hmotného bodu... 3 Mechanický pohyb... 3 Poloha hmotného bodu... 4 Trajektorie a dráha polohového vektoru... 5 Rychlost hmotného bodu... 6 Okamžitá rychlost... 7 Průměrná rychlost...

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti:

1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti: 1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti: 3. V pravoúhlých souřadnicích je rychlost rovnoměrného přímočarého

Více

Po stopách Isaaca Newtona

Po stopách Isaaca Newtona Po stopách Isaaca Newtona Lukáš Vejmelka, GOB a SOŠ Telč, lukasv@somt.cz Jakub Šindelář, Gymnázium Třebíč, sindelar.jakub@gmail.com Zuzana Černáková, Gymnázium Česká Lípa, cernakova.zuzka@gmail.com Hana

Více

Rychlost, zrychlení, tíhové zrychlení

Rychlost, zrychlení, tíhové zrychlení Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete

Více

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost

Více

3.1 Magnetické pole ve vakuu a v látkovén prostředí

3.1 Magnetické pole ve vakuu a v látkovén prostředí 3. MAGNETSMUS 3.1 Magnetické pole ve vakuu a v látkovén prostředí 3.1.1 Určete magnetickou indukci a intenzitu magnetického pole ve vzdálenosti a = 5 cm od velmi dlouhého přímého vodiče, jestliže jím protéká

Více

2. Dynamika hmotného bodu

2. Dynamika hmotného bodu . Dynamika hmotného bodu Syllabus:. Dynamika hmotného bodu. Newtonovy zákony. Síly působící při známém druhu pohybu. Pohybová rovnice hmotného bodu, vrhy, harmonický pohyb. Inerciální a neinerciální soustavy

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou

Více

Odhad změny rotace Země při změně poloměru

Odhad změny rotace Země při změně poloměru Odhad změny rotace Země při změně poloměru NDr. Pavel Samohýl. Seznam symbolů A, A, A součinitel vztahu pro závislost hustoty Země na vzdálenosti od středu, totéž v minulosti a současnosti B, B, B součinitel

Více

Mechanika - kinematika

Mechanika - kinematika Mechanika - kinematika Hlavní body Úvod do mechaniky, kinematika hmotného bodu Pohyb přímočarý rovnoměrný rovnoměrně zrychlený. Pohyb křivočarý. Pohyb po kružnici rovnoměrný rovnoměrně zrychlený Pohyb

Více

1.4.1 Inerciální vztažné soustavy, Galileiho princip relativity

1.4.1 Inerciální vztažné soustavy, Galileiho princip relativity 1.4.1 Inerciální vztažné soustavy, Galileiho princip relativity Předpoklady: 1205 Pedagogická poznámka: Úvodem chci upozornit, že sám považuji výuku neinerciálních vztažných soustav na gymnáziu za tragický

Více

Rotace zeměkoule. pohyb po kružnici

Rotace zeměkoule. pohyb po kružnici Rotace zeměkoule pohyb po kružnici O čem to bude Spočítáme rychlost pohybu Země kolem Slunce z pohybu hmotného bodu po kružnici. 2/35 O čem to bude Spočítáme rychlost pohybu Země kolem Slunce z pohybu

Více

BIOMECHANIKA. 3,Geometrie lidského těla, těžiště, stabilita, moment síly

BIOMECHANIKA. 3,Geometrie lidského těla, těžiště, stabilita, moment síly BIOMECHANIKA 3,Geometrie lidského těla, těžiště, stabilita, moment síly Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. TĚŽIŠTĚ TĚLESA Tuhé těleso je složeno z velkého

Více

Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici

Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Kinematika Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Základní pojmy Kinematika - popisuje pohyb tělesa, nestuduje jeho příčiny Klid (pohyb)

Více

11. Dynamika Úvod do dynamiky

11. Dynamika Úvod do dynamiky 11. Dynamika 1 11.1 Úvod do dynamiky Dynamika je částí mechaniky, která se zabývá studiem pohybu hmotných bodů a těles při působení sil. V dynamice se řeší takové případy, kdy síly působící na dokonale

Více

STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE

STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE DANIEL TUREČEK 2005 / 2006 1. 412 5. 14.3.2006 28.3.2006 5. STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE 1. Úkol měření 1. Určete velikost tíhového zrychlení pro Prahu reverzním

