MODAM Popis okna. 2 Jana Bělohlávková, Katedra matematiky a deskriptivní geometrie, VŠB - TU Ostrava
|
|
- Andrea Macháčková
- před 6 lety
- Počet zobrazení:
Transkript
1 GeoGebra známá i neznámá (začátečníci) MODAM 2016 Mgr. Jana Bělohlávková.
2 MODAM 2016 GeoGebra známá i neznámá (začátečníci) Popis okna 2 Jana Bělohlávková, Katedra matematiky a deskriptivní geometrie, VŠB - TU Ostrava
3 GeoGebra známá i neznámá (začátečníci) MODAM 2016 Příklad 1: Kružnice opsaná trojúhelníku Zadání: Vytvořte aplikaci na sestrojení kružnice opsané trojúhelníku. Postup: 1. Z lišty nástrojů vybereme nástroj Mnohouhelník a trojím kliknutím do nákresny vytvoříme tři body A, B a C. Vytvoření trojúhelníku dokončíme čtvrtým kliknutím na bod A. 2. Vybereme nástroj Osa úsečky a postupným kliknutím na body A a B vytvoříme osu d strany c trojúhelníku. Podobně vytvoříme osy e a f stran a a b. 3. Kliknutím na osy d a e najdeme jejich průsečík bod D. 4. Kliknutím na střed D a na jeden z vrcholů trojúhelníku sestrojíme kružnici g trojúhelníku opsanou. 5. Do vstupního pole napíšeme příkaz os=false. (bez tečky) Stiskneme Enter. 6. Do vstupního pole napíšeme postupně příkazy st=false a kr=false. 7. Kliknutím na nevyplněné kolečko vedle objektů os, st a kr v Algebraickém okně všechny tři objekty zobrazíme. Zobrazí se v Nákresně jako tzv. Zaškrtávací políčka. 8. V Algebraickém okně nebo v Nákresně klikneme pravým tlačítkem na bod D a v otevřeném kontextovém menu bodu D vybereme z nabídky Vlastnosti a nově otevřeném okně Předvolby v záložce Pro pokročilé napíšeme do pole Podmínky zobrazení objektu st. Podobně nastavíme osám d, e, f podmínku zobrazení objektu os a kružnici g nastavíme podmínku kr. 9. Nastavíme popisek booleovské hodnotě os: v jejím kontextovém menu vybereme z nabídky Vlastnosti a v záložce Základní napíšeme do pole Popisek text osy stran. Podobně nastavíme popisky objektům st a kr. 10. V kontextovém menu v nabídce Vlastnosti změníme objektům název (v záložce Základní) a nastavíme barvu a styl (v záložkách Barva a Styl). Jana Bělohlávková, Katedra matematiky a deskriptivní geometrie, VŠB - TU Ostrava 3
4 MODAM 2016 GeoGebra známá i neznámá (začátečníci) Příklad 2: Kvadratická rovnice Zadání: Vytvořte aplikaci na nalezení řešení kvadratické rovnice. Postup: 1. Do vstupního pole napíšeme postupně příkazy a=1, b=2, a=4. Vytvoříme tak tři čísla a, b, c pro koeficienty kvadratické rovnice. Všechna tři čísla zobrazíme (kliknutím na nevyplněné kolečko v Algebraickém okně). Zobrazí se jako tzv. Posuvníky. 2. Do vstupního pole zadáme funkci f(x)=a*xˆ2+b*x+c. 3. Změnou hodnot na posuvnících se mění předpis funkce. Nastavíme hodnoty tak, aby parabola měla průsečíky s osou x. 4. Příkazem NuloveBody[f] najdeme průsečíky A a B funkce f s osou x. 5. Kořeny rovnice (x-ové souřadnice bodů A a B) uložíme do číselných proměnných x1=x(a) a x2=x(b). 