VK CZ.1.07/2.2.00/

Rozměr: px
Začít zobrazení ze stránky:

Download "VK CZ.1.07/2.2.00/"

Transkript

1 Robotika Tvorba map v robotice - MRBT 3. března 2015 Ing. František Burian Komplexní inovace studijních programů a zvyšování kvality výuky na FEKT VUT v Brně OP VK CZ.1.07/2.2.00/

2 v pojetí mobilní robotiky Motivace Metrická mapa Topologická mapa je strojově čitelný popis prostředí, který lze využít k lokalizaci a navigaci robotu napříč tímto prostředím. Metrická mapa (2D zobrazení) Topologická mapa (teorie grafů)

3 Metrická mapa Motivace Metrická mapa Topologická mapa Ukládány kartézské souřadnice význačných bodů Náročné na přesnost měření, šum senzorů Lze jednoduše provádět sebelokalizaci [Hans P. Moravec - Robot Evidence Grids]

4 Topologická mapa Motivace Metrická mapa Topologická mapa Ukládány vzájemné vztahy význačných bodů Lze jednoduše provádět navigaci podél bodů D C 1 1 A 3 B E 3 F Uzly Hrany

5 y hotové mapy 3D Reálný (metrický) svět je složen z různě obsazených oblastí M. Hledáme způsob, jakým lze vyjádřit obsazenost tohoto světa. Pravděpodobnost obsazenosti Možnost obsazenosti (odds ratio)

6 - Pravděpodobnostní model y hotové mapy 3D Necht p(m O ) označuje ppst. obsazenosti buňky. 0, pokud je daná oblast světa neobsazená (M = E) p(m O ) = 0.5, pokud o dané oblasti nemáme informaci 1, pokud je daná oblast obsazená (M = O) Dále necht p(m E ) označuje ppst. volnosti (průchodivosti) buňky. Ze zákonů statistiky můžeme psát: 0 < p(m O ) < 1 0 < p(m E ) < 1 Nakonec uzavřeme skupinu jevů do celistvé skupiny 1 p(m O ) + p(m E ) = 1 Mapou obsazenosti rozumíme hodnoty obou veličin p(m O ) a p(m E ) 1 Pro účely jednoduššího pochopení, existují i jiné modely, kde toto nemusí platit.

7 - Model možností y hotové mapy 3D Vyjádřeme možnost, kterou má buňka, že je obsazená takto: O(M) = p(mo ) p(m E ) 0, pokud je daná oblast světa neobsazená (M = E) O(M) = 1, pokud o dané oblasti nemáme informaci, pokud je daná oblast obsazená (M = O) Mapou obsazenosti rozumíme hodnoty pouze jedné veličiny O(M)

8 Bayes - Odvození y hotové mapy 3D S p(a) p(b)

9 Bayes - Odvození y hotové mapy 3D S p(a) p(ab) p(b)

10 Bayes - Odvození y hotové mapy 3D S p(a) p(ab) p(b) p(a B) = p(ab) p(b)

11 Bayes - Odvození y hotové mapy 3D S p(a) p(ab) p(b) p(a B) = p(ab) p(b) p(b A) = p(ab) p(a)

12 Bayes - Odvození y hotové mapy 3D S p(a) p(ab) p(b) p(a B) = p(ab) p(b) p(b A) = p(ab) p(a) p(a B)p(B) = p(ab) = p(b A)p(A)

13 Bayes - Odvození y hotové mapy 3D S p(a) p(ab) p(b) p(a B) = p(ab) p(b) p(b A) = p(ab) p(a) p(a B)p(B) = p(ab) = p(b A)p(A) p(a B) = p(b A)p(A) p(b)

14 Bayes - Odvození y hotové mapy 3D S p(a) p(ab) p(b) p(a B) = p(ab) p(b) p(b A) = p(ab) p(a) nová informace p(a B) = p(b A)p(A) p(b) předchozí informace

