Diplomová propedeutika
|
|
- Vlastimil Mareš
- před 8 lety
- Počet zobrazení:
Transkript
1 Diplomová propedeutika Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky
2 METAPOST Jan Outrata (Univerzita Palackého v Olomouci) Diplomová propedeutika Olomouc, září / 15
3 Úvod METAPOST = programovací jazyk pro popis (a kreslení) vektorových obrázků, autor John D. Hobby, 1989 derivát jazyka METAFONT Donalda E. Knutha pro tvorbu písem (fontů) výstup bitová mapa a metrika písma, práce s písmeny vstup: textový soubor, s příponou.mp, s programem výstup: Encapsulated (zapouzdřený) PostScript (EPS, program v jazyce PostScript), PDF, SVG a PNG obrázek oříznut na nejmenší obdélník obsahující kresbu obsažen v distribucích TEXu Jan Outrata (Univerzita Palackého v Olomouci) Diplomová propedeutika Olomouc, září / 15
4 Jdeme na to Kostra programu (v souboru obrazek.mp): prologues := 3; beginfig(0); % popis obrázku endfig; end v jednom souboru zdrojového textu může být více obrázků, mezi dalšími beginfig(n); a endfig;, parametrem beginfig je číslo n 0 obrázku Jan Outrata (Univerzita Palackého v Olomouci) Diplomová propedeutika Olomouc, září / 15
5 Jdeme na to Zdrojový text/popis obrázku = příkazy ukončené ;, příkaz na více řádků nebo více příkazů na řádku komentář: od % do konce řádku podpora v (některých) editorech pro L A TEX(např. TeXmaker) nebo rozšíření textových editorů (např. mód pro Emacs) zvýrazňování syntaxe MetaPost Previewer webový formulář pro zdrojový text s uložením výstupu (EPS, PDF, SVG, PNG) Jan Outrata (Univerzita Palackého v Olomouci) Diplomová propedeutika Olomouc, září / 15
6 Jdeme na to Překlad = mpost obrazek (nebo i mpost obrazek.mp) pro výstup obrazek.n = EPS, mptopdf obrazek pro výstup obrazek-n.pdf, plus obrazek.log se záznamem překladu (také na std. výstup), příp. ještě obrazek.mpx (texty vysázené TEXem jako obrázky v METAPOSTu) zobrazení EPS nebo PDF, úprava zdrojového textu, znovu překlad chyba překladu: zastavení, ( syrová ) chybová hláška s číslem a kouskem kódu řádku, možnosti jako v L A TEXu nápověda (klávesa h), přejít chybu a pokračovat (Enter), dokončit překlad (q), ukončit překlad (x) aj., vše v.log >> prikaz! Isolated expression. <to be read again> ; l.4 prikaz;? prologues := 3; beginfig(0); prikaz; endfig; end Jan Outrata (Univerzita Palackého v Olomouci) Diplomová propedeutika Olomouc, září / 15
7 Příkaz draw a souřadnice/bod základní pro kreslení parametr (bez ()) objekt = bod, cesta nebo obrázek (viz dále) draw (1,1); Souřadnice/Body (x,y) = (kartézské) číselné souřadnice bodu (v rovině) kladné nahoru a vpravo, výchozí jednotka bp = 1 / 72 in (postscriptový bod), další mm, cm, in = 2, 54 cm, pt = 1 / 72,27 in (typografický bod), jakákoliv proměnná (typicky jménem u, viz dále) pro snadnou úpravu měřítka obrázku datový typ pair = dvojice čísel x, y, příkazy xpart bod a ypart bod pro jejich získání operace +, - (po souřadnicích), s číslem * (také nic), /, x[a,b] pro bod A + x (B A) na úsečce mezi body A, B daný číslem x, např. střed 1/2[A,B], dotprod pro skalární součin dvou bodů, abs pro délku vektoru z (0, 0) do bodu aj. Jan Outrata (Univerzita Palackého v Olomouci) Diplomová propedeutika Olomouc, září / 15
