Univerzita Tomáše Bati ve Zlíně

Rozměr: px
Začít zobrazení ze stránky:

Download "Univerzita Tomáše Bati ve Zlíně"

Transkript

1 Univerzita Tomáše Bati ve líně LABORATORNÍ CVIČENÍ YIKY II Název úloh: Měření ohniskové vzdálenosti čočk Jméno: Petr Luzar Skupina: IT II/ Datum měření:.listopadu 007 Obor: Informační technologie Hodnocení: Příloh: 0 adaní: a) změřte ohniskovou vzdálenost vbrané čočk přímou metodou, b) změřte ohniskovou vzdálenost vbrané čočk Besselovou metodou, c) pokuste se sestavit ze dvou čoček soustavu, která na stínítku vtvoří zvětšený obraz. ákladní pojm: Vlastnosti čočk jsou charakterizován jejími ohniskovými vzdálenostmi f (předmětová ohnisková vzdálenost) a f (obrazová ohnisková vzdálenost). Je-li předmět v nekonečnu, vtvoří čočka obraz v obrazovém ohnisku. Je-li předmět v předmětovém ohnisku, vtvoří čočka jeho obraz v nekonečnu. Použité přístroje a pomůck: Optická lavice, zdroj světla (žárovka s téměř bodovým vláknem), spojk o ohniskové vzdálenosti mm. Princip metod: Vlastnosti čočk jsou charakterizován jejími ohniskovými vzdálenostmi f (předmětová ohnisková vzdálenost) a f (obrazová ohnisková vzdálenost). Je-li čočka obklopena z obou stran stejným prostředím, potom = -f. Označíme-li vzdálenost předmětu od čočk a a vzdálenost obrazu od čočk a (obr. ), jsou tto veličin svázán s ohniskovou vzdáleností čočk zobrazovací rovnicí. () a f Při tom používáme Jenskou znaménkovou konvenci, kd (zjednodušeně řečeno) platí, že všechn vzdálenosti se měří od čočk; měříme-li vzdálenost od čočk vlevo, bereme ji záporně, měříme-li ji od čočk vpravo, bereme ji kladně. ξ ξ' ' a f f ' a' Obr. : obrazení čočkou e vztahu () lze dokázat, že čočka vtvoří skutečný obraz (obraz, který lze zobrazit na stínítku) kdž platí, že vzdálenost předmětu od stínítka je větší nebo rovna čtřnásobku ohniskové vzdálenosti. většení obrazu je definováno vztahem

2 =, () kde je velikost předmětu a velikost obrazu. Velikosti bereme kladně, je-li předmět nebo obraz vzpřímený (směřuje-li vzhůru). Je-li předmět nebo obraz převrácený (směřuje dolů), bereme velikosti záporně. V obr. jsou vidět podobné trojúhelník, pomocí kterých je možné upravit vztah () do tvaru = =. (3) a Je-li zvětšení záporné, znamená to, že obraz je vzhledem k předmětu převrácený. Přímá metoda vchází bezprostředně ze zobrazovací rovnice. Pro nějakou vzdálenost předmětové rovin ξ (zdroje světla) a obrazové rovin ξ (stínítka) najdeme takovou polohu čočk, kd na stínítku vznikne ostrý obraz zdroje (obr. ). e znalosti předmětové vzdálenosti a a obrazové vzdálenosti a lze podle rovnice () vpočítat ohniskovou vzdálenost. Pro reálnou čočku s nenulovou tloušťkou se vzdálenosti měří od hlavních rovin čočk. Ovšem jejich polohu je obtížné určit, a proto se pro měření ohniskové vzdálenosti reálných čoček používá Besselova metoda. Besselova metoda vužívá skutečnosti, že je možné při dostatečně veliké vzdálenosti předmětové rovin ξ a obrazové rovin ξ najít obecně dvě poloh čočk, při kterých lze získat ostré obraz předmětu (obr. číslo se vztahuje k první a číslo ke druhé poloze čočk). Besselova metoda měření ohniskové vzdálenosti vchází z Gaussov zobrazovací rovnice (). Označme a a a předmětovou a obrazovou vzdálenost při první poloze čočk, kd dostaneme ostrý obraz. Předmětovou a obrazovou vzdálenost při druhé poloze pak označme a a a. Dále pak l označme vzdálenost předmětové a obrazové rovin a d bude vzdálenost mezi oběma polohami čoček, kd obdržíme ostrý obraz (obr.). V případě, že je čočka tenká a obě hlavní rovin čočk můžeme považovat za totožné, platí z důvodů smetrie a = -a, a = - a, l > 0, d > 0. Po dosazení do zobrazovací rovnice () dostaneme vztah pro f ' l d f =. (4) 4l V uvedeném rozboru jsme zanedbali tloušťku čočk, to však lze provést jen u jednoduchých čoček. Při určení ohniskové vzdálenosti optické soustav tuto vzdálenost zanedbat nelze. ξ ξ' a a' a d l ' ' Obr. : Besselova metoda