15 Bayes - Odvození y hotové mapy 3D S p(a) p(ab) p(b) p(a B) = p(ab) p(b) p(b A) = p(ab) p(a) nová informace model senzoru p(a B) = p(b A)p(A) p(b) předchozí informace

16 Bayes - Odvození y hotové mapy 3D S p(a) p(ab) p(b) p(a B) = p(ab) p(b) p(b A) = p(ab) p(a) nová informace model senzoru p(a B) = p(b A)p(A) p(b) pravděpodobnost měření předchozí informace

17 Bayes - Odvození y hotové mapy 3D S p(a) p(ab) p(b) p(a B) = p(ab) p(b) p(b A) = p(ab) p(a) nová informace model senzoru p(a B) = p(b A)p(A) p(b) = předchozí informace likelihood prior evidence

18 Bayes - Odvození y hotové mapy 3D S p(a) p(ab) p(b) p(a B) = p(ab) p(b) p(b A) = p(ab) p(a) nová informace p(a B) = model senzoru p(b A)p(A) p(b A)p(A) + p(b A)p(A) předchozí informace

19 Možnost obsazenosti (odds ratio) y hotové mapy 3D S p(a) p(ab) p(b) p(a B) = p(ab) p(b) p(b A) = p(ab) p(a)

20 Možnost obsazenosti (odds ratio) y hotové mapy 3D S p(a) p(ab) p(b) p(a B) = p(ab) p(b) p(b A) = p(ab) p(a) O(A B) = p(a B) p(a B) = p(b A)p(A) p(b A)p(A) = λ(b A)O(A)

21 Možnost obsazenosti (odds ratio) y hotové mapy 3D S p(a) p(ab) p(b) p(a B) = p(ab) p(b) p(b A) = p(ab) p(a) nová informace O(A B) = p(a B) p(a B) = p(b A)p(A) p(b A)p(A) = λ(b A)O(A) předchozí informace

22 Možnost obsazenosti (odds ratio) y hotové mapy 3D S p(a) p(ab) p(b) p(a B) = p(ab) p(b) p(b A) = p(ab) p(a) nová informace model senzoru O(A B) = p(a B) p(a B) = p(b A)p(A) p(b A)p(A) = λ(b A)O(A) předchozí informace

23 y hotové mapy 3D Senzor připraven na měření

24 y hotové mapy 3D L Senzor změří vzdálenost L

25 y hotové mapy 3D f(x) L x Hustota pravděpodobnosti měření (normální rozdělení) f(x) = N(L, σ) = 1 σ 2π e (x L) 2 2σ 2

26 y hotové mapy 3D p(l M O ) L x - pravděpodobnost obsazenosti p(l M O ) x = p(l < x) = x 0 f(α)dα

27 y hotové mapy 3D p(l M E ) p(l M O ) L x - pravděpodobnost volného místa p(l M E ) x = p(l x) = 1 p(l = x) = 1 σ 2πf(x)

28 y hotové mapy 3D p(l M E ) p(l M O ) L x - Důvěryhodnost měření koeficient důvěry 0 < K < 1, obvykle K blízké 0.5 p(l M O ) x = (p(l M O ) x 0.5)K p(l M E ) x = (p(l M E ) x 0.5)K + 0.5

29 - pravděpodobnostní výpočet y hotové mapy 3D p(l M E ) p(l M O ) L x

30 - pravděpodobnostní výpočet L y hotové mapy 3D p(l M E ) p(l M E ) a p(l M O ) p(l M O ) a a x 1. Init: p(m O ) a = 0.5, p(m E ) a = Měření1 (L 1): p(l 1 M O ) a = 0.22, p(l 1 M E ) a = 0.65 p(l 1) a = p(l 1 M O ) ap(m O ) a + p(l 1 M E ) ap(m E ) a = = 0.43 p(m O L 1) a = p(l1 MO ) a p(m O ) a = = 0.25 p(l 1) a p(m E L 1) a = p(l1 ME ) a p(m E ) a = = 0.75 = 1 p(m O L 1) a p(l 1) a 0.43