6. Vložíme text Kvadratická rovnice f =0 má dva reálné kořeny x_1= x1, x_2= x2, přičemž objekty v boxech vybereme z rozbalovací nabídky Objekty. 7. Vypočítáme diskriminant D=bˆ2-4*a*c. 8. Textu nastavíme podmínky zobrazení D>0. 9. Obdobně vytvoříme texty a nastavíme jejich podmínky zobrazení pro případ, že je diskriminant záporný a pro případ, že je nulový. 10. Kliknutím do Nákresny vložíme Textové pole. V nově otevřeném okně Textové pole napíšeme Popisek a= a z nabídky Propojený objekt vybereme číslo a. Potvrdíme stiskem tlačítka OK. Podobně vytvoříme textová pole pro číslo b a pro číslo c. V okně Předvolby textového pole pole1 v záložce Styl můžeme upravit Délku Textového Pole. 4 Jana Bělohlávková, Katedra matematiky a deskriptivní geometrie, VŠB - TU Ostrava
5 GeoGebra známá i neznámá (začátečníci) MODAM 2016 Příklad 3: Hra poznej rovnici přímky Zadání: Vytvořte aplikaci - hru, ve které musí hráč poznat rovnici přímky ve směrnicovém tvaru y = kx + q. Postup: 1. Vytvoříme postupně čísla k=2 a q=2. 2. Otevřeme nový náhled Nákresna 2 tak, že z hlavního menu vybereme položku Zobrazit a zvolíme Nákresna Kliknutím do Nákresny 2 vytvoříme Tlačítko, které bude náhodně generovat hodnoty čísel k a q: v otevřeném okně Tlačítko napíšeme do pole Popisek: Nové zadání a do pole Geogebra Skript na samostatné řádky příkazy: k=nahodnemezi[-3,3] a q=nahodnemezi[-4,5]. 4. Vytvoříme postupně přímky y=2*x+3 a y=k*x+q. 5. Přímky zobrazíme v Nákresně: v kontextovém menu přímky a vybereme z nabídky Vlastnosti a v nově otevřeném okně Předvolby v záložce Pro pokročilé vybereme kliknutím Umístění v Nákresna a zrušíme umístění v Nákresna Vytvoříme textové pole s popiskem p: a propojíme ho s přímkou a. 7. Vložíme do Nákresny 2 texty Správně a Špatně a nastavíme jim postupně podmínky zobrazení a==b a a<>b. 8. Zobrazíme mřížku v Nákresně: klinutím na malou šipku v záhlaví Nákresny otevřeme její formátovací panel a kliknutím zvolíme Ukázat nebo skrýt mřížku. Skryjeme osy v Nákresně 2: v jejím formatovacím panelu zvolíme Ukázat nebo skrýt osy. 9. Objektům nastavíme popisky, barvy a styl. Jana Bělohlávková, Katedra matematiky a deskriptivní geometrie, VŠB - TU Ostrava 5
6 MODAM 2016 GeoGebra známá i neznámá (začátečníci) Příklad 4: Stereometrie - řez krychle Zadání: Vytvořte aplikaci na řez krychle ve stereometrii. Postup: 1. Otevřeme okno Grafický náhled 3D a to bud tak, že z postraního panelu vybereme 3D Grafika nebo z hlavního menu vybereme položku Zobrazit/ Grafický náhled 3D. 2. Vytvoříme krychli: dvakrát klikneme na (šedou) rovinu xy do míst, kde chceme umístit vrcholy A a B krychle. 3. Vytvoříme rovinu řezu: postupně klikneme na osu x, y a z. Vytvoříme tak tři body I, J a K a jimi určenou rovinu b. 4. Nastavíme body I, J a K tak, aby rovina b měla s krychlí neprázdný průnik. 