8 Čísla celá i necelá (s desetinou.), příp. s jednotkou reprezentována jako násobky 1 / (= konstanta epsilon), jen hodnoty < 4096 (dočasně během výpočtu až 32768)! datový typ numeric, příkaz decimal pro převod na řetězec (viz dále) operace +, -, *, /, ** (umocnění), funkce sqrt, abs, round, sind, cosd aj. zápis parametru i bez () Jan Outrata (Univerzita Palackého v Olomouci) Diplomová propedeutika Olomouc, září / 15
9 Proměnné deklarace: typ jméno, jméno znaky anglické abecedy, číslice a _, výchozí typ numeric proměnné typu pair se jménem zněco deklarované jako (xněco, yněco), něco typicky číslo globální platnost, vyjma proměnných se jménem s prefixem x, y a z přiřazení hodnoty: jméno := hodnota výpis typu a hodnoty (na std. výstup a do logu): show jméno deklarace pole: typ jméno[], prvky pole jménoindex, index od 1, např. jméno1, vícerozměrné pole typ první[]druhý[] nebo pole[][] prvky prvníindexdruhýindex nebo poleindex index předdefinované (interní) proměnné, např. prologues Jan Outrata (Univerzita Palackého v Olomouci) Diplomová propedeutika Olomouc, září / 15
10 Cesty lomená čára bod--bod--bod Beziérova kubická křivka procházející body bod..bod..bod kontrolní body automaticky, ručně controls bod and bod místo bodu, sklon tečny do bodu {dir číslo}bod a z bodu bod{dir číslo}, číslo sklon ve stupních, konstanty pro sklon up, down, left, right, dále napětí mezi body, zakřivení v bodě a mezi body uzavřená bod..cycle pro kružnici (s jednotkovým průměrem a středem v (0, 0)) konstanta fullcircle, pro část nad osou x halfcircle, v prvním kvadrantu quartercircle datový typ path Jan Outrata (Univerzita Palackého v Olomouci) Diplomová propedeutika Olomouc, září / 15
11 Cesty výchozí kreslení plně, volba dashed vzorek příkazu draw (za objektem = cestou) pro opakovaně vzorkem, vzorek je obrázek (viz dále), předdefinované evenly čárkovaně (čárky a mezery 3 bp), withdots tečkovaný (mezera 5pt), dashpattern(on délka off délka...) vlastní čárkovaný začátek a konec kreslení interní proměnná linecap hodnoty rounded pro zakulacené, butt pro rovné a squared pro čtvercové rohy v lomené čáře interní proměnná linejoin hodnoty rounded, beveled a mitered zakončení šipkou příkaz drawarrow místo draw pro šipku na začátku drawarrow reverse, na obou koncích drawdblarrow, velikost šipky a úhel hrotu interní proměnné ahlength a ahangle vyplnění uzavřené příkaz fill cesta, vyplnění a vykreslení filldraw POZNAMKY Jan Outrata (Univerzita Palackého v Olomouci) Diplomová propedeutika Olomouc, září / 15
12 Transformace = složení posunutí, rotace, škálování a zkosení = afinní transformace reprezentovaná čísly t : bod (x, y) transformovaný na (t x + t xx x + t xy y, t y + t yx x + t yy y) datový typ transform, xpart atd. pro parametr t pro identitu konstanta identity aplikace na objekt = cesta, transformace, obrázek nebo pero (viz dále): parametr objektu (bez ()) POZNAMKY Jan Outrata (Univerzita Palackého v Olomouci) Diplomová propedeutika Olomouc, září / 15
13 Lineární rovnice METAPOST řeší soustavy lineárních rovnic: = mezi stranami rovnice např. (neznámý) bod z3 v polovině na úsečce mezi (známými) body z1 a z2: z3 = 1/2[z1,z2] (pomocné) proměnné pro neznámé: whatever např. průsečík přímek z5 = whatever[z1,z2] = whatever[z3,z4] pro proměnné typů numeric, pair, color, boolean (viz dále) a transform (!, např. pro řešení neznámé rotace a škálování T (x, y) = (4x + 3y, 3x + 4y): (0,1)transformed T = (3,4); (1,1)transformed T = (7,1); (1,0) transformed T = (4,-3)) Jan Outrata (Univerzita Palackého v Olomouci) Diplomová propedeutika Olomouc, září / 15