Více

Moment síly Statická rovnováha

Moment síly Statická rovnováha Moment síly Statická rovnováha Kopírování a šíření tohoto materiálu lze pouze se souhlasem autorky PhDr. Evy Tlapákové, CSc. Jedná se o zatím pracovní verzi, rok 2009 ZKRÁCENÁ VERZE Síla může mít rozdílný

Více

VIDEOSBÍRKA ENERGIE A HYBNOST

VIDEOSBÍRKA ENERGIE A HYBNOST VIDEOSBÍRKA ENERGIE A HYBNOST 1. V poloze x=2 mělo těleso o hmotnosti 1kg rychlost 3 m/s. Graf znázorňuje velikost působící síly, která urychluje přímočarý pohyb tělesa. Těleso nemění svou výšku a při

Více

FYZIKA I. Pohybová rovnice. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Pohybová rovnice. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohybová rovnce Prof. RNDr. Vlém Mádr, CSc. Prof. Ing. Lbor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q1-1 Dvě úlohy z mechaniky (10 bodíků) Než se pustíte do řešení, přečtěte si obecné pokyny ve zvláštní obálce. Část A. Ukrytý disk (3,5 bodu) Uvažujeme plný dřevěný válec o poloměru podstavy r 1 a výšce

Více

KINEMATIKA 13. VOLNÝ PÁD. Mgr. Jana Oslancová VY_32_INOVACE_F1r0213

KINEMATIKA 13. VOLNÝ PÁD. Mgr. Jana Oslancová VY_32_INOVACE_F1r0213 KINEMATIKA 13. VOLNÝ PÁD Mgr. Jana Oslancová VY_32_INOVACE_F1r0213 Volný pád První systematické pozorování a měření volného pádu těles prováděl Galileo Galilei (1564-1642) Úvodní pokus: Poslouchej, zda

Více

Kinematika hmotného bodu

Kinematika hmotného bodu Kinematika hmotného bodu (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 17. října 2009 Obsah Hmotný bod, poloha a vztažná soustava Trajektorie. Dráha Polohový vektor. Posunutí Rychlost

Více

Příklad 5.3. v 1. u 1 u 2. v 2

Příklad 5.3. v 1. u 1 u 2. v 2 Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu

Více

Mechanika II.A Třetí domácí úkol

Mechanika II.A Třetí domácí úkol Mechanika II.A Třetí domácí úkol (Zadání je částečně ze sbírky: Lederer P., Stejskal S., Březina J., Prokýšek R.: Sbírka příkladů z kinematiky. Skripta, vydavatelství ČVUT, 2003.) Vážené studentky a vážení

Více

Zákon zachování hybnosti. Newtonovy pohybové zákony, hybnost

Zákon zachování hybnosti. Newtonovy pohybové zákony, hybnost Zákon zachování hybnosti Newtonovy pohybové zákony, hybnost O čem to bude Spočítáme změnu hybnosti střelce po té, co vystřelí několik střel. 2/42 O čem to bude Spočítáme změnu hybnosti střelce po té, co

Více

Úvod. 1 Převody jednotek

Úvod. 1 Převody jednotek Úvod 1 Převody jednotek Násobky a díly jednotek: piko p 10-12 nano n 10-9 mikro μ 10-6 mili m 10-3 centi c 10-2 deci d 10-1 deka da 10 1 hekto h 10 2 kilo k 10 3 mega M 10 6 giga G 10 9 tera T 10 12 Ve

Více

Síla, vzájemné silové působení těles

Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_02_01 Vytvořeno Leden 2014 Síla, značka a jednotka síly, grafické znázornění

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

Popis tíhové síly a gravitace. Očekávaný výstup. Řešení základních příkladů. Datum vytvoření Druh učebního materiálu.

Popis tíhové síly a gravitace. Očekávaný výstup. Řešení základních příkladů. Datum vytvoření Druh učebního materiálu. Škola Autor Číslo Název Číslo projektu Téma hodiny Předmět Ročník/y/ Anotace Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Bc. Zdeněk Brokeš VY_32_INOVACE_10_F_2.10 Tíhová

Více

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N? 1. Za jaký čas a jakou konečnou rychlostí (v km/hod.) dorazí automobil na dolní konec svahu dlouhého 25 m a skloněného o 7 0 proti vodorovné rovině, jestliže na horním okraji začal brzdit na hranici možností

Více

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i.

