TEORIE TVAROVÝCH PLOCH
|
|
- Jindřich Josef Matějka
- před 9 lety
- Počet zobrazení:
Transkript
1 TEORIE TVAROVÝCH PLOCH Ing. Ivana LINKEOVÁ, Ph.D. KN:B 216 Ústav technické matematiky VUT v Praze Fakulta strojní linkeova.cz Ivana.Linkeova Linkeova@fs.cvut.czcz
2 MODELY TVAROVÝCH PLOCH BODOVÝ (ÁSTICOVÝ)( MODEL V1 z V2 SEZNAM BOD - VRCHOL BOD x y z x V5 y V1 V2 V3 V V V4 V3
3 MODELY TVAROVÝCH PLOCH MRAK BOD
4 MODELY TVAROVÝCH PLOCH MRAK BOD
5 MODELY TVAROVÝCH PLOCH HRANOVÝ MODEL x V5 E5 E6 E7 E8 V1 E4 z E1 V2 y E2 SEZNAM VRCHOL SEZNAM HRAN Hrana E1 E2 E3 E4 E5 V1 V2 V3 V4 V1 Vrcholy V2 V3 V4 V1 V5 V4 E3 V3 E6 E7 V2 V3 V5 V5 E8 V4 V5
6 MODELY TVAROVÝCH PLOCH HRANOVÝ MODEL
7 MODELY TVAROVÝCH PLOCH HRANOVÝ MODEL
8 MODELY TVAROVÝCH PLOCH HRANOVÝ MODEL
9 MODELY TVAROVÝCH PLOCH HRANOVÝ MODEL
10 ZPRACOVÁNÍ MRAKU BOD VORONEHO DIAGRAM V ROVIN
11 ZPRACOVÁNÍ MRAKU BOD VORONEHO DIAGRAM V ROVIN
12 ZPRACOVÁNÍ MRAKU BOD VORONEHO DIAGRAM DELAUNYHO TRIANGULACE
13 ZPRACOVÁNÍ MRAKU BOD VORONEHO DIAGRAM V PROSTORU
14 MODELY TVAROVÝCH PLOCH PLOŠNÝ MODEL POLYGONÁLN LNÍ SÍ x V5 E5 E6 F5 F4 E8 E7 F3 z V1 F1 E4 V4 E1 F2 E3 V2 y E2 V3 SEZNAM VRCHOL SEZNAM HRAN SEZNAM STN Stna F1 F2 F3 F4 F5 Vrcholy stny V1 V2 V3 V4 V2 V3 V5 V3 V4 V5 V4 V1 V5 V1 V2 V5
15 MODELY TVAROVÝCH PLOCH PLOŠNÝ MODEL
16 MODELY TVAROVÝCH PLOCH PLOŠNÝ MODEL
17 MODELY TVAROVÝCH PLOCH PLOŠNÝ MODEL
18 MODELY TVAROVÝCH PLOCH PLOŠNÝ MODEL
19 MODELY TVAROVÝCH PLOCH PLOŠNÝ MODEL
20 MODELY TVAROVÝCH PLOCH HRANINÍ MODEL B-REP (BOUNDARY REPRESENTATION) ORIENTOVANÁ STNA VNITNÍ NORMÁLA V3 VNJŠÍ NORMÁLA V2 V1
21 MODELY TVAROVÝCH PLOCH B-REP SEZNAM VRCHOL x V5 F4 F5 V1 z F2 V2 F1 y SEZNAM ORIENTOVANÝCH STN Stna F1 F2 F3 F4 Orientovaná posloupnost vrchol V1 V2 V3 V4 V2 V5V V3 V3 V5V V4 V1 V4 V5 F3 V4 V3 F5 V1 V5V V2
22 POLYGONÁLN LNÍ REPREZENTACE Výpis struktury modelu 150 mesh vertices: m_v[0] = ( , , , ) ) m_v[1] = ( , ,-95)... m_v[149] = ( ,7.2806, ) 249 mesh faces: m_f[0].vi = (82,83,27) m_f[1].vi = (3,1,83)... m_f[248].vi = (25,24,80) 249 mesh face normals: m_fn[0] = ( ,( , , , ) ) m_fn[1] = ( ,( , , , ) )... m_fn[248] = ( , , , )
23 MODELY TVAROVÝCH PLOCH B-REP
24 MODELY TVAROVÝCH PLOCH NORMÁLOVÝ TEST VIDITELNOSTI NEVIDITELNÁ STNA STNA VNJŠÍ NORMÁLA POZOROVATEL SMR R POHLEDU < /2... cos > 0