3 Soustava čoček. Prochází-li světlo soustavou čoček, můžeme problém rozdělit na průchod jednotlivými čočkami, který se řídí zobrazovací rovnicí (). Předmět leží ve vzdálenosti a před první čočkou (na obr. 3 označena číslem ). Ta vtvoří podle () jeho obraz ve vzdálenosti a. Tento obraz vtvořený první čočkou je předmětem pro druhou čočku (na obr. 3 označena číslem ) a nachází se od ní ve vzdálenosti a. Druhá čočka vtvoří jeho obraz opět podle () ve vzdálenosti a (obr.3). ξ ξ' ' '= a a' a Obr. 3: Soustava čoček Postup měření: Ve všech případech je předmětem vlákno žárovk. Přímá metoda. (obr.) Pro nějakou vzdálenost předmětu od stínítka najděte takovou polohu čočk mezi předmětem a stínítkem, ab obraz na stínítku bl ostrý. měřte předmětovou a obrazovou vzdálenost. Měření asi desetkrát opakujte pro různé vzdálenosti předmětu od stínítka. Besselova metoda. (obr.) Nastavte a odečtěte vzdálenost zdroje a stínítka (l). Hledejte takovou polohu (a ) čočk (blíže k předmětu), v níž se předmět zobrazí na stínítku zvětšený a ostrý. Poté přesuňte čočku smetrick (blíže ke stínítku) a zaostřete na zmenšený obraz (poloha a ). Platí a - a = d. Měření opakujte pro alespoň 0 různých vzdáleností předmětu a stínítka. Výsledk zapište do tabulk. Pro každou dvojici l a d vpočítejte hodnotu ohniskové délk. e všech měření stanovte aritmetický průměr a jeho směrodatnou odchlku. ískaný výsledek porovnejte s hodnotou vznačenou na měřené čočce. Soustava čoček. Vedoucí laboratoří na jejich začátku stanoví požadované zvětšení. Podle požadovaného zvětšení navrhněte zvětšení čoček a. Například má-li být výsledné zvětšení 3x, mohou být zvětšení čoček - a -3, - 3 a - 3 nebo třeba -, a -,5 (mínus ve zvětšení čočk říká, že čočka obraz převrací). e znalosti zvětšení vpočítejte, pomocí vztahů () a (3) pro obě čočk, předmětovou a obrazovou vzdálenost. Umístěte na optické lavici čočk a stínítko do požadovaných poloh a ověřte, zda vznikl ostrý obraz. Není-li obraz úplně ostrý, pokuste se ho malým posunutím stínítka doostřit.

4 Vpracování: Přímá metoda čočka f=00mm č.m. Čočka ( a ) stínitko ( a' ) , , , , , , , , , ,58 ff = 03,3 ±,7 Přímá metoda čočka f=00mm č.m. čočka ( a ) Stínítko ( a' ) , , , , , , , , , ,4 ff = 3,9 ± 6,3

5 Besslova metoda čočka f=00mm Čočk d(a-a') Stínítko ( l ) , , , , , , , , , ,35 ff = 85,7 ± 4,7 Besslova metoda čočka f=00mm Čočka d(a-a') Stínítko ( l ) , , , , , , , , , ,5 ff = 55,8 ± 60,5

6 Soustava čoček adané hodnot: Ohnisková vzdálenost: Celkové zvětšení =5,3 většení jedné čočk = (-) f = 00mm f = 00mm = = 5,3 = = (.65) a f = ; a První čočka Druhá čočka a a 00 a a 00 = => a = a,65 = => a = 4, a a a a a 00 a,65a 00 a = 50mm a = 75, 5mm a = 300mm a = 730mm Vhodnocení: Měřením pomocí přímé metod všla ohnisková vzdálenost pro čočku s ohniskem f=00mm φf = 03,3 ±,7 a pro čočku s ohniskem f=00mm všlo φf = 3,9 ± 6,3. Basselovou metodou pro čočku s f=00mm φf = 85,7 ± 4,7 a pro druhou čočku s ohniskem f=00mm φf = 58, ± 367,3. Chb v měření mohl vzniknout špatným určením ostrosti obrazu. U soustav čoček blo zadáno zvětšení 5,3. U první čočk všl hodnot a =-50mm a a =300mm, u druhé čočk a =-75,5mm a a =730mm.

