(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a
|
|
- Romana Šmídová
- před 9 lety
- Počet zobrazení:
Transkript
1 Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie: Pod pojmem tenká čočk rozumíme tkovou čočku, jejíž tloušťk d je mlá v porovnání s poloměrem křivosti. Předmětová obrzová hlvní rovin splývjí v jednu rovinu, procházející středem S čočky, od něhož měříme jk předmětovou obrzovou vzdálenost, ' tk i ohniskovou vzdálenost. U spojky vzniká obrz n opčné strně čočky než je umístěn předmět můžeme ho pozorovt stínítkem. Obr. 1 Je-li ohnisková vzdálenost, vzdálenost předmětu ' vzdálenost obrzu, pk pltí zobrzovcí rovnice: =, (1) přičemž všechny veličiny uvžujeme bsolutně. Její úprvou získáme vzth =. + () Přímé zvětšení Z je dáno vzthem y Z = =, y (3) opět uvžujeme bsolutní hodnoty, přitom y je velikost předmětu y' velikost obrzu. U rozptylky je předmětové ohnisko n strně obrzu obrzové opčně n strně předmětu. Obrz, který je neskutečný, vzniká n stejné strně čočky jko je předmět. Zobrzovcí rovnice má tvr =. (4) - 1 -
2 Z ní plyne = (5) Ohnisková vzdálenost tenkých čoček se dá měřit mnoh různými způsoby. Ukážeme si některé z nich: ) Měření ohniskové vzdálenosti tenké spojky metodou přímou: Přímá metod spočívá v tom, že měříme pomocí předmětu jeho zostřeného obrzu n mtnici vzdálenost, ', doszením do vzthu () vypočítáme ohniskovou vzdálenost. Z hodnot, ' všk můžeme určit i gricky. Npíšeme-li rovnici () ve tvru bude tkže nebo + =, ( ) =, =, ( ) =, (6) tedy =. (6) Vyneseme-li do gru n jednu osu všechny nměřené hodnoty ', n druhou hodnoty příslušné hodnoty, ' spojíme, protnou se všechny přímky v bodě F, který má souřdnice [, ] v souhlse se vzthy (6) (6). Z obrázku i mtemtickou cestou se dá dokázt, že nejkrtší úsečk je při = ', tkže + = 4. Ve všech osttních přípdech je + > 4. Z toho vyplývá, že obrz n stínítku dostneme pouze při splnění podmínky + 4. Přímá metod není dosttečně přesná, neboť čočky mívjí objímky, tkže můžeme jejich střed pouze odhdnout nměřené hodnoty, ' nejsou dosttečně přesné. Proto se používjí ke stnovení ohniskové vzdálenosti i jiné metody. - -
3 b)měření ohniskové vzdálenosti tenké spojky Besselovou metodou Tto metod se zkládá n pozntku, že při určité vzdálenosti předmětu stínítk, existují dvě různé polohy čočky, při nichž vznikne ostrý obrz. Oznčíme-li vzdálenost předmětu při prvním postvení čočky 1 ' vzdálenost obrzu při druhém postvení čočky, viz obr. 4 pltí = 1 =. V poloze I vznikne n stínítku obrz zvětšený, v poloze II obrz zmenšený. Podle obrázku je d = =, e = +. Odtud vypočítáme e + d e d =, = Dosdíme-li tyto výrzy do rovnice () obdržíme e d = 4e kde e je vzdálenost předmětu od stínítk d je vzdálenost mezi I. II. polohou čočky. (7) c) Měření ohniskové vzdálenosti tenké čočky pomocí zvětšení Uprvíme-li vzth () n tvr =, resp. =, dosdíme z (3) = Z, obdržíme =, 1 + Z (8) Z resp. = 1 + Z (9) Změříme-li zvětšení Z můžeme z nměřené hodnoty ' resp. vypočítt ohniskovou vzdálenost podle vzthu (8) resp. (9). Při relizci této metody použijeme jko předmět osvětlené průhledné milimetrové měřítko, které zobrzujeme n mtnici, optřenou též - 3 -