31 - pravděpodobnostní výpočet L y hotové mapy 3D p(l M E ) p(l M E ) a p(l M O ) p(l M O ) a a x 1. Init: p(m O ) a = p(m O L 1) a = 0.25, p(m E ) a = p(m E L 1) a = Měření2 (L 2): p(l 2 M O ) a = 0.22, p(l 2 M E ) a = 0.65 p(l 2) a = p(l 2 M O ) ap(m O ) a + p(l 2 M E ) ap(m E ) a = = 0.54 p(m O L 2) a = p(l2 O)a p(mo ) a = = 0.10 p(l 2) a 0.54 p(m E L 2) a = p(l2 ME ) a p(m E ) a = = 0.90 = 1 p(m O L 2) a p(l 2) a 0.54

32 - pravděpodobnostní výpočet y hotové mapy 3D p(l M E ) p(l M O ) L x p(m O Ln) p(m O ) x

33 - pravděpodobnostní výpočet y hotové mapy 3D p(l M E ) p(l M O ) L x p(m O Ln) p(m O ) p(m O L 1 ) x

34 - pravděpodobnostní výpočet y hotové mapy 3D p(l M E ) p(l M O ) L x p(m O Ln) p(m O ) p(m O L 1 ) p(m O L 2 ) x

35 - pravděpodobnostní výpočet y hotové mapy 3D p(l M E ) p(l M O ) L x p(m O Ln) p(m O ) p(m O L 1 ) p(m O L 2 ) p(m O L 3 ) x

36 - Možnostní výpočet y hotové mapy 3D p(l M E ) p(l M O ) L x

37 - Možnostní výpočet L y hotové mapy 3D p(l M E ) p(l M E ) a p(l M O ) p(l M O ) a a x 1. Init: O(M) a = = 1 2. Měření1 (L 1): λ(l 1 M) a = = 0.33 O(M L 1) a = λ(l 1 M) a O(M) a = = 0.33

38 - Možnostní výpočet L y hotové mapy 3D p(l M E ) p(l M E ) a p(l M O ) p(l M O ) a a x 1. Init: O(M) a = O(M L 1) a = Měření2 (L 2): λ(l 2 M) a = = 0.33 O(M L 2) a = λ(l 2 M) a O(M) a = = 0.10

39 - Možnostní výpočet y hotové mapy 3D p(l M E ) p(l M O ) L x O(M Ln) O(M) x

40 - Možnostní výpočet y hotové mapy 3D p(l M E ) p(l M O ) L x O(M Ln) O(M) O(M L 1 ) x

41 - Možnostní výpočet y hotové mapy 3D p(l M E ) p(l M O ) L x O(M Ln) O(M) O(M L 1 ) O(M L 2 ) x

42 - Možnostní výpočet y hotové mapy 3D p(l M E ) p(l M O ) L x O(M Ln) O(M) O(M L 1 ) O(M L 2 ) O(M L 3 ) x

43 (Occupancy grid) y hotové mapy 3D Celý svět disjunktně metricky (ekvidistantně) rozdělíme na oblasti

44 (Occupancy grid) y hotové mapy 3D Celý svět disjunktně metricky (ekvidistantně) rozdělíme na oblasti 1D: ekvidistantní úseky

45 (Occupancy grid) y hotové mapy 3D Celý svět disjunktně metricky (ekvidistantně) rozdělíme na oblasti 1D: ekvidistantní úseky 2D: ekvidistantní čtvercová mříž

46 (Occupancy grid) y hotové mapy 3D Celý svět disjunktně metricky (ekvidistantně) rozdělíme na oblasti 1D: ekvidistantní úseky 2D: ekvidistantní čtvercová mříž 3D: ekvidistantní krychlová mříž

47 (Occupancy grid) y hotové mapy 3D Celý svět disjunktně metricky (ekvidistantně) rozdělíme na oblasti 1D: ekvidistantní úseky 2D: ekvidistantní čtvercová mříž 3D: ekvidistantní krychlová mříž Každé buňce přiřadíme pravděpodobnost p(o) = 0.5