14 Pera výchozí kruhové (s průměrem 0.5 bp a středem v (0, 0)) konstanta defaultpen konstanty pro kruhové (s jednotkovým průměrem a středem v (0, 0)) pencircle a čtvercové (s jednotkovou stranou a středem v (0, 0)) pensquare kreslení jiným: volba withpen pero příkazu draw (za objektem) změna aktuálního pro kreslení: pickup pero datový typ pen, vytvoření podle (uzavřené konvexní) cesty makepen(cesta), obráceně makepath(pero) Jan Outrata (Univerzita Palackého v Olomouci) Diplomová propedeutika Olomouc, září / 15
15 Barvy (x,y,z) = číselné souřadnice z intervalu [0, 1] pro složky barevného modelu výchozí RGB konstanty black = (0, 0, 0), white = background = (1, 1, 1), red, green, blue datový typ color = rgbcolor = trojice čísel x, y, z (pro RGB, cmykcolor = čtveřice pro CMYK), příkazy redpart apod. pro složky operace +, - (po složkách), s číslem * (také nic), např. 0.8white výchozí černá, pro jinou volba withcolor barva příkazů draw a fill odkreslení ( kreslení bílou) undraw místo draw, vymazání unfill, obojí unfilldraw Jan Outrata (Univerzita Palackého v Olomouci) Diplomová propedeutika Olomouc, září / 15
16 Texty Řětězce zápis "text" datový typ string, příkazy length text, substring bod of text pozice 0 až počet znaků + 1 mezi znaky textu operace zřetězení & POZNAMKY Jan Outrata (Univerzita Palackého v Olomouci) Diplomová propedeutika Olomouc, září / 15
. Grafika a plovoucí prostředí. Zpracování textů na počítači. Ing. Pavel Haluza, Ph.D. ústav informatiky PEF MENDELU v Brně haluza@mendelu.
Grafika a plovoucí prostředí Zpracování textů na počítači Ing Pavel Haluza, PhD ústav informatiky PEF MENDELU v Brně haluza@mendelucz Kreslení vektorových obrazů Příklad \unitlength=1mm \begin{picture}(50,30)(10,20)
Diplomová práce. Tvorba obrázků pro matematickétexty pomocí METAPOSTu
Masarykova Univerzita v Brně Přírodovědecká Fakulta Diplomová práce Tvorba obrázků pro matematickétexty pomocí METAPOSTu Jméno a příjmení diplomantky: Miroslava Krátká Brno 2001 Tvorba obrázků pro matematickétexty
METAPOST & Toolbox mmp
Ústav termomechaniky AV ČR Centrum diagnostiky materiálu Veleslavínova 11 301 14 Plzeň Výzkumná zpráva METAPOST & Toolbox mmp Petr Hora, Olga Červená 2005 Laboratoř modelování vln v tělesech Centrum diagnostiky
Čtvrtek 8. prosince. Pascal - opakování základů. Struktura programu:
Čtvrtek 8 prosince Pascal - opakování základů Struktura programu: 1 hlavička obsahuje název programu, použité programové jednotky (knihovny), definice konstant, deklarace proměnných, všechny použité procedury
BAKALÁŘSKÁ PRÁCE Kreslení grafů elementárních funkcí Metapostem
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Kreslení grafů elementárních funkcí Metapostem Vedoucí bakalářské práce: RNDr.
MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
KMA/GPM Barycentrické souřadnice a
KMA/GPM Barycentrické souřadnice a trojúhelníkové pláty František Ježek jezek@kma.zcu.cz Katedra matematiky Západočeské univerzity v Plzni, 2008 19. dubna 2009 1 Trojúhelníkové pláty obecně 2 Barycentrické
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................