5. V Algebraickém okně klikneme postupně na krychli a a na rovinu b. 6. Z hlavního menu vybereme položku Zobrazit/ Nákresna 2. V Nákresně 2 skryjeme osy. 7. Do vstupního pole napíšeme příkaz rov=false. 8. Do vstupního pole napíšeme příkaz res=false. 9. Objekty rov a res zobrazíme v Nákresně Rovině b nastavíme podmínku zobrazení rov. Úsečkám c, d, e, f, g a h nastavíme podmínku zobrazení res. 11. Objektům nastavíme požadovanou barvu a styl, změníme popřípadě vypneme popisky u objektů, v hlavním menu Nastavení/Pro pokročilé/předvolby - Grafický náhled 3D vypneme zobrazení ořezového boxu. 6 Jana Bělohlávková, Katedra matematiky a deskriptivní geometrie, VŠB - TU Ostrava
7 GeoGebra známá i neznámá (začátečníci) MODAM 2016 Přehled vybraných příkazů Operace sčítání + odčítání - násobení * nebo mezera dělení / mocnina ˆ nebo 2, 3 závorky ( ) Priorita operací priorita operace 1. ˆ 2. * / Rovnost, nerovnost operace výběr kláv. příklad rovnost? = == a =? b nebo a == b nerovnost =!= a = b nebo a!= b Porovnání hodnot (čísla a, b) operace výběr kláv. příklad menší než < < a < b větší než > > a > b menší nebo roven <= a b nebo a <= b větší nebo roven >= a b nebo a >= b Množinové operace operace výběr příklad je prvkem a seznam je podmnožinou seznam1 seznam2 je vlastní podmnožinou seznam1 seznam2 rozdíl množin \ seznam1 \ seznam2 Logické operace (booleovské hodnoty a, b) operace výběr kláv. příklad a (konjunkce) && a b nebo a && b nebo (disjunkce) a b nebo a b negace! a nebo!a Operace pro vektory skalární součin vektorový součin * nebo mezera Jana Bělohlávková, Katedra matematiky a deskriptivní geometrie, VŠB - TU Ostrava 7
8 GeoGebra institut strava
MODAM Popis okna. 2 Jana Bělohlávková, Katedra matematiky a deskriptivní geometrie, VŠB - TU Ostrava
GeoGebra známá i neznámá (začátečníci) MODAM 2016 Mgr. Jana Bělohlávková. MODAM 2016 GeoGebra známá i neznámá (začátečníci) Popis okna 2 Jana Bělohlávková, Katedra matematiky a deskriptivní geometrie,
MODAM Mgr. Zuzana Morávková, Ph.D.
GeoGebra známá i neznámá (začátečníci) MODAM 2015 Mgr. Zuzana Morávková, Ph.D. MODAM 2015 GeoGebra známá i neznámá (začátečníci) Příklad 1: Kružnice opsaná trojúhelníku Zadání: Vytvořte aplikaci na sestrojení
GeoGebra známá i neznámá
GeoGebra známá i neznámá MODAM 2018 Z. Morávková, P. Schreiberová, J. Volná, P. Volný MODAM 2018 GeoGebra známá i neznámá Příklad 1: Nejmenší společný násobek Zadání: Vytvoříme aplikaci, ve které se vygenerují
MODAM Mgr. Zuzana Morávková, Ph.D.
GeoGebra známá i neznámá (pokročilí) MODAM 2016 Mgr. Zuzana Morávková, Ph.D. MODAM 2016 GeoGebra známá i neznámá (pokročilí) Příklad 1: Hod kostkou Zadání: Vytvoříme simulaci hodů hrací kostkou a budeme
GeoGebra známá i neznámá (pokročilí)
GeoGebra známá i neznámá (pokročilí) MODAM 2017 Mgr. Zuzana Morávková, Ph.D. MODAM 2017 GeoGebra známá i neznámá (pokročilí) Příklad 1: Cykloida Zadání: Kotálením kružnice vytvoříme cykloidu. 3. 2. 1.
MODAM Ing. Schreiberová Petra, Ph.D.