Měření ohniskových vzdáleností čoček, optické soustavy

Měření ohniskových vzdáleností čoček, optické soustavy Úloha č. 9 Měření ohniskových vzdáleností čoček, optické soustavy Úkoly měření: 1. Stanovte ohniskovou vzdálenost zadaných tenkých čoček na základě měření předmětové a obrazové vzdálenosti: - zvětšeného

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

Optické zobrazování - čočka

Optické zobrazování - čočka I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 10 Optické zobrazování - čočka

Více

Centrovaná optická soustava

Centrovaná optická soustava Centrovaná optická soustava Dvě lámavé kulové ploch: Pojem centrovaná optická soustava znamená, že splývají optické os dvou či více optických prvků. Základním příkladem takové optické soustav jsou dvě

Více

ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk

ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptlkách PaedDr. Jozef Beňuška jbenuska@nextra.sk Optická soustava - je soustava optických prostředí a jejich rozhraní, která mění směr chodu světelných

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2 Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Fyzikální praktikum 2 Zpracoval: Markéta Kurfürstová Naměřeno: 16. října 2012 Obor: B-FIN Ročník: II Semestr: III

Více

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci.

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Znáš pojmy A. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Tenká spojka při zobrazování stačí k popisu zavést pouze ohniskovou vzdálenost a její střed. Znaménková

Více

Měření ohniskové vzdálenosti objektivu přímou metodou

Měření ohniskové vzdálenosti objektivu přímou metodou Měření ohniskové vzdálenosti objektivu přímou metodou návod ke cvičení z předmětu otonika (X34OT) 22. srpna 2007 Katedra Radioelektronik ČVUT akulta elektrotechnická, Technická 2, 166 27 Praha, Česká Republika

Více

Název: Čočková rovnice

Název: Čočková rovnice Název: Čočková rovnice Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Optika Ročník: 5. (3.

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. F3240 Fyzikální praktikum 2

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. F3240 Fyzikální praktikum 2 Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM F340 Fyzikální praktikum Zpracoval: Dvořák Martin Naměřeno: 0. 0. 009 Obor: B-FIN Ročník: II. Semestr: III. Testováno:

Více

Podpora rozvoje praktické výchovy ve fyzice a chemii

Podpora rozvoje praktické výchovy ve fyzice a chemii DUTÁ ZRCADLA ) Duté zrcadlo má ohniskovou vzdálenost 25 cm. Jaký je jeho poloměr křivosti? f = 25 cm = 0,25 m r =? (m) Ohnisko dutého zrcadla leží přesně uprostřed mezi jeho vrcholem a středem křivosti,

Více

Ověření výpočtů geometrické optiky

Ověření výpočtů geometrické optiky Ověření výpočtů geometrické optiky V úloze se demonstrují základní výpočty související s volbou objektivu v kameře. Měřící pracoviště se skládá z řádkové kamery s CCD snímačem L133, opatřeného objektivem,

Více

Bodový zdroj světla A vytvoří svazek rozbíhajících se paprsků, které necháme projít optickou soustavou.

Bodový zdroj světla A vytvoří svazek rozbíhajících se paprsků, které necháme projít optickou soustavou. Optické zobrazení Optické zobrazení je proces, kterým optické soustavy vytvářejí obrazy reálných předmětů. Tyto soustavy mění chod světelných paprsků. Obsahují zrcadla, čočky, odrazné hranoly aj. Princip

Více

Čočky Čočky jsou skleněná (resp. plastová) tělesa ohraničená rovinnými nebo kulovými plochami. Pracují na principu lomu. 2 typy: spojky rozptylky

Čočky Čočky jsou skleněná (resp. plastová) tělesa ohraničená rovinnými nebo kulovými plochami. Pracují na principu lomu. 2 typy: spojky rozptylky Zobrazení čočkami Čočky Čočky jsou skleněná (resp. plastová) tělesa ohraničená rovinnými nebo kulovými plochami. Pracují na principu lomu. 2 typy: spojky rozptylky Spojky schematická značka (ekvivalentní

Více

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 - Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické

Více

ZOBRAZOVÁNÍ ČOČKAMI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika

ZOBRAZOVÁNÍ ČOČKAMI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika ZOBRAZOVÁNÍ ČOČKAMI Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika Čočky Zobrazování čočkami je založeno na lomu světla Obvykle budeme předpokládat, že čočka je vyrobena ze skla o indexu lomu n 2

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 6: Geometrická optika Datum měření: 8. 4. 2016 Doba vypracovávání: 10 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 6: Geometrická optika. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 6: Geometrická optika. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 8. 3. 2010 Úloha 6: Geometrická optika Jméno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužek: 2. ročník, 1. kroužek, pondělí 13:30 Spolupracovala: Eliška

Více

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky Úloha 6 02PRA2 Fyzikální praktikum II Ohniskové vzdálenosti čoček a zvětšení optických přístrojů Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky a principy optických přístrojů.

Více

Úloha č. 5. Měření zvětšení lupy a mikroskopu

Úloha č. 5. Měření zvětšení lupy a mikroskopu Fzikání praktikum IV. Měření zvětšení up a mikroskopu - verze 01 Úoha č. 5 Měření zvětšení up a mikroskopu 1) Pomůck: Stojan upa měřítka mikroskop průhedné měřítko do mikroskopu stojan s měřítkem osvětovací

Více

ZOBRAZOVÁNÍ ODRAZEM NA KULOVÉ PLOŠE aneb Kdy se v zrcadle vidíme převrácení. PaedDr. Jozef Beňuška jbenuska@nextra.sk

ZOBRAZOVÁNÍ ODRAZEM NA KULOVÉ PLOŠE aneb Kdy se v zrcadle vidíme převrácení. PaedDr. Jozef Beňuška jbenuska@nextra.sk ZOBRAZOVÁNÍ ODRAZEM NA KULOVÉ PLOŠE aneb Kd se v zrcadle vidíme převrácení PaedDr. Jozef Beňuška jbenuska@nextra.sk Kulová zrcadla - jsou zrcadla, jejichž zrcadlící plochu tvoříčást povrchu koule (kulový

Více

5.2.7 Zobrazení spojkou I

5.2.7 Zobrazení spojkou I 5.2.7 Zobrazení spojkou I Předpoklady: 5203, 5206 Př. : Prostuduj na obrázku znaménkovou konvenci pro čočky a srovnej ji se znaménkovou konvencí pro zrcadla. Jaké jsou rozdíly, čím jsou zřejmě způsobeny?

Více

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika)

Více

Maticová optika. Lenka Přibylová. 24. října 2010

Maticová optika. Lenka Přibylová. 24. října 2010 Maticová optika Lenka Přibylová 24. října 2010 Maticová optika Při průchodu světla optickými přístroji dochází k transformaci světelného paprsku, vlnový vektor mění úhel, který svírá s optickou osou, paprsek

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 0520 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Geometrická optika - Ohniskové vzdálenosti

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát Michal Veselý, 00 Základní části fotografického aparátu tedy jsou: tělo přístroje objektiv Pochopení funkce běžných objektivů usnadní zjednodušená představa, že objektiv jako celek se chová stejně jako

Více

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů Optické soustav a optická zobrazení Přímé vidění - paprsek od zobrazovaného předmětu dopadne přímo do oka Optická soustava - soustava optických prostředí a jejich rozhraní, která mění chod paprsků Optické

Více

Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav:

Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav: Truhlář Michl 7.. 005 Lbortorní práce č.8 Úloh č. 7 Měření prmetrů zobrzovcích soustv: T = ϕ = p = 3, C 7% 99,5kP Úkol: - Změřte ohniskovou vzdálenost tenké spojky přímou Besselovou metodou. - Změřte ohniskovou

Více

Úloha 6: Geometrická optika

Úloha 6: Geometrická optika Úloha 6: Geometrická optika FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 1.3.2010 Jméno: František Batysta Pracovní skupina: 5 Ročník a kroužek: 2. ročník, pond. odp. Spolupracovník: Štěpán Timr

Více

DUM č. 5 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník

DUM č. 5 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník projekt GML Brno Docens DUM č. 5 v sadě 12. Fy-3 Průvodce učitele fyziky pro 4. ročník Autor: Miroslav Kubera Datum: 05.04.2014 Ročník: 4B Anotace DUMu: Písemný test navazuje na témata probíraná v hodinách

Více

1 Základní pojmy a vztahy

1 Základní pojmy a vztahy 1 Ohniskové vzdálenosti a vady čoček a zvětšení optických přístrojů Pomůcky: Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický objektiv, Ramsdenův okulár v držáku