25 MODELY TVAROVÝCH PLOCH NORMÁLOVÝ TEST VIDITELNOSTI VIDITELNÁ STNA STNA VNJŠÍ NORMÁLA POZOROVATEL SMR R POHLEDU > /2... cos < 0
26 MODELY TVAROVÝCH PLOCH NORMÁLOVÝ TEST VIDITELNOSTI STNA SE PROMÍTÁ JAKO HRANA POZOROVATEL VNJŠÍ NORMÁLA SMR R POHLEDU STNA = /2... cos = 0
27 MODELY TVAROVÝCH PLOCH polygon
28 MODELY TVAROVÝCH PLOCH polygon
29 MODELY TVAROVÝCH PLOCH 6179 polygon
30 MODELY TVAROVÝCH PLOCH 2038 polygon
31 NEORIENTOVATELNÁ STNA MÖBIV V PÁSP
32 ORIENTOVATELNÁ STNA
33 NEORIENTOVATELNÁ PLOCHA KLEINOVA LAHEV
34 ZPRACOVÁNÍ MRAKU BOD EZ MRAKEM BOD
35 ZPRACOVÁNÍ MRAKU BOD PROLOŽEN ENÍ KIVKAMI
36 ZPRACOVÁNÍ MRAKU BOD Potažen ení kivek plochou
37 ZPRACOVÁNÍ MRAKU BOD ROVINNÝ EZ MRAKEM BOD Hladká kivka Lomenáára Oteven ená kivka Uzaven ená kivka VOLBY VZORKOVÁNÍ BOD Maximáln lní rozptyl bod od ezné roviny Minimáln lní pípustná vzdálenost mezi sousedními body
38 ZPRACOVÁNÍ MRAKU BOD EZ MRAKEM BOD
39 ZPRACOVÁNÍ MRAKU BOD Suchomel Ondej, IV-17, : 2006: Karoserie - Škoda Octavia
40 ZPRACOVÁNÍ MRAKU BOD N mec Michal, 1-21, : 2008: Škoda Fabia WRC <>
41 ZPRACOVÁNÍ MRAKU BOD N mec Michal, 1-21, : 2008: Škoda Fabia WRC <>
42 ANALYTICKÁ REPREZENTACE PARAMETRICKÉ VYJÁDEN ENÍ KRUŽNICE 1 0,5 y y 1 0,5 C ( t) = ( cos( t), sin( t) ) u ,5 0 0,5 1-0,5 y ( t) = sin( t) -0,5 x ,5 0 0,5 1 0 x x ( t) = cos( t) u
43 ANALYTICKÁ REPREZENTACE PARAMETRICKÉ VYJÁDEN ENÍ KRUŽNICE 1 y 0,5 0-4,0-3,5-3,0-2,5-2,0-1,5-1,0-0,5 0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 t 1 y 0, ,5 0 0,5 1 1 t ( ) =, t 1+ t C t x 2 2t -0,5-0,5 y 2t ( t) = 2 1+ t ,0 3,5 3,0 t 2,5 2,0 1,5 1,0 0,5-1 -0,5 0 0, ,5-1,0-1,5-2,0 x 1 t 2 ( t) = 2 1+ t x -2,5-3,0-3,5-4,0
44 ANALYTICKÁ REPREZENTACE ANULOID
45 ANALYTICKÁ REPREZENTACE PARAMETRICKÉ VYJÁDEN ENÍ PLOCHY
46 ANALYTICKÁ REPREZENTACE ANULOID
47 ANALYTICKÁ REPREZENTACE NURBS NeUniformn niformní Racion acionáln lní B-Spline
48 ANALYTICKÁ REPREZENTACE Kivka piazenp azená ídicímu polygonu Plocha piazenp azená ídicí síti
49 SPECIÁLN LNÍ PÍPADY PADY NURBS REPREZENTACE FERGUSONV V PLÁT 12-ti vektorový 16-ti vektorový BÉZIEROVA PLOCHA COONSOVA INTERPOLANÍ PLOCHA COONSOVA APROXIMANÍ PLOCHA
50 ANALYTICKÁ REPREZENTACE T-Spline
51 VYHLAZOVÁNÍ SÍTÍ SUBDIVISION SURFACES