GeoGebra známá i neznámá (začátečníci) MODAM 2017 RNDr. Radomír Paláček, Ph.D. Ing. Schreiberová Petra, Ph.D. MODAM 2017 GeoGebra známá i neznámá (začátečníci) Příklad 1: Kyvadlo Zadání: Vytvořte animaci
GeoGebra rychlý start
Beznákladové ICT pro učitele Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. velmi stručná příručka k programu GeoGebra GeoGebra je svobodný výukový matematický
Vytvoření tiskové sestavy kalibrace
Tento návod popisuje jak v prostředí WinQbase vytvoříme novou tiskovou sestavu, kterou bude možno použít pro tisk kalibračních protokolů. 1. Vytvoření nového typu sestavy. V prvním kroku vytvoříme nový
Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám
Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Název školy Obchodní akademie a Hotelová škola Havlíčkův Brod Název OP OP Vzdělávání pro konkurenceschopnost Registrační
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
JEDNODUCHÉ LINEÁRNÍ A KVADRATICKÉ FUNKCE V GEOGEBŘE
Obsah JEDNODUCHÉ LINEÁRNÍ A KVADRATICKÉ FUNKCE V GEOGEBŘE...2 Co je to funkce?...2 Existuje snadnější definice funkce?...2 Dobře, pořád se mi to zdá trochu moc komplikonavané. Můžeme se na základní pojmy
Matematika I. Katedra matematiky a deskriptivní geometrie mdg.vsb.cz
Matematika I Úvod Mgr. Iveta Cholevová, Ph. D iveta.cholevova@vsb.cz A 829, 597 324 146 Mgr. Jaroslav Drobek, Ph. D. jaroslav.drobek@vsb.cz, A 837, 597 324 101 Mgr. Arnošt Žídek arnost.zidek@vsb.cz, A
GRAF FUNKCE NEPŘÍMÁ ÚMĚRNOST
GRAF FUNKCE NEPŘÍMÁ ÚMĚRNOST Úloha: Sestrojte graf funkce nepřímé úměrnosti a zjistěte její vlastnosti. Popis funkcí modelu: Sestrojit graf funkce nepřímá úměrnost Najít průsečíky grafu se souřadnými osami
INTERAKTIVNÍ POMŮCKY V PROGRAMU GEOGEBRA JAKO DOPLNĚK STUDIJNÍCH MATEMATIKY NA VŠB-TU OSTRAVA
INTERAKTIVNÍ POMŮCKY V PROGRAMU GEOGEBRA JAKO DOPLNĚK STUDIJNÍCH MATERIÁLŮ PRO ZÁKLADNÍ KURZY MATEMATIKY NA VŠB-TU OSTRAVA Zuzana Morávková VŠB - Technická univerzita Ostrava Abstrakt: Studijní materiály
MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů
Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst
MATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
Základy matematiky kombinované studium 714 0365/06
Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické
GeoGebra Prostředí programu
GeoGebra Prostředí programu Po instalaci a spuštění programu uvidí uživatel jediné škálovatelné okno hlavní okno programu. Podle toho, zda otevíráte okno ve standardní konfiguraci (obr. 1) nebo v konfiguraci
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
Využití programu GeoGebra v Matematické analýze
Využití programu GeoGebra v Matematické analýze Zuzana Morávková, KMDG, VŠB-TUO 29.3.2012 Obsah přednášky všeobecné informace o programu GeoGebra vybrané problematické pojmy z Matematické analýzy - interaktivní
Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna
Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí
Využití GeoGebry ve výuce matematiky a geometrie Workshop na konferenci 3µ 2015
Využití GeoGebry ve výuce matematiky a geometrie Workshop na konferenci 3µ 2015 Horní Lomná, 1. 3. června 2015 Jana Bělohlávková Dagmar Dlouhá Radka Hamříková Zuzana Morávková Radomír Paláček Petra Schreiberová
Základní vzorce a funkce v tabulkovém procesoru
Základní vzorce a funkce v tabulkovém procesoru Na tabulkovém programu je asi nejzajímavější práce se vzorci a funkcemi. Když jednou nastavíte, jak se mají dané údaje zpracovávat (některé buňky sečíst,
Nastavení třídnických hodin
Nastavení třídnických hodin (v 4.0) Níže popsaný návod je určen pro uživatele s rolí Administrátor, není-li uvedeno jinak. Obsah školení: Založení kurzu Třídnická hodina (Th) 2 Hromadná změna hodin na
Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021
Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,
Matematika PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: graf funkce, derivace funkce a její
obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2].