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i. Newtonovy pohybové zákony 1. Síla 60 N uděluje tělesu zrychlení 0,8 m s-2. Jak velká síla udělí témuž tělesu zrychlení 2 m s-2? BI5147 150 N 2. Těleso o hmotnosti 200 g, které bylo na začátku v klidu,

Více

1 Newtonův gravitační zákon

1 Newtonův gravitační zákon Studentovo minimum GNB Gravitační pole 1 Newtonův gravitační zákon gravis latinsky těžký každý HB (planeta, těleso, částice) je zdrojem tzv. gravitačního pole OTR (obecná teorie relativity Albert Einstein,

Více

R5.1 Vodorovný vrh. y A

R5.1 Vodorovný vrh. y A Fyzika pro střední školy I 20 R5 G R A V I T A Č N Í P O L E Včlánku5.3jsmeuvedli,ževrhyjsousloženépohybyvtíhovémpoliZemě, které mají dvě složky: rovnoměrný přímočarý pohyb a volný pád. Podle směru obou

Více

Kinematika II. Vrhy , (2.1) . (2.3) , (2.4)

Kinematika II. Vrhy , (2.1) . (2.3) , (2.4) Kinematika II Vrhy Galileo Galilei již před čtyřmi staletími, kdy studoval pád různých těles ze šikmé věže v Pise, zjistil, že všechna tělesa se pohybují se stálým zrychlením směřujícím svisle dolů můžemeli

Více

FYZIKA I. Složené pohyby (vrh šikmý)

FYZIKA I. Složené pohyby (vrh šikmý) VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Složené pohb (vrh šikmý) Prof. RNDr. Vilém Mádr, CSc. Prof. In. Libor Hlaváč, Ph.D. Doc. In. Irena Hlaváčová, Ph.D. Mr. Art. Damar

Více

Sbírka řešených příkladů z mechaniky

Sbírka řešených příkladů z mechaniky Univerzita Pardubice Fakulta chemicko-technologická Sbírka řešených příkladů z mechaniky Petr Janíček Jana Kašparová Pardubice 04 UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ Ústav aplikované fyziky

Více

n je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně

n je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně Konzultace č. 9 dynamika dostředivá a odstředivá síla Dynamika zkoumá zákonitosti pohybu těles se zřetelem na příčiny (síly, silové účinky), které pohyb vyvolaly. Znalosti dynamiky umožňují řešit kinematické

Více

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J

Více

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s. TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

Měření momentu setrvačnosti

Měření momentu setrvačnosti Měření momentu setrvačnosti Úkol : 1. Zjistěte pro dané těleso moment setrvačnosti, prochází-li osa těžištěm. 2. Zjistěte moment setrvačnosti daného tělesa k dané ose metodou torzních kmitů. Pomůcky :

Více

K L A S I C K Á T E O R I E P O H Y B U Č Á S T I C A J E J I CH S O U S T A V

K L A S I C K Á T E O R I E P O H Y B U Č Á S T I C A J E J I CH S O U S T A V ČÁST III K L A S I C K Á T E O R I E P O H Y B U Č Á S T I C A J E J I CH S O U S T A V 10. Pohyb hmotného bodu 11. Dynamika hmotného bodu 12. Dynamika systému hmotných bodů 13. Statistická mechanika 14.

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Ústav aplikované fyziky a matematiky ZÁKLADY FYZIKY II

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Ústav aplikované fyziky a matematiky ZÁKLADY FYZIKY II UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ Ústav aplikované fyziky a matematiky ZÁKLADY FYZIKY II Sbírka příkladů pro ekonomické obory kombinovaného studia Dopravní fakulty Jana Pernera (PZF2K)

Více

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole

Více

POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda POHYB TĚLESA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Pohyb Pohyb = změna polohy tělesa vůči jinému tělesu. Neexistuje absolutní klid. Pohyb i klid jsou relativní. Záleží na volbě vztažného tělesa. Spojením

Více

MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11

MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta biomedicínského inženýrství LABORATORNÍ PRÁCE MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11 Obsah ZADÁNÍ... 4 TEORIE... 4 Metoda torzních kmitů... 4 Steinerova

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT ZŠ a MŠ Slapy, Slapy 34, 391 76 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Vzdělávací materiál: Powerpointová prezentace ppt. Jméno autora: Mgr. Soňa Růžičková Datum vytvoření: 9. červenec 2013

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,

Více

BIOMECHANIKA SPORTU ODRAZ

BIOMECHANIKA SPORTU ODRAZ BIOMECHANIKA SPORTU ODRAZ Co je to odraz? Základní činnost, bez které by nemohly být realizovány běžné lokomoční aktivity (opakované odrazy při chůzi, běhu) Komplex multi kloubních akcí, při kterém spolupůsobí