48 Krok 1. - Sebelokalizace y hotové mapy 3D Zjistíme polohu a směr senzoru (sebelokalizace) 1D: S = (S x, S sgn ) 2D: S = (S x, S y, S ϕ ) S ϕ 3D: S = (S x, S y, S z, S θ, S ψ, S ϕ )

49 Krok 2. - Projekce měření y hotové mapy 3D Změříme senzory okolí robotu 1D: M = (L, σ) 2D: M = (L, σ α, σ β ) 3D: M = (L, σ α, σ β, σ γ )

50 Krok 3. - Aplikace Bayese na mřížku y hotové mapy 3D Zjistíme buňky které měření ovlivnilo Pro každou buňku spočítat model senzoru Pro pravděpodobnostní model p(l M O ) a p(l M E ) Pro možnostní model λ(l M) Pro každou buňku mapy aplikovat bayese Pro pravděpodobnostní model p(m O L) a p(m E L) Pro možnostní model O(M L) 1D: M = (L, σ) 2D: M = (L, σ α, σ β ) 3D: M = (L, σ α, σ β, σ γ )

51 y mapy 2D y hotové mapy 3D Překážka Neznámo Volno

52 y mapy y hotové mapy 3D

53 y hotové mapy 3D Occupancy Grid obsahuje příliš mnoho informací pro navigaci v exteriéru Pro navigaci v exteriéru je lepší ukládat informaci o výšce terénu/překážky v dané mapě. Z výškové mapy (vrstevnice) lze vysledovat průjezdnost vozidla a překážky

54 Kam s ní? Motivace Klasická mřížka Quad tree K-D tree Octree Chceme pokrýt co největší detaily prostředí (stoly) Chceme mít co největší rozměr mapy (budova) To vede na velký objem uložených dat Mnoho dat je problém rychle a efektivně prohledávat Proto se téměř vždy snažíme o efektivní uložení dat

55 Lokalita bodu Motivace Klasická mřížka Quad tree K-D tree Octree

56 Lokalita bodu Motivace Klasická mřížka Quad tree K-D tree Octree

57 Lokalita bodu Motivace Klasická mřížka Quad tree K-D tree Octree

58 Lokalita bodu Motivace Klasická mřížka Quad tree K-D tree Octree

59 Vrstvený přístup Motivace Klasická mřížka Quad tree K-D tree Octree

60 Vrstvený přístup Motivace Klasická mřížka Quad tree K-D tree Octree

61 Vrstvený přístup Motivace Klasická mřížka Quad tree K-D tree Octree

62 Vrstvený přístup Motivace Klasická mřížka Quad tree K-D tree Octree

63 Vrstvený přístup Motivace Klasická mřížka Quad tree K-D tree Octree

64 Klasická mřížka obsazenosti Motivace Klasická mřížka Quad tree K-D tree Octree Popis Každý bod v mapě je uložen na výstupu Nejhorší varianta pamět ového záboru Rychlé na programování Size = D 2 size(pixel) 256 buněk

65 Quad tree Motivace Klasická mřížka Quad tree K-D tree Octree Popis Prostor je dělen vždy na 4 čtverce ukládají se pouze částečně zabrané čtverce Náročné na programování, úspora paměti 8 buněk

66 K-D tree Motivace Klasická mřížka Quad tree K-D tree Octree Popis Prostor je dělen vždy na 2 poloviny Osa dělení se vždy střídá Poloha dělení je závislá na četnosti dat (dělí vždy na polovinu četnosti) Ukládají se pouze částečně zabrané čtverce Velmi náročné na programování Velmi značná úspora paměti 3 buňky

67 Octree Motivace Klasická mřížka Quad tree K-D tree Octree Popis Prostor je dělen vždy na 8 krychlí ukládají se pouze částečně zabrané krychle Náročné na programování, úspora paměti