Kružnice množina bodů, které mají od středu stejnou vzdálenost pojmy: bod na kružnici X [x, y]; poloměr kružnice r pro střed S[0; 0]: SX =r x 0 2 y 0 2 =r x 2 y 2 =r 2 pro střed S[m; n]: SX =r x m 2 y
Využití GeoGebry ve výuce matematiky a geometrie Workshop na konferenci 3µ 2014
Využití GeoGebry ve výuce matematiky a geometrie Workshop na konferenci 3µ 2014 Horní Lomná, 2. 4. června 2014 Jana Bělohlávková Radomír Paláček Petra Schreiberová Jana Volná Petr Volný Katedra matematiky
VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava
VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,
ANOTACE nově vytvořených/inovovaných materiálů
ANOTACE nově vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.1017 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Komplexní
Objekty v GEONExTu, jejich vytváření, zobrazení, vlastnosti a manipulace s nimi, vztahy mezi objekty
Objekty v GEONExTu, jejich vytváření, zobrazení, vlastnosti a manipulace s nimi, vztahy mezi objekty Typy objektů Objekty, se kterými v programu GEONExT pracujeme, mají převážně grafické znázornění. Jednak
ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška
Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace
Cabri pro začátečníky
Cabri pro začátečníky učební text RNDr. Ludmila Ciglerová 1. C T 1 T 3 O 1 1 A T 2 B H T G E F S D C A B R 1 Rýsování základních geometrických útvarů a) hlavní vodorovná lišta -Soubor, Upravit,Nastavit,
1. ÚVOD. Arnošt Žídek, Iveta Cholevová. 15. října 2013 FBI VŠB-TUO
FBI VŠB-TUO 15. října 2013 Kontaktní informace Mgr. Iveta Cholevová, Ph. D. iveta.cholevova@vsb.cz A829, 597 324 146 Mgr. Arnošt Žídek, Ph. D. arnost.zidek@vsb.cz A832, 597 324 177 Předpokládané znalosti
Digitální učební materiál
Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova
Objekty v GeoGebře, jejich vytváření, zobrazení, vlastnosti a manipulace s nimi, vztahy mezi objekty
Objekty v GeoGebře, jejich vytváření, zobrazení, vlastnosti a manipulace s nimi, vztahy mezi objekty Typy objektů Objekty, se kterými v programu GeoGebra pracujeme, byly vytvořeny tak, aby se co nejsnáze
Základy matematiky pracovní listy
Dagmar Dlouhá, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny pro předmět Základy matematiky vyučovaný Katedrou matematiky
Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky
Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace
Kapitola 11: Formuláře 151
Kapitola 11: Formuláře 151 Formulář DEM-11-01 11. Formuláře Formuláře jsou speciálním typem dokumentu Wordu, který umožňuje zadávat ve Wordu data, která lze snadno načíst například do databázového systému
František Hudek. srpen 2012
VY_32_INOVACE_FH17 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace František Hudek srpen 2012 8. ročník
Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ]
Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] 1 CÍL KAPITOLY V této kapitole si představíme Nástroje kreslení pro tvorbu 2D skic v modulu Objemová součást
Konstrukce součástky
Konstrukce součástky 1. Sestrojení dvou válců, které od sebe odečteme. Vnější válec má střed podstavy v bodě [0,0], poloměr podstavy 100 mm, výška válce je 100 mm. Vnitřní válec má střed podstavy v bodě
Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna
Předmět: Matematika Náplň: Stereometrie, Analytická geometrie, Komplexní čísla Třída: 3. ročník Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor Volné rovnoběžné promítání Zobrazí ve volném rovnoběžném
František Hudek. srpen 2012
VY_32_INOVACE_FH19 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace František Hudek srpen 2012 8. ročník
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část 1. ročník a kvinta 4 hodiny týdně PC a dataprojektor, učebnice Základní poznatky Číselné
Styly písma - vytvoření vlastního stylu, zápatí a záhlaví stránek
VY_32_INOVACE_In 6.,7.08 Styly písma - vytvoření vlastního stylu, zápatí a záhlaví stránek Anotace: Žák se seznamuje vytvářením vlastního stylu písma a jeho výhodami. Vkládá a mění zápatí a záhlaví stránek
Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část 1. ročník 4 hodiny týdně PC a dataprojektor Číselné obory Přirozená a celá čísla Racionální
Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků
Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy
KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
Jak vytvořit vlastní ikonu bloku a faceplate v PCS7 V6.x a 7.x
Jak vytvořit vlastní ikonu bloku a faceplate v PCS7 V6.x a 7.x Otázka: Jak postupovat při tvorbě vlastní ikony bloku a faceplate pro uživatelsky vytvořený funkční blok PCS7 Odpověď: Pro každý uživatelský
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní
Seriál o Geogebře. Dotkněte se inovací CZ.1.07/1.3.00/
Dotkněte se inovací CZ.1.07/1.3.00/51.0024 Seriál o Geogebře 1. Díl Seznámení s Geogebrou 2. Díl Prostředí Geogebry 3. Díl První kroky s Geogebrou 4. Díl Nástroje Geogebry pro zobrazování 5. Díl Inovace
František Hudek. červenec 2012
VY_32_INOVACE_FH14 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace František Hudek červenec 2012 8.
