1. VÝRAZY 2. LOMENÉ VÝRAZY 3. ROVNICE 4. SLOVNÍ ÚLOHY REŠENÉ ROVNICEMI 5. SOUSTAVY ROVNIC 6. SLOVNÍ ÚLOHY REŠENÉ SOUSTAVOU ROVNIC 7
|
|
- Radek Čermák
- před 5 lety
- Počet zobrazení:
Transkript
1 Jméno a příjmení: Třída:. VÝRAZY.... LOMENÉ VÝRAZY.... ROVNICE.... SLOVNÍ ÚLOHY REŠENÉ ROVNICEMI.... SOUSTAVY ROVNIC SLOVNÍ ÚLOHY REŠENÉ SOUSTAVOU ROVNIC NEROVNICE A SOUSTAVY NEROVNIC... a + a = a a a = a a a = 0 a. a = a a a = a : a = a
2 strana Výraz Vzorce (a + b) = a + ab + b Vtýkání před závorku (a b) = a ab + b a ± b ± c =. (a ± b ± c) a b = (a + b). (a b) a b = (a + b). VÝRAZY. Vpočítejte hodnotu výrazu ( ) pro: a) = b) = c) = d) = e) =. Upravte výraz: a) 8 + = a + a + a = + = z + z 0z = b) + = a a a = = c) a + a + 8a a = + = d) b + b b b = = e) a.a =. =.8 =.8 =. = f) 0a.a = b.b =. = 0. = m.m =. Upravte výraz: a) = b) = c) a.8a + a 8.a a.a = d). +. = e) a.a + a.a a.a = f). +.. =. Vdělte výraz: a) a:a = 0 :0 = :8 = :8 = : = b) 0a :a = b :b = 0 : = 0 : = m :m = c) 8m m. Upravte výraz: a a 00a 0a a) a a 0a 0a 8 a a 0a a a a b) 8a a a a 8 0 0b b 00b 8b c) d) 8 b 0b b. Upravte výraz: a) ( 8 ) ( ) = ( ) ( ) = ( 8 ) ( ) = b) ( ) = ( ) = () ( ) =. Roznásobte závork: a).(a ) =.(a ) =.( ) =.( + 8) = b) n.(n ) =.( ) = a.(a ) =.(a + a) = c).(8m ) = b.(b 8 + 8b) = 0.(0, 0,) =,w.(w w) = 8. Upravte výraz: a).(s ) + 8 = 0a.(a ) =.( + ) +.( ) = b).( ).( ) =.( ) = a a.(a 0) = c).( ) +.( + ) =.(a a).(a,a) = (8 ) + = d).(b + b) +.(b b) =.( 8) 0.( ) = a (a ) + a.( a) + a.( a) = e) (a + ) ( a + ) =.( + ) ( + ) = ( + ) ( ) =. Upravte výraz: a).( ) +.( ) = b) b.( + ) b.( + 8 8) = c).( + ) +.( ) +.( ).( ) = d) a.(a a).(a + a ) a.(a a ) = e) 8.(8 ) ( 8 ) = f) (b + b).( b) + (b b). +.(b 8b ).(b b) =
3 strana. Vnásobte výraz: (roznásobte závork) a) ( + ).( + ) = b) ( ).( + ) = c) ( + ).( ) = d) ( 8).(8a ) = e) (a + ).(a ) = f) (8 ).( ) = g) (b + ).(b + ) = h) ( ).( ) = i) ( c).(c ) =. Upravte výraz: a) (8 ).( ) + ( ).( ) = b) (a + ).(a + ) (a ).(a + ) = c) ( + ).( ) + ( + ).( ) = d) (a + ).(a + ) (a ).(a ) =. Upravte výraz podle vzorců: a) ( + ).( ) = ( ).( + ) = ( + a).( a) = b) (0, + ).(0, ) = (0 0,).(0 + 0,) = (,b + a).(,b a) = c) (, + ).(, ) = (0 0,).(0 + 0,) = (, + 0a).(, 0a)= d) ( ) = ( + ) = ( + ) = e) (z ) = ( ) = ( ) = f) (a ) = (8b + ) = ( + 0,) = g) (b + ) = ( + ) = (a + ) = h) ( + ).( ) = (0,a 8 + ).(0,a 8 ) = ( + ).( ) =. Upravte výraz: a) ( ) + ( + ) = b) (z ) + (z + ) = c) (a ) + (a + ) = d) (b 8) + (b + ) = e) ( ) ( + ) = f) (z ) (z ) =. Vdělte výraz a určete podmínk pro dělitele: a) (a ): = (a ): = ( ): = ( + 8):8 = b) (n n):n = (0 0): = (a a ):( a) = (a + a ):( a ) = c) (b 8 + 8b ):b = (8m m ):m = ( w w):( ) = (0, 0,):( 0,) =. Rozložte výraz na součin vtýkáním před závorku: a) a = + = 8a 8a = + = = b) + = a a = a a + 8a = 8 = c) c + 0c + c = 8 + = a b a b + a b =. Vtkněte číslo před závorku = c + = = + 8 = = = = a 8 =. Zjednodušte výraz a výsledek upravte vtýkáním před závorku: a).( + ) +.( ) = b) a.( + a ) a.(a + ) + a = c).( + 8).( 0) = d) z.(z +).(z + z) = e) f) 0 0 g).( ) +.( + ) +.( ).( ) = h) ( + ).( + ) + ( ).( + ) = i) ( + ).( ) + ( ).( ) = j) (a + ).(a ) + (a + ).(a + ) = k) ( + ) + ( ) = 8. Rozložte výraz na součin podle vzorce: a) 8 = 0 = = = c = b) 0 = = 0, 00 = a 000 =, = c) a 8 = = 0,a 00 = 0, 00 = =. Rozložte výraz na součin podle vzorců: a) + + = = a + a + = m 0m + 0 = b) w w + 0, = c 0c + 00 = a a + = 8 + = c) m + m + = + = 0a 0ab + b = =