68 Děkuji za pozornost 3. března 2015 Ing. František Burian

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 15. srpna 2012 Statistika

Více

SEBELOKALIZACE MOBILNÍCH ROBOTŮ. Tomáš Jílek

SEBELOKALIZACE MOBILNÍCH ROBOTŮ. Tomáš Jílek SEBELOKALIZACE MOBILNÍCH ROBOTŮ Tomáš Jílek Sebelokalizace Autonomní určení pozice a orientace robotu ve zvoleném souřadnicovém systému Souřadnicové systémy Globální / lokální WGS-84, ETRS-89 globální

Více

SLAM. Simultaneous localization and mapping. Ing. Aleš Jelínek 2015

SLAM. Simultaneous localization and mapping. Ing. Aleš Jelínek 2015 SLAM Simultaneous localization and mapping Ing. Aleš Jelínek 2015 Komplexní inovace studijních programů a zvyšování kvality výuky na FEKT VUT v Brně OP VK CZ.1.07/2.2.00/28.0193 Obsah Proč sebelokalizace,

Více

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.

Více

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní ..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X

Více

Úvod do GIS. Prostorová data II. část. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium.

Úvod do GIS. Prostorová data II. část. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Úvod do GIS Prostorová data II. část Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Karel Jedlička Prostorová data Analogová prostorová data Digitální

Více

PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady

PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady PRAVDĚPODOBNOST A STATISTIKA Bayesovské odhady Bayesovské odhady - úvod Klasický bayesovský přístup: Klasický přístup je založen na opakování pokusech sledujeme rekvenci nastoupení zvolených jevů Bayesovský

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

Náhodné vektory a matice

Náhodné vektory a matice Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane

Více

SEBELOKALIZACE MOBILNÍCH ROBOTŮ. Tomáš Jílek

SEBELOKALIZACE MOBILNÍCH ROBOTŮ. Tomáš Jílek SEBELOKALIZACE MOBILNÍCH ROBOTŮ Tomáš Jílek Sebelokalizace Autonomní určení pozice a orientace robotu ve zvoleném souřadnicovém systému Souřadnicové systémy Globální / lokální WGS-84, ETRS-89 globální

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

Odhady - Sdružené rozdělení pravděpodobnosti

Odhady - Sdružené rozdělení pravděpodobnosti Odhady - Sdružené rozdělení pravděpodobnosti 4. listopadu 203 Kdybych chtěl znát maximum informací o náhodné veličině, musel bych znát všechny hodnoty, které mohou padnout, a jejich pravděpodobnosti. Tedy

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B. Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná

Více

Vytěžování znalostí z dat

Vytěžování znalostí z dat Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 7 1/27 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

Počet pravděpodobnosti

Počet pravděpodobnosti PSY117/454 Statistická analýza dat v psychologii Přednáška 4 Počet pravděpodobnosti Je známo, že když muž použije jeden z okrajových pisoárů, sníží se pravděpodobnost, že bude pomočen o 50%. anonym Pravděpodobnost

Více

Integrace. Numerické metody 7. května FJFI ČVUT v Praze

Integrace. Numerické metody 7. května FJFI ČVUT v Praze Integrace Numerické metody 7. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Kvadraturní vzorce Gaussovy kvadratury Více dimenzí Programy 1 Úvod Úvod - Úloha Máme funkci f( x) a snažíme se najít určitý integrál

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců

Více

Bayesovské metody. Mnohorozměrná analýza dat

Bayesovské metody. Mnohorozměrná analýza dat Mnohorozměrná analýza dat Podmíněná pravděpodobnost Definice: Uvažujme náhodné jevy A a B takové, že P(B) > 0. Podmíněnou pravěpodobností jevu A za podmínky, že nastal jev B, nazýváme podíl P(A B) P(A

Více

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností

Více

Přijímací zkouška na MFF UK v Praze

Přijímací zkouška na MFF UK v Praze Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 017, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé

Více

Obsah. Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Pravděpodobnost. Pravděpodobnost. Děj pokus jev