František Hudek. červenec 2012
VY_32_INOVACE_FH16 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace František Hudek červenec 2012 8.
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
KRUŽNICE, KRUH, KULOVÁ PLOCHA, KOULE
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KRUŽNICE,
Excel 2007 pro začátečníky
Excel 2007 pro začátečníky 1 Excel OP LZZ Tento kurz je financován prostřednictvím výzvy č. 40 Operačního programu Lidské zdroje a zaměstnanost z prostředků Evropského sociálního fondu. 2 Excel Cíl kurzu
Maturitní témata profilová část
Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,
Příprava 3D tisku tvorba výkresu z modelu v SolidWorks 3D tisk výkres SolidWorks. Ing. Richard Němec, 2012
Příprava 3D tisku tvorba výkresu z modelu v SolidWorks 3D tisk výkres SolidWorks Ing. Richard Němec, 2012 Zadání úlohy Součást Rohatka_100 byla namodelována v SolidWorks podle skicy (rukou kresleného náčrtku).
Nerovnice v součinovém tvaru, kvadratické nerovnice
Nerovnice v součinovém tvaru, kvadratické nerovnice Příklad: Pro která x R je součin x x 5 kladný? Řešení: Víme, že součin je kladný, mají-li oba činitelé stejné znaménko. Tedy aby platilo x x 5 0, musí
Zobrazení zdrojových dat u krabicového grafu
StatSoft Zobrazení zdrojových dat u krabicového grafu Krabicový graf zobrazuje informace o poloze i variabilitě dat. Zachycujeme na něm různé charakteristiky a někdy může být žádoucí zobrazit si v grafu
Očekávané výstupy z RVP Učivo Přesahy a vazby
Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků obor přirozených čísel : počítání do dvaceti - číslice
Bakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
Maturitní témata od 2013
1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy
Důkazy vybraných geometrických konstrukcí
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 Ročníková práce Důkazy vybraných geometrických konstrukcí Vypracovala: Ester Sgallová Třída: 8.M Školní rok: 015/016 Seminář : Deskriptivní geometrie
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,
Bakalářská matematika I
do předmětu Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Podmínky absolvování předmětu Zápočet Zkouška 1 účast na přednáškách alespoň v minimálním rozsahu,
Výsledný graf ukazuje následující obrázek.
Úvod do problematiky GRAFY - SPOJNICOVÝ GRAF A XY A. Spojnicový graf Spojnicový graf používáme především v případě, kdy chceme graficky znázornit trend některé veličiny ve zvoleném časovém intervalu. V
1. Kombinatorika 1.1. Faktoriál výrazy a rovnice
1. Kombinatorika 1.1. Faktoriál výrazy a rovnice 1.A) 210; B) 990; C) 29260; D) 1/5; E) 1/240; F) 157; G) 81/712; H) 1/100; I) 3,98*10 11 ; J) 86296950; K) 65824; L) 195878760; 2. A) x 3 +3x 2 +2x; x Z,
Microsoft Word - Styly, obsah a další
Microsoft Word - Styly, obsah a další Definice uživatelských stylů Nový - tzv. uživatelský styl - se vytváří pomocí panelu Styly a formátování stiskem tlačítka Nový styl. Po stisknutí tlačítka se objeví
Maturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
7.5.3 Hledání kružnic II
753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou
10. Analytická geometrie kuželoseček 1 bod
10. Analytická geometrie kuželoseček 1 bod 10.1. Kružnice opsaná obdélníku ABCD, kde A[2, 3], C[8, 3], má rovnici a) x 2 10x + y 2 + 7 = 0, b) (x 3) 2 + (y 3) 2 = 36, c) x 2 + 10x + y 2 18 = 0, d) (x 10)
Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová
Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.
MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA
MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné
Využití GeoGebry ve výuce matematiky a geometrie Workshop na konferenci 3µ 2016
K D M G GeoGebra institut strava Využití GeoGebry ve výuce matematiky a geometrie Workshop na konferenci 3µ 2016 Horní Lomná, 30. května 1. června 2016 Dagmar Dlouhá Radka Hamříková Zuzana Morávková Radomír
PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná
PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků
SEZNAM ANOTACÍ. CZ.1.07/1.5.00/ III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická geometrie
SEZNAM ANOTACÍ Číslo projektu Číslo a název šablony klíčové aktivity Označení sady DUM Tematická oblast CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická
Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám
Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Název školy Obchodní akademie a Hotelová škola Havlíčkův Brod Název OP OP Vzdělávání pro konkurenceschopnost Registrační
MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik
MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené
Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky
Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................
Lekce 12 Animovaný náhled animace kamer
Lekce 12 Animovaný náhled animace kamer Časová dotace: 2 vyučovací hodina V poslední lekci tohoto bloku se naučíme jednoduše a přitom velice efektivně animovat. Budeme pracovat pouze s objekty, které jsme
Kuželosečky. Pracovní list k nácviku ovládání interaktivního geometrického náčrtníku GEONExT
Pracovní list k nácviku ovládání interaktivního geometrického náčrtníku GEONExT Kuželosečky 1. Vytvořte novou kreslicí plochu (ikonka čistého listu papíru) a uložte soubor pod názvem kruznice.gxt. 2. Nakreslete
CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné
Použijeme-li prostorový typ grafu, můžeme pro každou datovou zvolit jiný tvar. Označíme datovou řadu, zvolíme Formát datové řady - Obrazec
Čtvrtek 15. září Grafy v Excelu 2010 U grafů, ve kterých se znázorňují hodnoty řádově rozdílné, je vhodné zobrazit ještě vedlejší osu 1994 1995 1996 1997 1998 1999 2000 hmotná investice 500 550 540 500
JAK NA HYPERBOLU S GEOGEBROU
Trendy ve vzdělávání 015 JAK NA HYPERBOLU S GEOGEBROU KRIEG Jaroslav, CZ Resumé Článek ukazuje, jak pomocí GeoGebry snadno řešit úlohy, které vedou na konstrukci hyperboly, případně jak lehce zkonstruovat
Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].
Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1
FIN3D Výukovápříručka
www.fine.cz FIN3D Výukovápříručka Zadání Tento příklad ukáže výpočet a posouzení konstrukce zobrazené na obrázku. Sloupy jsou z trubek, trámy profil I. Materiál ocel Fe 360. Zatížení na trámy je svislé
Gabriela Janská. Středočeský vzdělávací institut akademie J. A. Komenského www.sviajak.cz
PŘÍRUČKA KE KURZU: ZÁKLADY PRÁCE NA PC MS WORD 2003 Gabriela Janská Středočeský vzdělávací institut akademie J. A. Komenského www.sviajak.cz Obsah: 1. Písmo, velikost písma, tučně, kurzíva, podtrhnout
II. Elektronická pošta
II. Chceme-li si přečíst poštu, klikneme v levém sloupci na nápis Doručená pošta. Máme před sebou seznam e-mailů seřazených podle data a času přijetí. Pokud máme zapnuto zobrazení náhledu, ve spodní nebo
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.
KVADRATICKÉ FUNKCE. + bx + c, největší hodnotu pro x = a platí,
KVADRATICKÉ FUNKCE Definice Kvadratická funkce je každá funkce na množině R (tj. o definičním ooru R), daná ve tvaru y = ax + x + c, kde a je reálné číslo různé od nuly,, c, jsou liovolná reálná čísla.