4 strana. LOMENÉ VÝRAZY. Vkraťte zlomek: a) 8 a a 0c 8c 8 a b ab b) 8 8 a b 8a b 8 8 z 0 z z 8 z Upravte výraz krácením ve zlomku (nejprve upravte vtýkáním před závorku): 8 a) 0 b) 8 m m m a a a a 8a 8a 8 a a a 8. Upravte výraz krácením ve zlomku (nejprve upravte vtýkáním před závorku): a 0 b 8m m a) a b 0 m 8 8 b) a 0a a a a a a a 8 c) 8 8 a a a a. Upravte lomené výraz: k a k a b b k k 0 m 8 m z z 8c c a a k k. Upravte lomené výraz (upravte vtýkáním před závorku a rozkladem na součin pomocí vzorců): a) b) a e) a 8 f) c) a a g) d) 8 h). Upravte lomené výraz (upravte vtýkáním před závorku a rozkladem na součin pomocí vzorců): a) b d) b 0b 0 a b) a a 0 0 e) 8 8 c) a f) a a 0 g) a a 8 a a h) a a i) a a
5 strana. Upravte výraz: a) d) g) j) b) a a a e) 0 h) α α α k) 8 z z c) f) 0 d d i) 8 Rovnice Ekvivalentní úprav rovnic Proměnná (,, z ) v rovnici se nazývá neznámá. Řešit rovnice znamená najít taková čísla, která z ní po dosazení do rovnice za neznámou vtvoří platnou rovnost. Každé takové číslo nazýváme kořenem nebo řešením dané rovnice. Výsledek lze zapsat jako množinu kořenů K = { ; } Ekvivalentní úprav jsou takové, které mění tvar rovnice, ale zachovávají stejné řešení.. zrcadlová výměna levé a pravé stran rovnice bez dalších úprav = nebo = = =. přičtení odečtení téhož čísla (nebo neznámé) k oběma stranám rovnice (neboli převedení z jedné stran na druhou s opačným znaménkem) 8 = nebo = + = + 8 =. vnásobení nebo vdělení obou stran rovnice stejným nenulovým číslem = / : =. úprav výrazů na jednotlivých stranách rovnice + = 8 = Někd se neznámá v rovnici odečte a zůstane např.: 0 = 0; nebo 0 = pokud vjde 0 = 0 rovnice má nekonečně mnoho řešení pokud vjde 0 = rovnice nemá řešení Zkouškou nazýváme kontrolu správnosti řešení, kterou provedeme dosazením kořenů do původní rovnice. Lineární rovnice a = b = b a = a = a = a = a + a = b = a + b = a b = b a = a b. b = a. = a b a. = b pro a 0 a. = 0 = 0
6 strana. ROVNICE. Řešte rovnice a proveďte zkoušku a) 0 00 a 8a 0 b) a 8a 0 c) 0 a 8 a 0 d) 8 a 8 0. Řešte rovnice a proveďte zkoušku a) 8 = b) a = a + c) = + + d) + + = e).( + ) = 8 + f).(a ) =.(a + ) g).(a + ) = a + 8.(a ) h) ( ) =.( + 8) i).( + ) ( + ) = j).(b ) + 0 = b k).( a) =.( a) + a l).( ) + =.( 0,). Řešte rovnice a proveďte zkoušku a) (a + 0) + = 0 b) (a 0) 0 = a c) ( ) = d) 8 ( ) = ( ) e) ( ) = 8.( ) f) (a ) = 0 g) ( ) ( ) = 0 h) + 0,( 8) = i) 0,( + ) =. Řešte rovnice a proveďte zkoušku a a a) b) c) d) e) f) g) 0,. Řešte rovnice a proveďte zkoušku c c a a a a) b) c) d) n n e) f) 0, z g) z h) i) j) 0, k) 8 8 l) ( a a ) a n) a m) b b b 8 o) ( ) 0 p) q) a a a r) a 0, s). Řešte rovnice a proveďte zkoušku 8 a) b) c) d) e) f) g) 0, a a. SLOVNÍ ÚLOHY REŠENÉ POMOCÍ ROVNIC. V parku rostou líp, javor, smrk a borovice. Lip je dvakrát více než javorů, smrků je o patnáct více než lip a borovic je dvakrát více než smrků. Dohromad je tam stromů. Kolik kterých druhů roste v parku?. Do prodejn přivezli kg ovoce. Jahod blo o pět kg méně než banánů, třešní blo dvakrát více než jahod a melounů blo o dva kg více než třešní. Vpočítej, kolik kg blo jahod, banánů, třešní a melounů.