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více

Určení geometrických a fyzikálních parametrů čočky

Určení geometrických a fyzikálních parametrů čočky C Určení geoetrickýc a yzikálníc paraetrů čočky Úkoly :. Určete poloěry křivosti ploc čočky poocí séroetru. Zěřte tloušťku čočky poocí digitálnío posuvnéo ěřítka 3. Zěřte oniskovou vzdálenost spojné čočky

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 19.3.2011 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: Viktor Polák Hodnocení: Ohniskové vzdálenosti a vady čoček a zvětšení

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1 Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1 Ing. Jakub Ulmann Zobrazování optickými soustavami 1. Optické

Více

5.2.3 Duté zrcadlo I. Předpoklady: 5201, 5202

5.2.3 Duté zrcadlo I. Předpoklady: 5201, 5202 5.2.3 Duté zrcadlo I Předpoklady: 520, 5202 Dva druhy dutých zrcadel: Kulové zrcadlo = odrazivá plocha zrcadla je částí kulové plochy snazší výroba, ale horší zobrazení (pro přesné zobrazení musíme použít

Více

17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický Úloha č. 6 Ohniskové vzdálenosti a vady čoček, zvětšení optických přístrojů Václav Štěpán, sk. 5 17. března 2000 Pomůcky: Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

Více

Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem

Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem Optické přístroje a soustav Geometrická optika převážně jsou založen na vzájemné interakci světelného pole s látkou nebo s jiným fzikálním polem Důsledkem této t to interakce je: změna fzikáln lních vlastností

Více

Výfučtení: Jednoduché optické soustavy

Výfučtení: Jednoduché optické soustavy Výfučtení: Jednoduché optické soustavy Na následujících stránkách vám představíme pravidla, kterými se řídí světlo při průchodu různými optickými prvky. Část fyziky, která se těmito jevy zabývá, se nazývá

Více

R8.1 Zobrazovací rovnice čočky

R8.1 Zobrazovací rovnice čočky Fyzika pro střední školy II 69 R8 Z O B R A Z E N Í Z R C A D L E M A Č O Č K O U R8.1 Zobrazovací rovnice čočky V kap. 8.2 je ke konstrukci chodu světelných paprsků při zobrazování tenkou čočkou použit

Více

ZOBRAZENÍ ČOČKAMI. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Jaroslav Trnka. Úvod 3

ZOBRAZENÍ ČOČKAMI. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Jaroslav Trnka. Úvod 3 ZOBRAZENÍ ČOČKAMI Studijní text pro řešitele FO a ostatní zájemce o fyziku Jaroslav Trnka Obsah Úvod 3 1 Optické zobrazení 4 1.1 Základnípojmy... 4 1.2 Paraxiálníaproximace.... 4 2 Zobrazení jedním kulovým

Více

2.1.18 Optické přístroje

2.1.18 Optické přístroje 2.1.18 Optické přístroje Předpoklad: 020117 Pomůck: kompletní optické souprav I kdž máme zdravé oči (správné brýle) a skvěle zaostřeno, neuvidíme všechno. Př. 1: Co děláš, kdž si chceš prohlédnout malé,

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í OPTICKÉ ZOBRAZOVÁNÍ. Zrcdl prcují n principu odrzu světl druhy: rovinná kulová relexní plochy: ) rovinná zrcdl I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í obyčejné kovová vrstv npřená n sklo

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

Ing. Jakub Ulmann. Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Ing. Jakub Ulmann. Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami II Ing. Jakub Ulmann Zobrazování optickými soustavami 1. Optické

Více

Optika nauka o světle

Optika nauka o světle Optika nauka o světle 50_Světelný zdroj, šíření světla... 2 51_Stín, fáze Měsíce... 3 52_Zatmění Měsíce, zatmění Slunce... 3 53_Odraz světla... 4 54_Zobrazení předmětu rovinným zrcadlem... 4 55_Zobrazení

Více

5.2.8 Zobrazení spojkou II

5.2.8 Zobrazení spojkou II 5.2.8 Zobrazení spojkou II Předpoklady: 5207 Př. 1: Najdi pomocí význačných paprsků obraz svíčky, jejíž vzdálenost od spojky je menší než její ohnisková vzdálenost. Postupujeme stejně jako v předchozích

Více

Paprsková optika. Zobrazení zrcadly a čočkami. Rovinné zrcadlo. periskop 13.11.2014. zobrazování optickými soustavami.