Paměť počítače. alg2 1
Paměť počítače Výpočetní proces je posloupnost akcí nad daty uloženými v paměti počítače Data jsou v paměti reprezentována posloupnostmi bitů (bit = 0 nebo 1) Připomeňme: paměť je tvořena řadou 8-mi bitových
ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška
Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:
Příklad: Řešte soustavu lineárních algebraických rovnic 10x 1 + 5x 2 +70x 3 + 5x 4 + 5x 5 = 275 2x 1 + 7x 2 + 6x 3 + 9x 4 + 6x 5 = 100 8x 1 + 9x 2 +
Příklad: Řešte soustavu lineárních algebraických rovnic 1x 1 + 5x 2 +7x 3 + 5x 4 + 5x 5 = 275 2x 1 + 7x 2 + 6x 3 + 9x 4 + 6x 5 = 1 A * x = b 8x 1 + 9x 2 + x 3 +45x 4 +22x 5 = 319 3x 1 +12x 2 + 6x 3 + 8x
Základní pojmy a pravidla kótování
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Základní pojmy a pravidla kótování Pro čtení výkresů, tj. určení rozměrů nebo polohy předmětu, jsou rozhodující
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
Fergusnova kubika, která je definována pomocí bodu P1, vektoru P1P2, bodu P3 a vektoru P3P4
Která barva nepatří do základních barev prostoru RGB? a. Černá b. Zelená c. Modrá d. Červená Úloha 2 Jakým minimálním počtem bodů je jednoznačně určena interpolační křivka 5. řádu? a. 6 b. 3 c. 5 d. 7
CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Úlohy nad rastrovými daty Daniela
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,
1.1 Struktura programu v Pascalu Vstup a výstup Operátory a některé matematické funkce 5
Obsah Obsah 1 Programovací jazyk Pascal 1 1.1 Struktura programu v Pascalu.................... 1 2 Proměnné 2 2.1 Vstup a výstup............................ 3 3 Operátory a některé matematické funkce 5
Geometrické transformace pomocí matic
Geometrické transformace pomocí matic Pavel Strachota FJFI ČVUT v Praze 2. dubna 2010 Obsah 1 Úvod 2 Geometrické transformace ve 2D 3 Geometrické transformace ve 3D Obsah 1 Úvod 2 Geometrické transformace
Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky
Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr
Extrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII
PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII V úvodu analytické geometrie jsme vysvětlili, že její hlavní snahou je popsat geometrické útvary (body, vektory, přímky, kružnice,...) pomocí čísel nebo proměnných.
KTE / PPEL Počítačová podpora v elektrotechnice
KTE / PPEL Počítačová podpora v elektrotechnice Ing. Lenka Šroubová, Ph.D. email: lsroubov@kte.zcu.cz http://home.zcu.cz/~lsroubov 3. 10. 2012 Základy práce s výpočetními systémy opakování a pokračování
ALGORITMIZACE A PROGRAMOVÁNÍ
Metodický list č. 1 Algoritmus a jeho implementace počítačovým programem Základním cílem tohoto tematického celku je vysvětlení pojmů algoritmus a programová implementace algoritmu. Dále je cílem seznámení
Ahoj mami. Uložení dat v počítači. Příklady kódování dat. IAJCE Přednáška č. 4
Uložení dat v počítači Data = užitečné, zpracovávané informace Kódování (formát) dat = způsob uložení v počítači (nutno vše převést na čísla ve dvojkové soustavě) Příklady kódování dat Text každému znaku
Stručný návod k programu Octave
Stručný návod k programu Octave Octave je interaktivní program vhodný pro technické výpočty. Je nápadně podobný programu MATLAB, na rozdíl od něho je zcela zadarmo. Jeho domovská vebová stránka je http://www.octave.org/,
TECHNICKÁ DOKUMENTACE
TECHNICKÁ DOKUMENTACE Jan Petřík 2013 Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Obsah přednášek 1. Úvod do problematiky tvorby technické dokumentace
3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY
3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY V této kapitole se dozvíte: jak popsat bod v rovině a v prostoru; vzorec na výpočet vzdálenosti dvou bodů; základní tvary rovnice přímky
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ..07/..00/6.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Mocninné funkce Autor: Pomykalová Eva
Konstruktivní geometrie a technické kreslení
Konstruktivní geometrie a technické kreslení Základy technického kreslení Petr Liška Mendelova univerzita 23.11.2015 Petr Liška (Mendelova univerzita) Konstruktivní geometrie a technické kreslení 23.11.2015
Požadavky ke zkoušce
Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 2 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní
DATOVÉ FORMÁTY GRAFIKY, JEJICH SPECIFIKA A MOŽNOSTI VYUŽITÍ
DATOVÉ FORMÁTY GRAFIKY, JEJICH SPECIFIKA A MOŽNOSTI VYUŽITÍ UMT Tomáš Zajíc, David Svoboda Typy počítačové grafiky Rastrová Vektorová Rastrová grafika Pixely Rozlišení Barevná hloubka Monitor 72 PPI Tiskárna
umenugr JEDNOTKA PRO VYTVÁŘENÍ UŽIVATELSKÝCH GRAFICKÝCH MENU Příručka uživatele a programátora
umenugr JEDNOTKA PRO VYTVÁŘENÍ UŽIVATELSKÝCH GRAFICKÝCH MENU Příručka uživatele a programátora SofCon spol. s r.o. Střešovická 49 162 00 Praha 6 tel/fax: +420 220 180 454 E-mail: sofcon@sofcon.cz www:
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
GRAPHICS TOOLS IN LATEX. Vladimír POLÁŠEK Lubomír SEDLÁČEK
OTHER ARTICLES GRAPHICS TOOLS IN LATEX Vladimír POLÁŠEK Lubomír SEDLÁČEK Abstract: This paper deals with the basic tools for managing graphics and graphics creation in LaTeX with a focus on mathematics.
Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d.
Úloha 1 Která barva nepatří do základních barev prostoru RGB? a. Černá b. Červená c. Modrá d. Zelená Úloha 2 V rovině je dán NEKONVEXNÍ n-úhelník a bod A. Pokud paprsek (polopřímka) vedený z tohoto bodu
CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: graf funkce, derivace funkce a její
7 Analytické vyjádření shodnosti
7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +
2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
Obsah. Předmluva 1. Úvod do studia 3 Komu je tato kniha určena 4 Co byste měli předem znát 4 Co se naučíte v učebnici AutoCADu? 5
Obsah Předmluva 1 KAPITOLA 1 Úvod do studia 3 Komu je tato kniha určena 4 Co byste měli předem znát 4 Co se naučíte v učebnici AutoCADu? 5 CA technologie 6 Product Lifecycle Management 7 Aplikační programy
Vzorce počítačové grafiky
Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u
Úvod do programování 7. hodina
Úvod do programování 7. hodina RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Umíme z minulé hodiny Syntax Znaky Vlastní implementace
Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na bájný zikkurat tvaru komolého kolmého jehlanu s větší podstavou u země vede
LabView jako programovací jazyk II
LabView jako programovací jazyk II - Popis jednotlivých funkcí palety Function II.část - Funkce Numeric, Array, Cluster Ing. Martin Bušek, Ph.D. Práce s daty typu NUMERIC Numerické funkce obsahuje funkce
Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:
1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.
Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL.
Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Jméno a příjmení(čitelně): varianta č. 90 Přezdívka(nepovinné): Zde pište své výsledky Napište rovnici přímky procházející
MODAM Popis okna. 2 Jana Bělohlávková, Katedra matematiky a deskriptivní geometrie, VŠB - TU Ostrava
GeoGebra známá i neznámá (začátečníci) MODAM 2016 Mgr. Jana Bělohlávková. MODAM 2016 GeoGebra známá i neznámá (začátečníci) Popis okna 2 Jana Bělohlávková, Katedra matematiky a deskriptivní geometrie,
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory
Učitelství 1. stupně ZŠ tématické plány předmětů matematika
Učitelství 1. stupně ZŠ tématické plány předmětů matematika Povinné předměty: Matematika I aritmetika (KMD/MATE1) 2 Matematika 3 aritmetika s didaktikou (KMD/MATE3) 3 Matematika 5 geometrie (KMD/MATE5)
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem
Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed
Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné
24-2-2 PROMĚNNÉ, KONSTANTY A DATOVÉ TYPY TEORIE DATUM VYTVOŘENÍ: 23.7.2013 KLÍČOVÁ AKTIVITA: 02 PROGRAMOVÁNÍ 2. ROČNÍK (PRG2) HODINOVÁ DOTACE: 1
24-2-2 PROMĚNNÉ, KONSTANTY A DATOVÉ TYPY TEORIE AUTOR DOKUMENTU: MGR. MARTINA SUKOVÁ DATUM VYTVOŘENÍ: 23.7.2013 KLÍČOVÁ AKTIVITA: 02 UČIVO: STUDIJNÍ OBOR: PROGRAMOVÁNÍ 2. ROČNÍK (PRG2) INFORMAČNÍ TECHNOLOGIE
CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,
Parametrická rovnice přímky v rovině
Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou
Digitální učební materiál
Střední hotelová škola, s.r.o. Floriánské náměstí 350, 272 01 Kladno Digitální učební materiál Číslo projektu Název projektu Název školy Předmět Tematický okruh Téma CZ.1.07/1.5.00/34.0112 Moderní škola
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a
Shodná zobrazení v rovině