Obsah. Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Pravděpodobnost. Pravděpodobnost. Děj pokus jev Obsah Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Definice pojmů Náhodný jev Pravděpodobnost Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi;-) roman.biskup(at)email.cz

Více

Odhady Parametrů Lineární Regrese

Odhady Parametrů Lineární Regrese Odhady Parametrů Lineární Regrese Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké

Více

Teorie náhodných matic aneb tak trochu jiná statistika

Teorie náhodných matic aneb tak trochu jiná statistika Teorie náhodných matic aneb tak trochu jiná statistika B. Vlková 1, M.Berg 2, B. Martínek 3, O. Švec 4, M. Neumann 5 Gymnázium Uničov 1, Gymnázium Václava Hraběte Hořovice 2, Mendelovo gymnázium Opava

Více

, 4. skupina (16:15-17:45) Jméno: se. Postup je třeba odůvodnit (okomentovat) nebo uvést výpočet. Výsledek bez uvedení jakéhokoliv

, 4. skupina (16:15-17:45) Jméno: se. Postup je třeba odůvodnit (okomentovat) nebo uvést výpočet. Výsledek bez uvedení jakéhokoliv ..06, 4. skupina (6: - 7:4) Jméno: Zápočtový test z PSI Nezapomeňte podepsat VŠECHNY papír, které odevzdáváte. Škrtejte zřetelně a stejně zřetelně pište i věci, které platí. Co je škrtnuto, nebude bráno

Více

Protokol č. 5. Vytyčovací údaje zkusných ploch

Protokol č. 5. Vytyčovací údaje zkusných ploch Protokol č. 5 Vytyčovací údaje zkusných ploch Zadání: Ve vybraném porostu bylo prováděno zjišťování zásob za použití reprezentativní metody kruhových zkusných ploch. Na těchto zkusných plochách byl zjišťován

Více

Vlastnosti odhadů ukazatelů způsobilosti

Vlastnosti odhadů ukazatelů způsobilosti Vlastnosti odhadů ukazatelů způsobilosti Jiří Michálek CQR při Ústavu teorie informace a automatizace AV ČR v Praze Úvod Ve výzkumné zprávě č 06 Odhady koeficientů způsobilosti a jejich vlastnosti viz

Více

3.2.4 Podobnost trojúhelníků II

3.2.4 Podobnost trojúhelníků II 3..4 Podobnost trojúhelníků II Předpoklady: 33 Př. 1: V pravoúhlém trojúhelníku s pravým uhlem při vrcholu sestroj výšku na stranu. Patu výšky označ. Najdi podobné trojúhelníky. Nakreslíme si obrázek:

Více

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje.

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje. 1/7 ANALYTICKÁ GEOMETRIE V PROSTORU Základní pojmy: Parametrické vyjádření přímky, roviny Obecná rovnice roviny Vzájemná poloha přímek a rovin Odchylka přímek a rovin Vzdálenosti www.karlin.mff.cuni.cz/katedry/kdm/diplomky/jan_koncel/

Více

13. cvičení z Matematické analýzy 2

13. cvičení z Matematické analýzy 2 . cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina. Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment

Více

Inovace bakalářského studijního oboru Aplikovaná chemie

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Základy zpracování dat chemometrie, statistika Doporučenáliteratura

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 md at robotika.cz, zbynek.winkler at mff.cuni.cz http://robotika.cz/guide/umor07/cs 27. listopadu 2007 1 Mapa světa Exaktní plánování 2 3 Plánování s otáčením Mapa světa - příklad Obsah Mapa světa Exaktní

Více

Chyby nepřímých měření

Chyby nepřímých měření nepřímé měření: Chyby nepřímých měření chceme určit veličinu z hodnot jiných veličin na základě funkční vztahu máme změřené veličiny pomocí přímých měření (viz. dříve) včetně chyb: x±σ x, y±σ y,... známe

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Apriorní rozdělení. Jan Kracík.