7 strana. V prodejně měli žlutá, červená, modrá a zelená trička. Žlutých bla celkového počtu, modrých bla celkového počtu, zelených bla celkového počtu a červených blo ks. Vpočítej, kolik triček blo celkem v prodejně a kolik kterých barev.. Na infekčním oddělení bla pacientů s AIDS, měla sfilis a pacientů mělo kapavku. Vpočítej, kolik pacientů leželo na infekčním oddělení s AIDS a kolik mělo sfilis.. Petr spotřeboval při vaření celkového množství brambor, zůstalo mu kg brambor. Kolik kg spotřeboval a kolik blo celkem kg brambor?. V cukrárně měli celkem ks zákusků. Větrníků blo třikrát více než laskonek, indiánů blo o deset více než laskonek a pařížských dortů blo o pět více než indiánů. Kolik blo kterých druhů?. V prodejně automobilů bl tto značk Ford, Renault, Octavia a Audi. Fordů bla celkového počtu, Renaultů bla polovina celkového počtu, Octávií blo třikrát více než Fordů a Audi blo deset vozů. Kolik kterých značek blo v prodejně? 8. Ve škole studují kuchaři, číšníci, cukráři. Kuchařů je polovina celkového počtu, číšníků jsou a cukrářů je 80. Kolik je celkem žáků ve škole a kolik je kuchařů a kolik číšníků? celkového počtu. Jana si koupila tričko a čepici. Platila 00 Kč. Tričko blo o dražší než čepice. Kolik stálo tričko a čepice?. Obvod trojúhelníku je, cm. Strana A je o cm delší než strana B. Strana C je dvakrát menší než strana A. Kolik měří která strana?. Obvod trojúhelníku je cm. Strana B je o cm menší než strana A, strana C je o cm menší než strana B. Kolik měří která strana?. Eva si koupila chléb, máslo, sýr a mléko. Dohromad platila Kč. Chléb stojí dvakrát více než sýr, máslo o,0 Kč více než chléb a mléko o,0 Kč více než sýr. Kolik která potravina stojí?. Žáci při úpravě okolí škol vsázeli první den celkového počtu stromků, druhý den zbtku a třetí den stromků. Kolik jich celkem vsázeli?. Josef otci koupil dárek za čtvrtinu svých úspor a matce koupil dárek za 0 Kč. Zůstalo mu 0 Kč. Kolik měl naspořeno?. Součástka měla před opracováním hmotnost 0 g. Jakou hmotnost měla součástka opracovaná, je-li hmotnost odpadu dvacetkrát menší než hmotnost opracované součástk?. Otci je let. Jeho třem dcerám je, a let. Za kolik let se bude věk otce rovnat součtu let jeho dcer?. V soutěži zručnosti soutěžil tříd KA, KB a KC. Získali celkem 8 bodů. Třída KB získala o 0 bodů více než KA, třída KC získala o 8 bodů méně než KB. Kolik bodů získala každá třída? 8. Maminka koupila Mirkovi a Tomášovi košili. Zaplatila celkem 00 Kč. Tomášova košile bla o polovinu dražší než Mirkova. Kolik Kč stál košile?. V trojúhelníku ABC je velikost vnitřního úhlu pětkrát menší než velikost vnitřního úhlu. Úhel α je třikrát větší než. Určete velikosti vnitřních úhlů v trojúhelníku ABC. 0. V trojúhelníku ABC je velikost vnitřního úhlu o větší než velikost vnitřního úhlu. Úhel α je dvakrát menší než. Určete velikosti vnitřních úhlů v trojúhelníku ABC.. Tč má být rozříznuta na čtři části tak, že délka první části má být rovna délk celé tče, délka druhé části třetině délk celé tče a další dvě části mají mít stejnou délku po cm. Určete délk prvních dvou částí tče a délku celé tče. Šířku řezů zanedbejte.