Paprsková optika. Zobrazení zrcadly a čočkami. Rovinné zrcadlo. periskop 13.11.2014. zobrazování optickými soustavami. Paprsková optika Zobrazení zrcadl a čočkami zobrazování optickými soustavami tvořené zrcadl a čočkami obecné označení: objekt, který zobrazujeme, nazýváme předmět cílem je nalézt jeho obraz vzdálenost

Více

CVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 24 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písemnou práci z chemie psalo všech 28 žáků ze

Více

Měření tíhového zrychlení matematickým a reverzním kyvadlem

Měření tíhového zrychlení matematickým a reverzním kyvadlem Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte

Více

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy Fzikální kbinet GmKT Gmnázium J. Vrchlického, Kltov stženo z http:kbinet.zik.net Optické přístroje Subjektivní optické přístroje - vtvářejí zánlivý (neskutečný) obrz, který pozorujeme okem (subjektivně)

Více

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností

Více

Aplikovaná optika I: příklady k procvičení celku Geometrická optika. Jana Jurmanová

Aplikovaná optika I: příklady k procvičení celku Geometrická optika. Jana Jurmanová Aplikovaná optika I: příklady k procvičení celku Geometrická optika Jana Jurmanová Geometrická optika Následující úlohy řešte graficky či výpočtem. 1. Předmět vysoký 1cm je umístěn 30cm od spojky, která

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Zrcadla Zobrazení zrcadlem Zrcadla jistě všichni znáte z každodenního života ráno se do něj v koupelně díváte,

Více

Zadání. Pracovní úkol. Pomůcky

Zadání. Pracovní úkol. Pomůcky Pracovní úkol Zadání 1. Změřte ohniskovou vzdálenost tenké ploskovypuklé (plankonvexní) čočky jednak Besselovou metodou, jednak metodou dvojího zvětšení. 2. Z následujících možností vyberte jednu: a. Změřte

Více

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,

Více

( ) Grafy mocninných funkcí. Předpoklady: 2414, 2701, 2702

( ) Grafy mocninných funkcí. Předpoklady: 2414, 2701, 2702 74 Graf mocninných funkcí Předpoklad: 44, 70, 70 Pedagogická poznámka: Hodina se skládá ze dvou částí V první nakreslíme opakováním základní metod graf několika odvozenin z mocninných funkcí V druhé části

Více

3. Diskutujte výsledky měření z hlediska platnosti Biot-Savartova zákona.

3. Diskutujte výsledky měření z hlediska platnosti Biot-Savartova zákona. 1 Pracovní úkol 1. Změřte závislost výchlk magnetometru na proudu protékajícím cívkou. Měření proveďte pro obě cívk a různé počt závitů (5 a 10). Maximální povolený proud obvodem je 4. 2. Výsledk měření

Více

5.2.7 Zobrazení spojkou I

5.2.7 Zobrazení spojkou I 5.2.7 Zobrazení spojkou I Předpoklady: 5203, 5206 Pedagogická poznámka: Obsah hodiny neodpovídá vyučovací hodině. Kvůli dalším hodinám je třeba dojít alespoň k příkladu 8. případě, že žákům dáte stavebnice

Více

Rozdělení přístroje zobrazovací

Rozdělení přístroje zobrazovací Optické přístroje úvod Rozdělení přístroje zobrazovací obraz zdánlivý subjektivní přístroje lupa mikroskop dalekohled obraz skutečný objektivní přístroje fotoaparát projekční přístroje přístroje laboratorní

Více

6. Geometrická optika

6. Geometrická optika 6. Geometrická optika 6.1 Měření rychlosti světla Jak už bylo zmíněno v kapitole o elektromagnetickém vlnění, předpokládali přírodovědci z počátku, že rychlost světla je nekonečná. Tento předpoklad zpochybnil

Více

6.2.1 Zobrazení komplexních čísel v Gaussově rovině

6.2.1 Zobrazení komplexních čísel v Gaussově rovině 6.. Zobraení komplexních čísel v Gaussově rovině Předpoklad: 605 Pedagogická ponámka: Stihnout obsah hodin je poměrně náročné. Při dostatku času je lepší dojít poue k příkladu 7 a btek hodin spojit s úvodem

Více

5.2.3 Duté zrcadlo I. Předpoklady: 5201, 5202

5.2.3 Duté zrcadlo I. Předpoklady: 5201, 5202 5.2.3 Duté zrcadlo I Předpoklady: 5201, 5202 Dva druhy dutých zrcadel: kulové = odrazivá plocha zrcadla je částí kulové plochy snazší výroba, ale horší zobrazení (aby se zobrazovalo přesně, musíme použít