4 milimetrovým měřítkem. Kryje-li se n dílků předmětu (zvětšených) s n' dílky obrzu, je zvětšení n Z = n (10) d) Měření ohniskové vzdálenosti tenké rozptylky Vzhledem k tomu, že u rozptylky vzniká obrz n stejné strně jko je předmět, nemůžeme použít stínítko, n kterém by se obrz promítl. Abychom dostli skutečný obrz, použijeme spojnou čočku tkové ohniskové vzdálenosti, by spolu s rozptylkou vznikl optická soustv s kldnou optickou mohutností. Obr. 5. I Spojná čočk vytvoří skutečný obrz y', který můžeme zchytit n stínítku. Jestliže vložíme pprsku vytvářejícímu reálný obrz y' do cesty rozptylku ve vzdálenosti ' od obrzu y' bude pro ni obrz y' neskutečným předmětem rozptylk vytvoří ve vzdálenosti ' skutečný obrz y'', který již můžeme zobrzit n stínítku (viz obr. 5.). Změříme-li hodnoty, ' můžeme použitím rovnice (5) vypočítt ohniskovou vzdálenost rozptylky. Je všk třeb si uvědomit, že oznčení obrzových předmětových vzdálenosti v obrázcích 5 je opčné. Má proto v tomto přípdě rovnice (5) tvr = (11) 3) Úkol: ) Určete ohniskovou vzdálenost tenké spojky přímou metodou: 1) početně ze vzthu () ) gricky podle obr. 3 vzthů (5) (6) 3) pokusem ověřte podmínku + 4 b) Určete ohniskovou vzdálenost tenké spojky metodou Besselovou c) Určete ohniskovou vzdálenost tenké spojky pomocí zvětšení d) Určete ohniskovou vzdálenost tenké rozptylky 4) Postup: ) Předmět stínítko postvíme n opčné strně optické lvice mezi ně postvíme čočku. Světelným zdrojem osvětlíme předmět čočkou posouváme tk dlouho, ž n stínítku vznikne ostrý obrz předmětu. Odečteme polohu předmětu p čočky č stínítk s. Z těchto údjů vypočítáme hodnoty = č p, = s č zpíšeme do tbulky. Měření opkujeme při různých vzdálenostech předmětu stínítk lespoň pro 10 hodnot
5 Vypočítáme ohniskovou vzdálenost čočky podle vzthu (), určíme bsolutní reltivní chybu σ, δ pro. Z nměřených hodnot, určíme gricky ohniskovou vzdálenost porovnáme s hodnotou vypočítnou. p s č [m ] Dlším zkrcováním vzdálenosti předmětu od stínítk njdeme pokusně polohu, při níž ještě lze vytvořit n stínítku obrz. Pro ni by mělo pltit + = 4 y = y. Ověřte si, že pro menší vzdálenost stínítk od předmětu již nelze obrz vytvořit. b) Předmět i stínítko umístíme n opčných koncích optické lvice odečteme polohy p, s. Umístíme čočku poblíž předmětu njdeme tkovou její polohu, by byl obrz předmětu n stínítku ostrý zvětšený. Odečteme polohu čočky č 1. Umístíme čočku poblíž stínítk opět zostříme. Získáme zmenšený obrz. Odečteme polohu čočky č. Z nměřených hodnot vypočítáme e = s p, d = č č1, dosdíme do (7) vypočítáme ohniskovou vzdálenost. Měření provedeme pro 10 různých vzdáleností předmětu od e 4, vypočítáme střední hodnotu bsolutní i reltivní chybu. stínítk ( ) p s č 1 č e d [m ] c) Jko předmět použijeme průhledné měřítko velikosti n mm. Zostříme obrz předmětu n stínítku, odečteme jeho velikost n mm vypočítáme zvětšení Z podle (10). Odměříme polohu předmětu p, čočky č stínítk s vypočítáme hodnoty,. Měření provedeme 10x pro různé polohy. Podle (8) vypočítáme hodnotu 1 podle (9) hodnotu. Určíme bsolutní reltivní chybu pro určené oběm způsoby porovnáme, který postup je přesnější. p s č n [mm] n [mm] Z [m ] [m ]
6 d) Mezi předmět stínítko vložíme spojnou čočku S rozptylku R podle obr. 5. Spojkou, či rozptylkou zostříme obrz odečteme polohu stínítk s 1 rozptylky r. Potom rozptylku odstrníme beze změny polohy spojky znovu zostříme stínítkem. Novou polohu stínítk oznčíme s. Vypočítáme = s1 r, = s r doszením do (11) ohniskovou vzdálenost. Měření provedeme 10x pro různé polohy spojné čočky. Vypočítáme bsolutní reltivní chybu. r s 1 s [m ] 5) Závěr: Z výsledků měření posuďte přesnost jednotlivých metod měření ohniskové vzdálenosti
Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou
MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností
VíceLaboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav:
Truhlář Michl 7.. 005 Lbortorní práce č.8 Úloh č. 7 Měření prmetrů zobrzovcích soustv: T = ϕ = p = 3, C 7% 99,5kP Úkol: - Změřte ohniskovou vzdálenost tenké spojky přímou Besselovou metodou. - Změřte ohniskovou
VícePosluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.
Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce
VíceZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA
OBRAOVACÍ ROVNICE OKY A KULOVÉHO RCADLA vtšení optického zobrzení pedešlých kpitol již víme, že pi zobrzení okmi nebo kulovými zrcdly mohou vznikt zvtšené nebo zmenšené obrzy pedmt. Pro jejich mtemtický
VíceNázev: Měření ohniskové vzdálenosti tenkých čoček různými metodami
Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika)
VíceFyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Fyzikální praktikum 2 Zpracoval: Markéta Kurfürstová Naměřeno: 16. října 2012 Obor: B-FIN Ročník: II Semestr: III
VíceOptické zobrazování - čočka
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 10 Optické zobrazování - čočka
VíceI N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
OPTICKÉ ZOBRAZOVÁNÍ. Zrcdl prcují n principu odrzu světl druhy: rovinná kulová relexní plochy: ) rovinná zrcdl I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í obyčejné kovová vrstv npřená n sklo
VíceSpojitost funkce v bodě, spojitost funkce v intervalu
10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí
VíceÚlohy školní klauzurní části I. kola kategorie C
52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.
VíceFyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. F3240 Fyzikální praktikum 2
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM F340 Fyzikální praktikum Zpracoval: Dvořák Martin Naměřeno: 0. 0. 009 Obor: B-FIN Ročník: II. Semestr: III. Testováno:
VíceHyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná
Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem
Víceh n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k
h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná
VíceSBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má
VíceLineární nerovnice a jejich soustavy
teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice
VíceJsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.
Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce
VíceHledání hyperbol
759 Hledání hyperol Předpokldy: 756, 757, 758 Pedgogická poznámk: Některé příkldy jsou zdlouhvější, pokud mám dosttek čsu proírám tuto následující hodinu ěhem tří vyučovcích hodin Př : Npiš rovnici hyperoly,
VíceFyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy
Fzikální kbinet GmKT Gmnázium J. Vrchlického, Kltov stženo z http:kbinet.zik.net Optické přístroje Subjektivní optické přístroje - vtvářejí zánlivý (neskutečný) obrz, který pozorujeme okem (subjektivně)
VíceANALYTICKÁ GEOMETRIE V PROSTORU
ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici
VíceLogaritmická funkce teorie
Výukový mteriál pro předmět: MATEMATIKA reg. č. projektu CZ..07/..0/0.0007 Logritmická funkce teorie Eponenciální funkce je funkce prostá, proto k ní eistuje inverzní funkce. Tto inverzní funkce se nzývá
Vícex + F F x F (x, f(x)).