Apriorní rozdělení. Jan Kracík. Apriorní rozdělení Jan Kracík jan.kracik@vsb.cz Apriorní rozdělení Apriorní rozdělení (spolu s modelem) reprezentuje informaci o neznámém parametru θ, která je dostupná předem, tj. bez informace z dat.

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl

Více

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost

Více

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

6. Vektorový počet Studijní text. 6. Vektorový počet

6. Vektorový počet Studijní text. 6. Vektorový počet 6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.

Více

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2 6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2

Více

Výběrové charakteristiky a jejich rozdělení

Výběrové charakteristiky a jejich rozdělení Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový

Více

Fluktuace termodynamických veličin

Fluktuace termodynamických veličin Kvantová a statistická fyzika (Termodynamika a statistická fyzika Fluktuace termodynamických veličin Fluktuace jsou odchylky hodnot fyzikálních veličin od svých středních (rovnovážných hodnot. Mají původ

Více

y = 0, ,19716x.

y = 0, ,19716x. Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému

Více

, 1. skupina (16:15-17:45) Jméno: se. Postup je třeba odůvodnit (okomentovat) nebo uvést výpočet. Výsledek bez uvedení jakéhokoliv

, 1. skupina (16:15-17:45) Jméno: se. Postup je třeba odůvodnit (okomentovat) nebo uvést výpočet. Výsledek bez uvedení jakéhokoliv 42206, skupina (6:5-7:45) Jméno: Zápočtový test z PSI Nezapomeňte podepsat VŠECHNY papíry, které odevzdáváte Škrtejte zřetelně a stejně zřetelně pište i věci, které platí Co je škrtnuto, nebude bráno v

Více

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.

Více

Algoritmy pro shlukování prostorových dat

Algoritmy pro shlukování prostorových dat Algoritmy pro shlukování prostorových dat Marta Žambochová Katedra matematiky a informatiky Fakulta sociálně ekonomická Univerzita J. E. Purkyně v Ústí nad Labem ROBUST 21. 26. leden 2018 Rybník - Hostouň

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Pravděpodobnostní model volejbalového zápasu. Mgr. Jan Šustek

Pravděpodobnostní model volejbalového zápasu. Mgr. Jan Šustek Pravděpodobnostní model volejbalového zápasu Mgr. Jan Šustek 3. 0. 008 Opakování Opakování Věta o celkové pravděpodobnosti Věta Pro jevy B, B Ω takové, že B B = a B B = Ω, platí P(A) = P(B ) P(A B ) +

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

Mechanika

Mechanika Mechanika 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Mechanika Kinematika 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Více

Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I

Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Příklad Tahová síla papíru používaného pro výrobu potravinových sáčků je důležitá charakteristika kvality. Je známo, že síla

Více

Detekce interakčních sil v proudu vozidel

Detekce interakčních sil v proudu vozidel Detekce interakčních sil v proudu vozidel (ANEB OBECNĚJŠÍ POHLED NA POJEM VZDÁLENOSTI V MATEMATICE) Doc. Mgr. Milan Krbálek, Ph.D. Katedra matematiky Fakulta jaderná a fyzikálně inženýrská České vysoké

Více

STATISTICKÉ ZJIŠŤOVÁNÍ

STATISTICKÉ ZJIŠŤOVÁNÍ STATISTICKÉ ZJIŠŤOVÁNÍ ÚVOD Základní soubor Všechny ryby v rybníce, všechny holky/kluci na škole Cílem určit charakteristiky, pravděpodobnosti Průměr, rozptyl, pravděpodobnost, že Maruška kápne na toho

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností připomenutí, souvislosti

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2010/2011 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

11. cvičení z Matematické analýzy 2

11. cvičení z Matematické analýzy 2 11. cvičení z Matematické analýzy 11. - 15. prosince 17 11.1 (trojný integrál - Fubiniho věta) Vypočtěte (i) xyz dv, kde je ohraničeno plochami y x, x y, z xy a z. (ii) y dv, kde je ohraničeno shora rovinou

Více

SRE 03 - Statistické rozpoznávání

SRE 03 - Statistické rozpoznávání SRE 03 - Statistické rozpoznávání vzorů II Lukáš Burget ÚPGM FIT VUT Brno, burget@fit.vutbr.cz FIT VUT Brno SRE 03 - Statistické rozpoznávání vzorů II Lukáš Burget, ÚPGM FIT VUT Brno, 2006/07 1/29 Opakování

Více

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet.

Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet. Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Dnešní program Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Základy kombinatoriky a kombinatorická pravděpodobnost Jan Strejček Obsah IB112 Základy matematiky: Základy kombinatoriky a kombinatorická pravděpodobnost 2/57 Výběry prvků bez

Více

Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 SLAM - souběžná lokalizace a mapování {md zw} at robotika.cz http://robotika.cz/guide/umor07/cs 10. ledna 2008 1 2 3 SLAM intro Obsah SLAM = Simultaneous Localization And Mapping problém typu slepice-vejce

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti

Více

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.) Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními

Více

Funkce jedné proměnné

Funkce jedné proměnné Funkce jedné proměnné Příklad - V následujících příkladech v případě a) pro funkce dané rovnicí zjistěte zda jsou rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf

Více

IDENTIFIKACE BIMODALITY V DATECH

IDENTIFIKACE BIMODALITY V DATECH IDETIFIKACE BIMODALITY V DATECH Jiří Militky Technická universita v Liberci e- mail: jiri.miliky@vslib.cz Milan Meloun Universita Pardubice, Pardubice Motto: Je normální předpokládat normální data? Zvláštnosti

Více

Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1

Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1 Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.

Více

Náhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek

Náhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek Náhodná veličina Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 10. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 71 Obsah 1 Náhodná veličina 2 Diskrétní náhodná veličina 3

Více

Datové struktury 2: Rozptylovací tabulky

Datové struktury 2: Rozptylovací tabulky Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy

Více

Kapitola 8: Dvojný integrál 1/26

Kapitola 8: Dvojný integrál 1/26 Kapitola 8: vojný integrál 1/26 vojný integrál - osnova kapitoly 2/26 dvojný integrál přes obdélník definice výpočet (Fubiniova věta pro obdélník) dvojný integrál přes standardní množinu definice výpočet

Více

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice

Více

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α 1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Diferenciální počet VY_32_INOVACE_M0216.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Diferenciální počet VY_32_INOVACE_M0216. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

ZEMĚMĚŘICKÝ ÚŘAD. Nový výškopis ČR již existuje. Ing. Karel Brázdil, CSc., Ing. Petr Dvořáček

ZEMĚMĚŘICKÝ ÚŘAD. Nový výškopis ČR již existuje. Ing. Karel Brázdil, CSc., Ing. Petr Dvořáček ZEMĚMĚŘICKÝ ÚŘAD Nový výškopis ČR již existuje Ing. Karel Brázdil, CSc., Ing. Petr Dvořáček Setkání GEPRO & ATLAS 24. 10. 2017 VÝCHODISKA - STAV VÝŠKOPISNÝCH DATABÁZÍ V ČR Stručný název Popis Přesnost

Více

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho

Více

Ing. Michael Rost, Ph.D.

Ing. Michael Rost, Ph.D. Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení

Více

Rekonstrukce diskrétního rozdělení psti metodou maximální entropie

Rekonstrukce diskrétního rozdělení psti metodou maximální entropie Rekonstrukce diskrétního rozdělení psti metodou maximální entropie Příklad Lze nalézt četnosti nepozorovaných stavů tak, abychom si vymýšleli co nejméně? Nechť n i, i = 1, 2,..., N jsou známé (absolutní)

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Literatura: Kapitola 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Literatura: Kapitola 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Metoda sítí v 1D. Myšlenka náhrada derivací diferenčními podíly Přibližné řešení okrajových úloh Aproximace vlastních čísel Literatura: Kapitola 2 d) ze skript Karel Rektorys:

Více