Více

Testovací příklady MEC2

Testovací příklady MEC2 Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být

Více

Veletrh nápadů učitelů fyziky. Gravitační katapult

Veletrh nápadů učitelů fyziky. Gravitační katapult Gravitační katapult Jiří Bartoš (bartos@physics.muni.cz), Pavel Konečný Ústav teoretické fyziky a astrofyziky, Katedra obecné fyziky Přírodovědecká fakulta Masarykovy univerzity v Brně. Katapulty různé

Více

Úloha IV.4... ach ta tíže

Úloha IV.4... ach ta tíže Úloha IV.4... ach ta tíže 4 body; průměr 22; řešilo 42 studentů Určete jaké je tíhové zrychlení na povrchu neutronové hvězdy v závislosti na rovnoběžce. Jak velká slapová síla by působila na předmět vysoký

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy

1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy MěřENÍ MOMENTU SETRVAčNOSTI KOLA TEREZA ZÁBOJNÍKOVÁ 1. Teorie Moment setrvačnosti kola lze měřit dvěma metodami. 1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy otáčení

Více

Přijímací zkoušky FYZIKA

Přijímací zkoušky FYZIKA Přijímací zkoušky 2014 2015 FYZIKA 1. Soustava SI je: a) mezinárodní soustava fyzikálních jednotek a veličin b) skupina prvků s podobnými vlastnostmi jako křemík c) přehled fyzikálních vzorců 2. 500 cm

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

1.5. DYNAMIKA OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA

1.5. DYNAMIKA OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA .5. OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA.5. ZÁKLADNÍ ROVNICE DYNAMIKY PRO ROTAČNÍ POHYB Fz F Z výsednce zrychujících s F m.a n m a t a n r z F Zrychující moment M F. r F. r z z z m.a t r6,5cm ρ r ω,ε r

Více

LET Z KULOVNICE. Petr Lenhard

LET Z KULOVNICE. Petr Lenhard LET Z KULOVNICE Petr Lenhard OBSAH Balistika Vnější balistika Síly a momenty Aerodynamické síly a momenty Výsledný rotační pohyb Shrnutí a literatura BALISTIKA ROZDĚLENÍ BALISTIKY Obor mechaniky zabývající

Více

Země třetí planetou vhodné podmínky pro život kosmického prachu a plynu Měsíc

Země třetí planetou vhodné podmínky pro život kosmického prachu a plynu Měsíc ZEMĚ V POHYBU Anotace: Materiál je určen k výuce přírodovědy v 5. ročníku ZŠ. Seznamuje žáky se základními informacemi o Zemi, jejích pohybech a o historii výzkumu vesmíru. Země Země je třetí planetou

Více

Vlastnosti látek z hlediska molekulové fyziky. délková teplotní roztažnost

Vlastnosti látek z hlediska molekulové fyziky. délková teplotní roztažnost Vlastnosti látek z hlediska molekulové fyziky délková teplotní roztažnost O čem to bude Odhadneme velikost a hmotnost města z textu ukázky. 2/48 O čem to bude Odhadneme velikost a hmotnost města z textu

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_5_Gravitační pole Ing. Jakub Ulmann 5 Gravitační pole 5.1 Newtonův gravitační zákon 5. Intenzita gravitačního

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P01 KINEMATIKA HMOTNÉHO BODU

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P01 KINEMATIKA HMOTNÉHO BODU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P01 KINEMATIKA HMOTNÉHO BODU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH

Více

Obr.94. Tečná reakce T r musí být menší nebo rovna třecí síle F t

Obr.94. Tečná reakce T r musí být menší nebo rovna třecí síle F t 7.3 Odpory při valení Valení je definováno tak, že dotykové body valícího se tělesa a podložky jsou v relativním klidu. Je zaručeno příkladně tak, že těleso omotáme dvěma vlákny, která jsou upevněna na

Více

Pohyby HB v některých význačných silových polích

Pohyby HB v některých význačných silových polích Pohyby HB v některých význačných silových polích Pohyby HB Gravitační pole Gravitační pole v blízkém okolí Země tíhové pole Pohyb v gravitačním silovém poli Keplerova úloha (podrobné řešení na semináři)

Více

Rovnoměrný pohyb po kružnici

Rovnoměrný pohyb po kružnici DUM Základy přírodních věd DUM III/2-3-06 éma: Rovnoměrný pohyb po kružnici Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Rovnoměrný pohyb po kružnici Rovnoměrný pohyb po

Více