I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných
VíceSYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1
SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 (Souřdnicové výpočty) 1 ročník bklářského studi studijní progrm G studijní obor G doc Ing Jromír Procházk CSc listopd 2015 1 Geodézie 1 přednášk č7 VÝPOČET SOUŘADNIC JEDNOHO
VíceLaboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami:
Truhlář Michl 3 005 Lbortorní práce č 6 Úloh č 5 p 99,8kP Měření odporu, indukčnosti vzájemné indukčnosti můstkovými metodmi: Úkol: Whetstoneovým mostem změřte hodnoty odporů dvou rezistorů, jejich sériového
VíceKomplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.
7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1
VíceZákladní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje
Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného
VíceČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk
ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptlkách PaedDr. Jozef Beňuška jbenuska@nextra.sk Optická soustava - je soustava optických prostředí a jejich rozhraní, která mění směr chodu světelných
VíceNázev: Čočková rovnice
Název: Čočková rovnice Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Optika Ročník: 5. (3.
VícePodpora rozvoje praktické výchovy ve fyzice a chemii
DUTÁ ZRCADLA ) Duté zrcadlo má ohniskovou vzdálenost 25 cm. Jaký je jeho poloměr křivosti? f = 25 cm = 0,25 m r =? (m) Ohnisko dutého zrcadla leží přesně uprostřed mezi jeho vrcholem a středem křivosti,
VíceÚlohy krajského kola kategorie A
67. ročník mtemtické olympiády Úlohy krjského kol ktegorie A 1. Pvel střídvě vpisuje křížky kolečk do políček tbulky (zčíná křížkem). Když je tbulk celá vyplněná, výsledné skóre spočítá jko rozdíl X O,
Více56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25
56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou
VíceVzdálenosti přímek
5..11 Vzdálenosti přímek Předpokldy: 510 Př. 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti dvou přímek nvrhni definici této vzdálenosti. Vzdálenost přímek má smysl, když přímky nemjí společné body tedy
Více13. Soustava lineárních rovnic a matice
@9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky
VíceLINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y
Vícea i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11
Mticový počet zákldní pojmy Mtice je obdélníkové schém tvru 2...... n 2 22. 2n A =, kde ij R ( i =,,m, j =,,n ) m m2. mn ij R se nzývjí prvky mtice o mtici o m řádcích n sloupcích říkáme, že je typu m/n
VíceHyperbola a přímka
7.5.8 Hperol přímk Předpokld: 75, 75, 755, 756 N orázku je nkreslen hperol = se středem v počátku soustv souřdnic. Jká je vzájemná poloh této hperol přímk, která prochází počátkem soustv souřdnic? E B
VíceVzdálenosti přímek
5..1 Vzdálenosti přímek Předpokldy: 511 Př. 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti dvou přímek nvrhni definici této vzdálenosti. Vzdálenost přímek má smysl, když přímky nemjí společné body tedy
VícePříklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem
Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je
VíceKřivkový integrál prvního druhu verze 1.0
Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm
Více3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90
ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy
VíceKVADRATICKÁ FUNKCE (vlastnosti, grafy)
KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,
VíceMěření rozlišovací schopnosti optických soustav
F Měření rozlišovcí schopnosti optických soustv Úkoly :. Měření rozlišovcí schopnosti fotogrfických objektivů v závislosti n clonovém čísle. Měření hloubky ostrosti fotogrfických objektivů v závislosti
Více( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t
7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách
VíceZkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p.
1. V oboru reálných čísel řešte soustvu rovnic x 2 xy + y 2 = 7, x 2 y + xy 2 = 2. (J. Földes) Řešení. Protože druhou rovnici můžeme uprvit n tvr xy(x + y) = 2, uprvme podobně i první rovnici: (x + y)
Více6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.
KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou
Více1 Základní pojmy a vztahy
1 Ohniskové vzdálenosti a vady čoček a zvětšení optických přístrojů Pomůcky: Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický objektiv, Ramsdenův okulár v držáku
VíceVzorová řešení čtvrté série úloh
FYZIKÁLNÍ SEKCE Přírodovědecká fkult Msrykovy univerzity v Brně KORESPONDENČNÍ SEMINÁŘ Z FYZIKY 8. ročník 001/00 Vzorová řešení čtvrté série úloh (5 bodů) Vzorové řešení úlohy č. 1 (8 bodů) Volný pád Měsíce
VíceUniverzita Tomáše Bati ve Zlíně
Univerzita Tomáše Bati ve líně LABORATORNÍ CVIČENÍ YIKY II Název úloh: Měření ohniskové vzdálenosti čočk Jméno: Petr Luzar Skupina: IT II/ Datum měření:.listopadu 007 Obor: Informační technologie Hodnocení:
VíceANALYTICKÁ GEOMETRIE
Technická niverzit v Liberci Fklt přírodovědně-hmnitní pedgogická Ktedr mtemtiky didktiky mtemtiky NLYTICKÁ GEOMETRIE Pomocný čební text Petr Pirklová Liberec, listopd 2015 NLYTICKÁ GEOMETRIE LINEÁRNÍCH
Více2.1 - ( ) ( ) (020201) [ ] [ ]
- FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé
VíceOdraz na kulové ploše Duté zrcadlo
Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku
VíceDUM č. 5 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník
projekt GML Brno Docens DUM č. 5 v sadě 12. Fy-3 Průvodce učitele fyziky pro 4. ročník Autor: Miroslav Kubera Datum: 05.04.2014 Ročník: 4B Anotace DUMu: Písemný test navazuje na témata probíraná v hodinách
VíceSeznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.
.. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).
VíceMěření ohniskových vzdáleností čoček, optické soustavy
Úloha č. 9 Měření ohniskových vzdáleností čoček, optické soustavy Úkoly měření: 1. Stanovte ohniskovou vzdálenost zadaných tenkých čoček na základě měření předmětové a obrazové vzdálenosti: - zvětšeného
VíceProjekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Zobrazení čočkou
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Zobrazení čočkou Čočky, stejně jako zrcadla, patří pro mnohé z nás do běžného života. Někdo nosí brýle, jiný
VíceZOBRAZOVÁNÍ ČOČKAMI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika
ZOBRAZOVÁNÍ ČOČKAMI Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika Čočky Zobrazování čočkami je založeno na lomu světla Obvykle budeme předpokládat, že čočka je vyrobena ze skla o indexu lomu n 2
VíceAplikovaná optika I: příklady k procvičení celku Geometrická optika. Jana Jurmanová
Aplikovaná optika I: příklady k procvičení celku Geometrická optika Jana Jurmanová Geometrická optika Následující úlohy řešte graficky či výpočtem. 1. Předmět vysoký 1cm je umístěn 30cm od spojky, která
Více8. cvičení z Matematiky 2
8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,
Více( a) Okolí bodu
0..5 Okolí bodu Předpokldy: 40 Pedgogická poznámk: Hodin zjevně překrčuje možnosti většiny studentů v 45 minutách. Myslím, že nemá cenu přethovt do dlší hodiny, příkldy s redukovnými okolími nejsou nutné,
VíceII. kolo kategorie Z5
II. kolo ktegorie Z5 Z5 II 1 Z prvé kpsy klhot jsem přendl 4 pětikoruny do levé kpsy z levé kpsy jsem přendl 16 dvoukorun do prvé kpsy. Teď mám v levé kpse o 13 korun méně než v prvé. Ve které kpse jsem
VíceURČITÝ INTEGRÁL FUNKCE
URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()
Více2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice
59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní
Více1.1 Numerické integrování
1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme
Více2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice
59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní
Více7.5.8 Středová rovnice elipsy
758 Středová rovnice elips Předpokld: 7501, 7507 Př 1: Vrchol elips leží v odech A[ 1;1], [ 3;1], [ 1;5], [ 1; 3] elips souřdnice jejích ohnisek Urči prmetr Zdné souřdnice už n první pohled vpdjí podezřele,
VíceSouhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A
Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty
Více4.4.3 Kosinová věta. Předpoklady:
443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější
VíceČočky Čočky jsou skleněná (resp. plastová) tělesa ohraničená rovinnými nebo kulovými plochami. Pracují na principu lomu. 2 typy: spojky rozptylky
Zobrazení čočkami Čočky Čočky jsou skleněná (resp. plastová) tělesa ohraničená rovinnými nebo kulovými plochami. Pracují na principu lomu. 2 typy: spojky rozptylky Spojky schematická značka (ekvivalentní
VíceMENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF
MENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF RNDr. Petr Rádl RNDr. Bohumil Černá RNDr. Ludmil Strá 0 Petr Rádl, 0 ISBN 97-0-77-9- OBSAH Předmluv... Poždvky k přijímcí zkoušce z mtemtiky..
VíceZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM
ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM Pozorně se podívejte na obrázky. Kterou rukou si nevěsta maluje rty? Na které straně cesty je automobil ve zpětném zrcátku? Zrcadla jsou vyleštěné, zpravidla kovové plochy
VíceJak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:
.. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto
Více( ) 1.5.2 Mechanická práce II. Předpoklady: 1501
1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením
VíceMatematický KLOKAN kategorie Kadet
Mtemtický KLOKAN 2010 www.mtemtickyklokn.net ktegorie Kdet Úlohy z 3 body 1. Vypočítejte 12 + 23 + 34 + 45 + 56 + 67 + 78 + 89. (A) 389 () 396 () 404 (D) 405 (E) jiná odpověd 2. Kolik os souměrnosti má
VíceOdraz na kulové ploše
Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. tojúhelníků
VíceGEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci.
Znáš pojmy A. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Tenká spojka při zobrazování stačí k popisu zavést pouze ohniskovou vzdálenost a její střed. Znaménková
Více6. Setrvačný kmitový člen 2. řádu
6. Setrvčný kmitový člen. řádu Nejprve uvedeme dynmické vlstnosti kmitvého členu neboli setrvčného členu. řádu. Předstviteli těchto členů jsou obvody nebo technická zřízení, která obshují dvě energetické
VíceNerovnosti a nerovnice
Nerovnosti nerovnice Doc. RNDr. Leo Boček, CSc. Kurz vznikl v rámci projektu Rozvoj systému vzdělávcích příležitostí pro ndné žáky studenty v přírodních vědách mtemtice s využitím online prostředí, Operční
VícePokroky matematiky, fyziky a astronomie
Pokroky mtemtiky, fyziky stronomie Kliment Šoler Progrmovná učebnice mtemtiky pro vysoké školy technické Pokroky mtemtiky, fyziky stronomie, Vol. 14 (1969), No. 4, 182--193 Persistent URL: http://dml.cz/dmlcz/139283
Více2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem
2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice
VíceOhýbaný nosník - napětí
Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se
VíceFyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 6: Geometrická optika Datum měření: 8. 4. 2016 Doba vypracovávání: 10 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě
Více4. cvičení z Matematiky 2
4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y
VíceSeznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.