Shodná zobrazení v rovině Zobrazení Z v rovině je předpis, který každému bodu X roviny přiřazuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X jeho obraz. Zapisujeme Z: X X. Množinu obrazů všech
MATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
Diplomová propedeutika
Diplomová propedeutika Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Beamer Jan Outrata (Univerzita Palackého v Olomouci) Diplomová propedeutika Olomouc, září 2015 1 / 9 Úvod
ROZ1 CVIČENÍ VI. Geometrická registrace (matching) obrazů
ROZ1 CVIČENÍ VI. Geometrická registrace (matching) obrazů REGISTRACI OBRAZU (IMAGE REGISTRATION) Více snímků téže scény Odpovídající pixely v těchto snímcích musí mít stejné souřadnice Pokud je nemají
Tematický celek Proměnné. Proměnné slouží k dočasnému uchovávání hodnot během provádění aplikace Deklarace proměnných
Tematický celek 03 3.1 Proměnné Proměnné slouží k dočasnému uchovávání hodnot během provádění aplikace. 3.1.1 Deklarace proměnných Dim jméno_proměnné [As typ] - deklarace uvnitř procedury platí pouze pro
Maturitní okruhy z matematiky - školní rok 2007/2008
Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti: 1. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
Systém je citlivý na velikost písmen CASE SENSITIVE rozeznává malá velká písmena, např. PROM=1; PROm=1; PRom=1; Prom=1; prom=1; - 5 různých proměnných
Systém je citlivý na velikost písmen CASE SENSITIVE rozeznává malá velká písmena, např. PROM=1; PROm=1; PRom=1; Prom=1; prom=1; - 5 různých proměnných jakési nádoby na hodnoty jsou různých typů při běžné
Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA
Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic
II. Úlohy na vložené cykly a podprogramy
II. Úlohy na vložené cykly a podprogramy Společné zadání pro příklady 1. - 10. začíná jednou ze dvou možností popisu vstupních dat. Je dána posloupnost (neboli řada) N reálných (resp. celočíselných) hodnot.
Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna
Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí
4 Přesné modelování. Modelování pomocí souřadnic. Jednotky a tolerance nastavte před začátkem modelování.
Jednotky a tolerance nastavte před začátkem modelování. 4 Přesné modelování Sice můžete změnit toleranci až během práce, ale objekty, vytvořené před touto změnou, nebudou změnou tolerance dotčeny. Cvičení
Práce s texty, Transformace rastru, Připojení GPS
Školení programu TopoL xt Práce s texty, Transformace rastru, Připojení GPS Obsah: 1. Uživatelské rozhraní (heslovitě, bylo součástí minulých školení) 2. Nastavení programu (heslovitě, bylo součástí minulých
Rhino - základní příkazy
Rhino - základní příkazy Příkazy - volíme z hlavní nabídky levým tlačítkem myši - ikonou z nástrojové lišty levým (LTM)/pravým(PTM) tlačítkem myši Příkaz ukončíme pravým tlačítkem myši (Enter) nebo klávesou
KŘIVKY A PLOCHY. Obrázky (popř. slajdy) převzaty od
KŘIVKY A PLOCHY JANA ŠTANCLOVÁ jana.stanclova@ruk.cuni.cz Obrázky (popř. slajdy) převzaty od RNDr. Josef Pelikán, CSc., KSVI MFF UK Obsah matematický popis křivek a ploch křivky v rovině implicitní tvar
10. Analytická geometrie kuželoseček 1 bod
10. Analytická geometrie kuželoseček 1 bod 10.1. Kružnice opsaná obdélníku ABCD, kde A[2, 3], C[8, 3], má rovnici a) x 2 10x + y 2 + 7 = 0, b) (x 3) 2 + (y 3) 2 = 36, c) x 2 + 10x + y 2 18 = 0, d) (x 10)
CORELDRAW SEZNÁMENÍ S PROGRAMEM. Lenka Bednaříková
CORELDRAW SEZNÁMENÍ S PROGRAMEM Lenka Bednaříková SEZNÁMENÍ S OKNEM APLIKACE Panel nabídek Panel nástrojů Panel vlastností Ukotvitelné panely Okno nástrojů Paleta barev Okno kresby Pravítko Stavový řádek