8 strana 8. SOUSTAVY ROVNIC. Řešte soustav rovnic a proveďte zkoušku: a) + = b) + = 8 c) + = d) = = 8 = = 8 + = e) + = f) = g) + = h) = + = + = = =. Řešte soustav rovnic a proveďte zkoušku: a) + = b) + = c) + = d) + = = = = + = e) = f) + = g) + + = h) ( ) + = 0 + = + = = ( + ) + =. Řešte soustav rovnic a proveďte zkoušku: a) ( ) 0 = b) ( + ) = c) ( ) = ( + ) 0 = 00 + ( ) + = - ( + ) + = d).( ) + = 0 e).(a + b) +, =.(a + b) +.(8 ) = 8 0 (a b) = 0b. Řešte soustav rovnic a proveďte zkoušku: a b a b a) a b) c) + = 8 d), a e) b a b f) 0, 0. SLOVNÍ ÚLOHY REŠENÉ POMOCÍ SOUSTAVY ROVNIC. Do lahví, z nichž některé jsou půllitrové a některé mají objem 0, l, máme uskladnit l malinového sirupu. Kolik musíme mít lahví půllitrových a kolik o objemu 0, l?. Účetní měla v pokladně v hotovosti 0 Kč ve bankovkách, zčásti padesátikorunových, zčásti stokorunových. Kolik blo kterých bankovek?. litrů vína jsme rozdělili beze zbtku do pětilitrových a třílitrových demižonů. Celkem máme demižonů. Kolik blo třílitrových a kolik pětilitrových?. Kč jsme zaplatili ve dvoukorunách a pětikorunách. Dohromad máme mincí. Kolik jsme měli pětikorun a kolik dvoukorun?. Na školním výletě spali chlapci v chatkách a platili 00 Kč za noc, dívk spal v hotelu a platil 0 Kč za noc. Dohromad blo chlapců a dívek, celkem všichni zaplatili 00 Kč. Kolik blo chlapců a kolik dívek?. Při zlepšování životního prostředí areálu škol blo žáků rozděleno do dvou skupin A a B. Ve skupině A každý žák odpracoval šest brigádnických hodin, ve skupině B čtři hodin. Celkem žáci odpracovali hodin. Kolik žáků blo ve skupině A a kolik v B?. Lístk na vlak stál celkem 80 Kč. Lístek pro dospělé stál 0 Kč, lístek pro děti Kč, dohromad jelo osob. Vpočítej, kolik blo dospělých, a kolik dětí.
9 strana. NEROVNICE A SOUSTAVY NEROVNIC Vberte čísla, která patří do intervalu ( ; ), 0 0, Zapište vznačenou množinu pomocí nerovnice a jako interval. Vberte čísla, která jsou prvk zadané množin. 8, Zapište interval zobrazený na grafu Vberte správnou variantu odpovědi Zapište množinu pomocí intervalu a) ; b) ; c) ; Zapište množinu pomocí intervalu a) ; b) ; c) ; Které z čísel patří do intervalu ; 0,) a) = b) = c) =, d) = 0, d) ; d) ;
10 strana Které z čísel patří do intervalu ε ( ; ) a) = 0, b) = 0 c) =, d) = 0, Zapište množinu pomocí intervalu a) ; b) ; c) ; d) ; Zapište množinu pomocí intervalu a) ; b) ; c) ; d) ; Které z čísel patří do intervalu 0,; a) = b) = c) =, d) = 0, Které z čísel patří do intervalu ( ; a) = b) = 0 c) =, d) = 0,. Řešte nerovnice, řešení znázorněte na číselné ose a zapište pomocí intervalu a) ( ) ( + ) b) (a + ) (a ) c) + ( ) 0 d) a 0 a + 0 e) ( ) f) ( ) ( ). Zapište pomocí intervalu množin A, B, C. Pak zapište průnik množin A B. A B C. Řešte soustav nerovnic, řešení znázorněte na číselné ose a zapište pomocí intervalu a) + + ( ) b) c) (a ) (a + ) (a + ) (a ) d) 8( + ) ( ) e) ( ) ( ) ( ) ( ) f) ( ) ( ) ( ) g) ( + ) ( ) + ( 0) 0 h) a a + a a +
Lineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x.