.4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli
VíceMatematické metody v kartografii
Mtemtické metody v krtogrfii. Přednášk Referenční elipsoid zákldní vzthy. Poloměry křivosti. Délky poledníkového rovnoběžkového oblouku. 1. Zákldní vzthy n rotčním elipoidu Rotční elipsoid dán následujícími
VíceStanovení disociační konstanty acidobazického indikátoru. = a
Stnovení disociční konstnty cidobzického indikátoru Teorie: Slbé kyseliny nebo báze disociují ve vodných roztocích jen omezeně; kvntittivní mírou je hodnot disociční konstnty. Disociční rekci příslušející
VíceM A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)
5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete
Více3. APLIKACE URČITÉHO INTEGRÁLU
APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít
VícePřednáška 9: Limita a spojitost
4 / XI /, 5: Přednášk 9: Limit spojitost V minulých přednáškách jsme podrobněji prozkoumli důležitý pojem funkce. Při řešení konkrétních problémů se nše znlosti (npř. nměřená dt) zpisují jko funkční hodnoty
VíceVětu o spojitosti a jejich užití
0..7 Větu o spojitosti jejich užití Předpokldy: 706, 78, 006 Pedgogická poznámk: Při proírání této hodiny je tře mít n pměti, že všechny věty, které studentům sdělujete z jejich pohledu neuvěřitelně složitě
VícePředmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 11. červenec 2012 Název zpracovaného celku: LINEÁRNÍ ROVNICE S PARAMETREM
Předmět: Ročník: Vytvořil: Dtum: MATEMATIA DRUHÝ Mgr. Tomáš MAŇÁ 11. červenec 01 Název zrcovného celku: LINEÁRNÍ ROVNICE S PARAMETREM LINEÁRNÍ ROVNICE S PARAMETREM Rovnice s rmetrem obshuje kromě neznámých
VíceSymbolicko - komplexní metoda I Opakování komplexních čísel z matematiky
Symbolicko - komplexní metod I pkování komplexních čísel z mtemtiky Použité zdroje: Blhovec,.: Elektrotechnik II, Informtorium spol.s r.o., Prh 005 Wojnr, J.: Zákldy elektrotechniky I, Tribun EU s.r.o.,
VíceDefinice limit I
08 Definice limit I Předpokld: 006 Pedgogická poznámk: N úvod je třeb upozornit, že tto hodin je ze strn studentů snd nejvíce sbotovnou látkou z celé studium (podle rekcí 4B009) Jejich ochot brát n vědomí
VíceŘíkáme, že přímka je tečnou elipsy. p T Přímka se protíná s elipsou právě v jednom bodě.
7.5. Elips přímk Předpokldy: 7504, 7505, 7508 Př. : epiš všechny možné vzájemné polohy elipsy přímky. Ke kždému přípdu nkresli obrázek. Z obrázků je zřejmé, že existují tři přípdy vzájemné polohy kružnice
VíceSLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ
h Předmět: Ročník: Vytvořil: Dtum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 11. SRPNA 2013 Název zprcovného celku: SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ Ke sloţenému nmáhání dojde tehdy, vyskytnou-li se součsně
VíceGeometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -
Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické
VíceStereometrie metrické vlastnosti 01
Stereometrie metrické vlstnosti 01 Odchylk dvou přímek Odchylk dvou různoběžek je velikost kždého z ostrých nebo prvých úhlů, které přímky spolu svírjí. Odchylk rovnoběžek je 0. Odchylk mimoběžných přímek
Více3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru
Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém
Více1. LINEÁRNÍ ALGEBRA 1.1. Matice
Lineární lgebr LINEÁRNÍ LGEBR Mtice Zákldní pojmy Mticí typu m/n nzýváme schém mn prvků, které jsou uspořádány do m řádků n sloupců: n n m/n = = = ( ij ) m m mn V tomto schémtu pro řádky sloupce užíváme
Víceje parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné
1. Prciální derivce funkce více proměnných. Prciální derivce funkce dvou proměnných. Je-li funkce f f(, ) definován v množině D f R 2 bod ( 1, 2 ) je vnitřním bodem množin D f, pk funkce g 1 (t) f(t, 2
Více17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický
Úloha č. 6 Ohniskové vzdálenosti a vady čoček, zvětšení optických přístrojů Václav Štěpán, sk. 5 17. března 2000 Pomůcky: Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický
Více5.2.8 Zobrazení spojkou II
5.2.8 Zobrazení spojkou II Předpoklady: 5207 Př. 1: Najdi pomocí význačných paprsků obraz svíčky, jejíž vzdálenost od spojky je menší než její ohnisková vzdálenost. Postupujeme stejně jako v předchozích
Více