Rasterizace je proces při kterém se vektorově definovaná grafika konvertuje na. x 2 x 1
Kapitola 4 Rasterizace objektů Rasterizace je proces při kterém se vektorově definovaná grafika konvertuje na rastrově definované obrazy. Při zobrazení reálného modelu ve světových souřadnicích na výstupní
Téma: Práce se základními objekty, výplní a obrysem
Téma: Práce se základními objekty, výplní a obrysem Vypracovala: Ing. Jana Wasserbauerová TE NTO PR OJ E KT J E S POLUFINANC OVÁN EVR OPS KÝ M S OC IÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Cíl:
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2017
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T BŘEZNA 07 D : 4 BŘEZNA 07 P P P : 964 : 0 M M : 0 : 8,8 M : 8,8 % S : -7,5 M P : -,5 :,8 Zopakujte si základní informace ke zkoušce: n Test obsahuje 0 úloh a na
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní
Definice uživatelského typu. Uživatelem definované typy. Součinové datové typy. Součtové datové typy. FLP - Uživatelem definované typy
Uživatelem definované typy Ing. Lumír Návrat katedra informatiky, A 1018 59 732 3252 Definice uživatelského typu data Color = Red Green Blue Color typový konstruktor Red / Green / Blue datové konstruktory
ÚLOHY S POLYGONEM. Polygon řetězec úseček, poslední bod je totožný s prvním. 6 bodů: X1, Y1 až X6,Y6 Y1=X6, Y1=Y6 STANOVENÍ PLOCHY JEDNOHO POLYGONU
ÚLOHY S POLYGONEM Polygon řetězec úseček, poslední bod je totožný s prvním 6 bodů: X1, Y1 až X6,Y6 Y1=X6, Y1=Y6 STANOVENÍ PLOCHY JEDNOHO POLYGONU 3 úsečky (segmenty) v horní části 2 úsečky ve spodní části
Základní práce s křivkami, barvy výplně, obrysu, barevné výplně
3. Základní práce s křivkami, barvy výplně, obrysu, barevné výplně Pro vytváření křivek je v programu Corel Draw několik skupin nástrojů, které se skrývají pod tlačítky v levé nástrojové liště pod ikonami
Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT
I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou
Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při
. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti:. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
TECHNICKÉ KRESLENÍ A CAD. Přednáška č.6
TECHNICKÉ KRESLENÍ A CAD Přednáška č.6 Kótování Požadavky na kótování Všeobecné zásady kótování Hodnoty rozměrů se kótují v milimetrech. Značka mm se neuvádí. Úhly se kótují v stupních, minutách a sekundách,
= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme
- FUNKCE A ROVNICE Následující základní znalosti je nezbytně nutné umět od okamžiku probrání až do konce kapitoly (většinou do napsání čtvrtletní písemné práce, na výjimky z tohoto pravidla bude upozorněno).
Požadavky k opravným zkouškám z matematiky školní rok 2013-2014
Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
Cvičení 7: Delphi objekty CheckedBox, Radio- Button, EditBox
Cvičení 7: Delphi objekty CheckedBox, Radio- Button, EditBox 1 Opakování kreslení do Image 1. Canvas = plátno - Color, Caption Nastavení typu čáry pro kreslení perem Pen: barva Image1.Canvas.Pen.Color
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 2/3 GPS - Výpočet drah družic školní rok
CVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 24 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písemnou práci z chemie psalo všech 28 žáků ze
- znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku
Znaky - standardní typ char var Z, W: char; - znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku - v TP (často i jinde) se používá kódová