Lineární rovnice Rovnice je zápis rovnosti mezi dvěma algebraickými výrazy, které obsahují alespoň jednu proměnnou, kterou nazýváme neznámá. Rovnice má levou stranu L a pravou stranu P. Rovnost pak zapisujeme
VíceSlovní úlohy řešené soustavou rovnic
Slovní úlohy řešené soustavou rovnic Jirka s maminkou byl na nákupu. Maminka koupila 2 kg broskví a 5 kg brambor a platila 173 Kč. Sousedka koupila 3 kg broskví a 4 kg brambor a platila 186 Kč. Kolik stál
VíceSbírka. úloh z matematiky. pro 2. ročník. tříletých učebních oborů
Sbírka úloh z matematik pro. ročník tříletých učebních oborů Jméno: Třída: Obsah Výraz Člen výrazu Absolutní hodnota Sčítání a odčítání výrazů 6 Násobení výrazů 6 Dělení výrazů jednočlenem 8 Vtýkání před
VíceMATEMATIKA 8. ročník II. pololetí
MATEMATIKA 8. ročník II. pololetí Úpravy algebraických výrazů: Sčítání a odčítání celistvých výrazů: 1.A a) 5a + ( 3a + 7 ) b) (-3a 4b ) - ( 12a + 6 ) c) ( -8a + 3 ) ( -15a 4 ) 1.B a) 4x + ( 4x + 7 ) b)
VícePŘÍKLAD 6: Řešení: Příprava k přijímacím zkouškám na střední školy matematika 29. Určete, pro které x je hodnota výrazu 8x 6 rovna: a) 6 b) 0 c) 34
Příprava k přijímacím zkouškám na střední školy matematika 29 PŘÍKLAD 6: Určete, pro které x je hodnota výrazu 8x 6 rovna: a) 6 b) 0 c) 34 Chceme-li vypočítat hodnotu výrazu za daného předpokladu, pak
VíceÚvod do řešení lineárních rovnic a jejich soustav
Úvod do řešení lineárních rovnic a jejich soustav Rovnice je zápis rovnosti dvou výrazů, ve kterém máme najít neznámé číslo (neznámou). Po jeho dosazení do rovnice musí platit rovnost. Existuje-li takové
VíceRozklad na součin vytýkáním
Rozklad na součin vytýkáním 1. Rozložte na součin prvočísel číslo: 165 = 210 = 546 = 2. Rozložte na součin mocnin prvočísel číslo: 96 = 432 = B. Rozklad na součin vytýkáním 1. Rozložte na součin vytýkáním:
VícePříprava na pololetní písemnou práci 9. ročník
Příprava na pololetní písemnou práci 9. ročník. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: a) 7 0, b) 9 4 0,0 0000 0, k) 6 c) 0,0,06 0,09:0, d)
Více1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm
1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm jablek více než na první. Kolik jablek je dohromady na stole, víš-li, že na druhé hromádce
VíceUrčete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy: Vypočtěte, kolik korun je 5 setin procenta ze 2 miliard korun.
1. Operace s reálnými čísly Obsah jedné stěny krychle je 289 cm 2. Vypočítejte objem této krychle. [S= 4 913 cm 3 ] Určete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy:
VícePříprava na pololetní písemnou práci 9. ročník
Příprava na pololetní písemnou práci 9. ročník 1. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: 1 7 1 a) 0, b) 0,01. 1000 + 10. c) 0,5. 0,06 0,09
VícePříklady k opakování učiva ZŠ
Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,
VíceUrčete všechna čísla z množiny {0,2,3,4,5,6,7,8,9,10}, která jsou děliteli čísel: a) 24 b) 210 c) 240 d) 216 e)7560
Dělitelnost čísel Prvočíslo je přirozené číslo, které je beze zbtku dělitelné právě dvěma různými čísl, a to číslem jedna a sebou samým (ted není prvočíslo). Přirozená čísla různá od jedné, která nejsou
VíceAlgebraické výrazy-ii
Algebraické výrazy-ii Jednou ze základních úprav mnohočlenů je jejich rozklad na součin mnohočlenů nižšího stupně. Ne všechny mnohočleny lze na součin rozložit. Pro provedení rozkladu můžeme použít: 1.
VíceNa odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč.
Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč. Kolik kusů tužek od každého druhu bylo koupeno? 16 ks dražších a 9
VícePřípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro
Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.
VíceCVIČNÝ TEST 20. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 20 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Jsou dána tři celá čísla A, B, C. Zvětšíme-li číslo A o 1, číslo
VícePraha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,
E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Tatínek zaplatil za rozříznutí
VíceKaţdé číslo, které lze vyjádřit jako podíl dvou celých čísel, je číslo racionální.