Více

~ II 1. Souprava pro pokusy z :I optiky opliky. Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice

~ II 1. Souprava pro pokusy z :I optiky opliky. Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice Veletrh nápadů učitelů fyziky Souprava pro pokusy z : optiky opliky Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice Seznam součástí číslo kusů název obr.č. 1 1 kyveta 1 2

Více

Fyzika 2 - rámcové příklady Geometrická optika

Fyzika 2 - rámcové příklady Geometrická optika Fyzika 2 - rámcové příklady Geometrická optika 1. Stanovte absolutní index lomu prostředí, jestliže rychlost elektromagnetických vln v daném prostředí dosahuje hodnoty 0,65c. Jaký je rozdíl optických drah

Více

Měření zvětšení dalekohledu a ohniskové vzdálenosti objektivů 1. Cíl úlohy

Měření zvětšení dalekohledu a ohniskové vzdálenosti objektivů 1. Cíl úlohy Měření zvětšení dalekohledu a ohniskové vzdálenosti objektivů 1. Cíl úlohy 2. Úkoly Seznámení se základními prvky a stavbou teleskopických dalekohledů. A) Změřte ohniskovou vzdálenost předložených objektivů

Více

CVIČNÝ TEST 20. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 20. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 20 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Jsou dána tři celá čísla A, B, C. Zvětšíme-li číslo A o 1, číslo

Více

ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM

ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM Pozorně se podívejte na obrázky. Kterou rukou si nevěsta maluje rty? Na které straně cesty je automobil ve zpětném zrcátku? Zrcadla jsou vyleštěné, zpravidla kovové plochy

Více

Dvojštěrbina to není jen dvakrát tolik štěrbin

Dvojštěrbina to není jen dvakrát tolik štěrbin Dvojštěrbina to není jen dvakrát tolik štěrbin Začneme s vodou 1.) Nejprve pozorujte vlnění na vodě (reálně nebo pomocí appletu dle vašeho výběru), které vytváří jeden zdroj. Popište toto vlnění slovy

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

3. OPTICKÉ ZOBRAZENÍ

3. OPTICKÉ ZOBRAZENÍ FYZIKA PRO IV. ROČNÍK GYMNÁZIA - OPTIKA 3. OPTICKÉ ZOBRAZENÍ Mgr. Monika Bouchalová Gymnázium, Havířov-Město, Komenského 2, p.o. Tento digitální učební materiál (DUM) vznikl na základě řešení projektu

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

3 Projektivní rozšíření Ēn prostoru E n

3 Projektivní rozšíření Ēn prostoru E n 3 Projektivní rozšíření Ēn prostoru E n Projektivním rozšířením eukleidovského prostoru E n rozumíme jeho doplnění o nevlastní body. Výsledný prostor značíme Ēn. Takovéto rozšíření eukleidovského prostoru

Více

Spojky a rozptylky II

Spojky a rozptylky II 2.1.15 pojky a rozptylky II Předpoklady: 020114 Pomůcky: svíčka, jedna optická sada, Př. 1: Využij význačné paprsky pro konstrukci obrazu svíčky, která je umístěna: a) ve vzdálenosti větší než 2 od čočky,

Více

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Základní poznatky Zdroje světla světlo vzniká různými procesy (Slunce, žárovka, svíčka, Měsíc) Bodový zdroj Plošný zdroj Základní poznatky Optická prostředí

Více

Funkce, elementární funkce.

Funkce, elementární funkce. Kapitola 2 Funkce, elementární funkce. V této kapitole si se budeme věnovat studiu základních vlastností funkcí jako je definiční obor, obor hodnot. Připomeneme si pojmy sudá, lichá, rostoucí, klesající.

Více

Krafková, Kotlán, Hiessová, Nováková, Nevímová

Krafková, Kotlán, Hiessová, Nováková, Nevímová Krafková, Kotlán, Hiessová, Nováková, Nevímová Optická čočka je optická soustava dvou centrovaných ploch, nejčastěji kulových, popř. jedné kulové a jedné rovinné plochy. Čočka je tvořena z průhledného

Více

9. Geometrická optika

9. Geometrická optika 9. Geometrická optika 1 Popis pomocí světelných paprsků těmi se šíří energie a informace, zanedbává vlnové vlastnosti světla světelný paprsek = křivka (často přímka), podél níž se šíří světlo, jeho energie

Více

Rychlost, zrychlení, tíhové zrychlení

Rychlost, zrychlení, tíhové zrychlení Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete

Více

Spojky a rozptylky I

Spojky a rozptylky I 2.1.14 pojky a rozptylky I Předpoklady: 020113 Pomůcky: pojky, lavice, baterky, další spojky navíc, Př. 1: Na obrázku je vyřešený jeden z příkladů z minulé hodiny. Co obrázek připomíná? Čím se od skutečného

Více

F - Lom světla a optické přístroje

F - Lom světla a optické přístroje F - Lom světla a optické přístroje Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

Grafické řešení rovnic a jejich soustav

Grafické řešení rovnic a jejich soustav .. Grafické řešení rovnic a jejich soustav Předpoklady: 003 Pedagogická poznámka: V této hodině kreslíme na čtverečkovaný papír tak, aby jeden čtvereček představovala vzdálenost. Př. : Vyřeš graficky soustavu

Více

a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty.

a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty. Příklady: 24. Gaussův zákon elektrostatiky 1. Na obrázku je řez dlouhou tenkostěnnou kovovou trubkou o poloměru R, která nese na povrchu náboj s plošnou hustotou σ. Vyjádřete velikost intenzity E jako

Více

Hloubka ostrosti trochu jinak

Hloubka ostrosti trochu jinak Hloubka ostrosti trochu jinak Jan Dostál rev. 1.1 U ideálního objektivu platí: 1. paprsek procházející středem objektivu se neláme, 2. paprsek rovnoběžný s optickou osou se láme do ohniska, 3. všechny

Více

5 Geometrická optika

5 Geometrická optika 5 Geometrická optika 27. března 2010 Fyzikální praktikum FJFI ČVUT v Praze Jméno: Vojtěch Horný Datum měření: 22.března 2010 Pracovní skupina: 2 Ročník a kroužek: 2. ročník, pondělí 13:30 Spolupracoval

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

55. ročník matematické olympiády

55. ročník matematické olympiády . ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:

Více

25. Zobrazování optickými soustavami

25. Zobrazování optickými soustavami 25. Zobrazování optickými soustavami Zobrazování zrcadli a čočkami. Lidské oko. Optické přístroje. Při optickém zobrazování nemusíme uvažovat vlnové vlastnosti světla a stačí považovat světlo za svazek

Více

Lupa a mikroskop příručka pro učitele

Lupa a mikroskop příručka pro učitele Obecné informace Lupa a mikroskop příručka pro učitele Pro vysvětlení chodu světelných paprsků lupou a mikroskopem je nutno navázat na znalosti o zrcadlech a čočkách. Hodinová dotace: 1 vyučovací hodina

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Elektrická energie Vojtěch Beneš žák měří vybrané fyzikální veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, aplikuje s porozuměním termodynamické

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE 6. Geometrická optika Martin Dlask Měřeno 8. 3., , Jakub Šnor Klasifikace

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE 6. Geometrická optika Martin Dlask Měřeno 8. 3., , Jakub Šnor Klasifikace Úloha Autoři Zaměření FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE 6. Geometrická optika Martin Dlask Měřeno 8. 3., 15. 3., 22. 3. 2013 Jakub Šnor SOFE Klasifikace 1. PRACOVNÍ ÚKOLY 1.1. Určete ohniskovou vzdálenost

Více

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. 4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuk prostřednictvím ICT Číslo a název šablon klíčové aktivit III/2 Inovace a zkvalitnění výuk prostřednictvím

Více

1. VÝRAZY 2. LOMENÉ VÝRAZY 3. ROVNICE 4. SLOVNÍ ÚLOHY REŠENÉ ROVNICEMI 5. SOUSTAVY ROVNIC 6. SLOVNÍ ÚLOHY REŠENÉ SOUSTAVOU ROVNIC 7

1. VÝRAZY 2. LOMENÉ VÝRAZY 3. ROVNICE 4. SLOVNÍ ÚLOHY REŠENÉ ROVNICEMI 5. SOUSTAVY ROVNIC 6. SLOVNÍ ÚLOHY REŠENÉ SOUSTAVOU ROVNIC 7 Jméno a příjmení: Třída:. VÝRAZY.... LOMENÉ VÝRAZY.... ROVNICE.... SLOVNÍ ÚLOHY REŠENÉ ROVNICEMI.... SOUSTAVY ROVNIC... 8. SLOVNÍ ÚLOHY REŠENÉ SOUSTAVOU ROVNIC... 8. NEROVNICE A SOUSTAVY NEROVNIC... a

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více