. Racionální čísla. ročník -. Racionální čísla.. Vymezení pojmu Kaţdé číslo které lze vyjádřit jako podíl dvou celých čísel je číslo racionální. Při podílu dvou celých čísel a a b mohou nastat tyto situace
VíceZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
VíceUčební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.
Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Kapitola Téma (Učivo) Znalosti a dovednosti (výstup) Průřezová témata, projekty
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou čtyři červené
Více2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:
KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku
VíceTypové příklady k opravné písemné práci z matematiky
Typové příklady k opravné písemné práci z matematiky Př. 1: Umocni (bez tabulek, bez kalkulačky): 2 2 4 2 9 2 10 2 100 2 1000 2 20 2 200 2 500 2 3000 2 80 2 900 2 300 2 40000 2 0,1 2 0,001 2 0,05 2 0,008
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální
VíceKategorie: U 1 pro žáky 1. ročníků učebních oborů
Kategorie: U 1 pro žáky 1. ročníků učebních oborů 1) Kolika způsoby lze zaplatit částku 50 Kč, smíme-li použít pouze mince v hodnotě 1 Kč, 5 Kč a 10 Kč? ) Umocněte: 1 7 p3 q 3 r + 7pq r 3 = 3) Přeložíme-li
VícePřijímací test studijních předpokladů
Univerzita obran Přijímací test studijních předpokladů Test ze dne 10. 4. 2018 (02) Fakulta vojenských technologií V každém příkladě je právě jedna z nabízených variant řešení správná. Za správně zakroužkovanou
Více4 Rovnice a nerovnice
36 Rovnice a nerovnice 4 Rovnice a nerovnice 4.1 Lineární rovnice a jejich soustavy Požadované dovednosti řešit lineární rovnice o jedné neznámé vyjádřit neznámou ze vzorce užít lineární rovnice při řešení
Více1BMATEMATIKA. 0B9. třída
BMATEMATIKA 0B. třída. Na mapě v měřítku : 40 000 je vyznačena červená turistická trasa o délce cm. Za jak dlouho ujde tuto trasu turista, který se pohybuje stálou rychlostí 4 km/h? (A) za minut (B) za
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou zakresleny rovinné
VíceLineární rovnice o jedné neznámé a jejich užití
Lineární rovnice o jedné neznámé a jejich užití Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, okruh Rovnice a nerovnice Pracovní list vytvořil: Mgr. Helena Korejtková Období
VíceLineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic
Lineární funkce, rovnice a nerovnice Soustavy lineárních rovnic motivace Využívají se napřklad při analytickém vyšetřování vzájemné polohy dvou přímek v rovině a prostoru. Při řešení některých slovních
VíceMATEMATIKA NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! 9. třída
MATEMATIKA 9. třída NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! JMÉNO TŘÍDA ČÍSLO ŽÁKA AŽ ZAHÁJÍŠ PRÁCI, NEZAPOMEŇ: www.scio.cz, s.r.o. Pobřežní 34, 86 00 Praha 8 tel.: 34 705 555 fa: 34 705 505
VíceKFC/SEM, KFC/SEMA Rovnice, nerovnice
KFC/SEM, KFC/SEMA Rovnice, nerovnice Požadované dovednosti: Řešení lineárních rovnic a nerovnic Řešení kvadratických rovnic Řešení rovnic s odmocninou Řešení rovnic s parametrem Řešení rovnic s absolutní
VíceVzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.
Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST Maimální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu je
VíceModelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
VíceALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE
ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.
VíceSlovní úlohy o směsích. směsi. Výkladová úloha. Řešené příklady. roztoky. Výkladová úloha. Řešené příklady
Slovní úloh o směsích směsi Výkladová úloha Řešené příklad 1 2 3 4 5 6 7 8 9 10 roztok Výkladová úloha Řešené příklad 11 12 13 14 15 16 Slovní úloh (směsi) V masně vrábějí mletou masovou směs z vepřového
Více2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
VíceNeotvírej, dokud nedostaneš pokyn od zadávajícího!
9. třída Neotvírej, dokud nedostaneš pokyn od zadávajícího! jméno třída číslo žáka až zahájíš práci, nezapomeň: www.scio.cz, s.r.o. Pobřežní, 86 00 Praha 8 tel.: 0 fax: 0 0 e-mail: scio@scio.cz www.scio.cz
VíceLineární funkce, rovnice a nerovnice 4 lineární nerovnice
Lineární funkce, rovnice a nerovnice 4 lineární nerovnice 4.1 ekvivalentní úpravy Při řešení lineárních nerovnic používáme ekvivalentní úpravy (tyto úpravy nijak neovlivní výsledek řešení). Jsou to především
VícePřehled učiva matematiky 7. ročník ZŠ
Přehled učiva matematiky 7. ročník ZŠ I. ARITMETIKA 1. Zlomky a racionální čísla Jestliže rozdělíme něco (= celek) na několik stejných dílů, nazývá se každá část celku zlomkem. Zlomek tři čtvrtiny = tři
VícePříklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL.
Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Jméno a příjmení(čitelně): varianta č. 90 Přezdívka(nepovinné): Zde pište své výsledky Napište rovnici přímky procházející
VíceALGEBRAICKÉ VÝRAZY FUNKCE
ALGEBRAICKÉ VÝRAZY. Násobení a dělení mnohočlenů definovat základní pojmy (jednočlen, mnohočlen, koeficient) pro učivo násobení a dělení mnohočlenů a) Dokažte algebraickou identitu ab cd ac bd a d b c.
VíceModelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
VíceObecné informace: Typy úloh a hodnocení:
Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:
VíceMatematika. Až zahájíš práci, nezapomeò:
9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení
VíceLineární rovnice pro učební obory
Variace 1 Lineární rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice
VíceVariace. Lineární rovnice
Variace 1 Lineární rovnice Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice Rovnice je
VíceVZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava
VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,
VícePříklady pro přijímací zkoušku z matematiky školní rok 2012/2013
Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013 Test přijímací zkoušky bude obsahovat úlohy uzavřené, kdy žák vybírá správnou odpověď ze čtyř nabízených variant (správná je vždy právě
VíceCVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu
VícePříklady na 13. týden
Příklady na 13. týden 13-1 Kruhový záhon o průměru 10 m se má osázet begóniemi. Na jednu sazenici je zapotřebí 2 dm 2. 1g semena má 5 000 zrn, jejichž klíčivost je 85 %. Pěstební odpad od výsevu do výsadby
VíceExponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.
Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ
VíceNerovnice a nerovnice v součinovém nebo v podílovém tvaru
Variace 1 Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,
VíceAlgebraické výrazy - řešené úlohy
Algebraické výrazy - řešené úlohy Úloha č. 1 Určete jeho hodnotu pro =. Určete, pro kterou hodnotu proměnné je výraz roven nule. Za proměnnou dosadíme: = a vypočteme hodnotu výrazu. Nejprve zapíšeme rovnost,
VíceSlouží k opakování učiva 8. ročníku na začátku školního roku list/anotace
Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 utor Mgr. Martina Smolinková Datum 9. 8. 2014 Ročník 8. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika
VíceSbírka úloh z matematiky. 6. - 9. ročník
Sbírka úloh z matematiky 6. - 9. ročník Pro základní školy srpen 2011 Vypracovali: Mgr. Jaromír Čihák Ing. Jan Čihák Obsah 1 Úvod 2 2 6. ročník 3 2.1 Přirozená čísla.................................. 3
VíceCVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23
CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :
Vícea a
1.. Cíle V této kapitole se naučíme určovat zejména celočíselné kořeny některých polynomů. Výklad Při výpočtu hodnoty polynomu n k p( x) = ak x n-tého stupně n 1 v bodě x 0 C k = 0 musíme provést ( n 1)
VíceCVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné
Více4. Lineární nerovnice a jejich soustavy
4. Lineární nerovnice a jejich soustavy 9. ročník 4. Lineární nerovnice a jejich soustavy 5 > 0 ostrá nerovnost 5.0 50 neostrá nerovnost ( používáme pouze čísla) ZNAKY NEROVNOSTI: > je větší než < je menší
VíceKlíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.
Přípravný kurz - Matematika Téma: Slovní úlohy Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.Hetmerová 12 19 9:02 Jak pracovat
VíceTéma 1: Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel)
Téma : Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel) Příklady Číselná osa ) Která z následujících čísel neleží
VíceDigitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
VíceSOUBOR TESTOVÝCH ÚLOH Z MATEMATIKY
SOUBOR TESTOVÝCH ÚLOH Z MATEMATIKY V široce otevřených úlohách 2 7 zapisujte celý postup řešení. 1 Vypočtěte, kolikrát kratší je časový interval sekund oproti časovému intervalu minuty. úzce otevřená 6krát
VíceAritmetická posloupnost
1. Zjistěte vzorec posloupnosti 6; 3; 2; 3/2; 1,2; 1; 6/7; 3/4;... 2. V aritmetické posloupnosti z daných údajů vypočítejte naznačené hodnoty: a 4 = 11 a (a) 1 =? a 1 = 2 n =? a 5 = 14 d =? (d) d = 3 a
VíceCVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 2 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Od součtu libovolného čísla x a čísla 256 odečtěte číslo x zmenšené o 256.
VíceTémata absolventského klání z matematiky :
Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný
VíceMateřská škola a Základní škola při dětské léčebně, Křetín 12
Mateřská škola a Základní škola při dětské léčebně, Křetín 12 Autor: Mgr. Miroslav Páteček Vytvořeno: červen 2012 Klíčová slova: Matematika a její aplikace Podobnost, funkce, goniometrické funkce, lomený
VíceSlovní úlohy řešené rovnicí pro učební obory
Variace 1 Slovní úlohy řešené rovnicí pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Slovní
VícePOSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
Více1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:
Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky
VíceKOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
VíceCVIČNÝ TEST 38. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 38 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Pro a b a b zjednodušte výraz ( a b a ) ( b a b ). VÝCHOZÍ TEXT K ÚLOZE Jedním
VíceProjekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace
Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového
VíceM - Kvadratické rovnice a kvadratické nerovnice
M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.
VíceTest z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)
Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015
VíceMATEMATIKA. v úpravě pro neslyšící MAMZD19C0T01 DIDAKTICKÝ TEST SP-3-T SP-3-T-A
MATEMATIKA v úpravě pro neslyšící MAMZD9C0T0 DIDAKTICKÝ TEST 2 SP-3-T SP-3-T-A Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 %. Základní informace k zadání zkoušky Didaktický test obsahuje
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Prohlédni si obrázek a vyber správnou
VíceFunkce a lineární funkce pro studijní obory
Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce
VíceVZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.
VíceProjekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Lineární rovnice
2. Lineární rovnice označuje rovnici o jedné neznámé, ve které neznámá vystupuje pouze v první mocnině. V základním tvaru vypadá následovně: ax + b = 0, a 0 Zde jsou a a b nějaká reálná čísla, tzv. koeficienty
VíceCVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 48 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán konvexní čtyřúhelník, jehož vnitřní
VíceCVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde
Vícec jestliže pro kladná čísla a,b,c platí 3a = 2b a 3b = 5c.
Úloha 1 1 b. Od součtu neznámého čísla a čísla 17 odečteme rozdíl těchto čísel v daném pořadí. Vypočtěte a zapište výsledek v. Úloha 2 1 b. 25 Na číselné ose jsou obrazy čísel 0 a 1 vzdáleny 5 mm. Určete
VíceMATEMATIKA vyšší úroveň obtížnosti
MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD11C0T02 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový
Více3. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE
. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE Dovednosti:. Lineární funkce. -Vědět, že je vyjádřena předpisem f: y = a + b, a znát geometrický význam konstant a,b. -Umět přiřadit proměnné její
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Do jednoho vagonu se vejde 70
VíceCVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 22 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Kontroloři Státní zemědělské a potravinářské inspekce
VíceDruháci a matematika VII. Násobíme, dělíme do 20
Druháci a matematika VII Násobíme, dělíme do 20 1. Násobení 1. Vyznačte, jak děti stojí na hřišti. V kolika řadách stojí? V kolika stojí zástupech? Kolik je všech dětí na hřišti? Jak to vypočítáme? 2.
Více1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
VíceČíslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta
1. Mnohočleny 2. Rovnice rovné nule 3. Nerovnice různé od nuly 4. Lomený výraz 5. Krácení lomených výrazů 6. Rozšiřování lomených výrazů 7. Sčítání lomených výrazů 8. Odčítání lomených výrazů 9. Násobení
Víceg) když umocníme na druhou třetinu rozdílu dvou čísel x, y a zvětšíme toto číslo o jejich součin, tak dostaneme výraz?
Téma : Výrazy, poměr (úprava výrazů, podmínky řešitelnosti, algebraické vzorce, hodnota výrazů, poměr, měřítko na mapě) Příklady Zápis výrazů ) Zapište jako výraz: a) součet trojnásobku libovolného čísla
VícePřijímačky nanečisto - 2011
Přijímačky nanečisto - 2011 1. Vypočtěte: 0,5 2 + (-0,5) 2 (- 0,1) 3 = a) 0,001 b) 0,51 c) 0,499 d) 0,501 2. Vypočtěte: a) 0,4 b) - 0,08 c) 2 3 d) 2 3. Určete číslo s tímto rozvinutým zápisem v desítkové
VíceSada pracovních listů matematika 7 2 CZ.1.07/1.1.16/ Matematika pro 7. ročník. Mgr. Věra Zouharová
Sada pracovních listů matematika 7 2 CZ.1.07/1.1.16/02.0079 Matematika pro 7. ročník Sada pracovních listů je zaměřena na opakování, upevnění a procvičování učiva 7. ročníku. Využíváno k samostatné a skupinové
Více