52 VYHLAZOVÁNÍ SÍTÍ SUBDIVISION SURFACES
53 KRITÉRIA RIA HUSTOTY SÍTS NEZÁVISL VISLÁ NA VELIKOSTI PLOCHY Maximáln lní pípustná úhlová odchylka mezi normálou plochy a normálou sít v libovolném m vrcholu sít s. Maximáln lní pípustná úhlová odchylka mezi dv ma sousedními polygony. Maximáln lní pom r stran výchozích tyúhelník. Minimáln lní poet polygon. Identické/r /rzné vrcholy polygon podél l okraj navazujících ch ploch. ZÁVISLÁ NA VELIKOSTI PLOCHY Minimáln lní délka hrany polygonu Maximáln lní délka hrany polygonu Maximáln lní vzdálenost hrany polygonu od plochy m ená na normále jako vzdálenost stedu hrany polygonu od plochy
54 LITERATURA Linkeová,, I.: Základy Z poíta taového modelování kivek a ploch, VUT v Praze, Linkeová,, I.: NURBS kivky, k VUT v Praze, wikipedia.org/wiki/catmull-clark Clark_subdivision_surfacesurface zcu.cz/~ /~svetlana/seminar/voroneho_diagramy.pdf tsplines.com/products/what-are-t-splines splines.html cz/clanky/zasuvne-moduly/rekonstrukce- mnoziny-bodu. bodu.html
Plochy počítačové grafiky II. Interpolační plochy Bezierovy pláty nad obdélníkovou a trojúhelníkovou sítí Recionální Bezierovy pláty B-spline NURBS
II Interpolační plochy Bezierovy pláty nad obdélníkovou a trojúhelníkovou sítí Recionální Bezierovy pláty B-spline NURBS Konstrukce a zadání plochy hraniční křivky sítí bodů Kinematicky vytvořené křivky
Zobrazování těles. problematika geometrického modelování. základní typy modelů. datové reprezentace modelů základní metody geometrického modelování
problematika geometrického modelování manifold, Eulerova rovnost základní typy modelů hranový model stěnový model objemový model datové reprezentace modelů základní metody geometrického modelování těleso
Typy geometrie v. Rhinu. Body
Typy geometrie v 16 Rhinu Rhino rozeznává pět základních typů geometrie: body (points), křivky (curves), plochy (surfaces) a spojené plochy (polysurfaces). Navíc jsou plochy nebo spojené plochy, které
Geometrie pro CAD MODELOVÁNÍ HRNKU
Výsledný model Postup modelování Osa: píkaz Úseka (Kivka Úseka Jedna úseka) Poátek úseky: 0 Enter Konec úseky: w0,0,20 *) Enter. Profilová kivka nádoby: píkaz Kivka zadávaná ídicími body (Kivka Volný tvar
Aproximační křivky. Trocha historie. geometrické modelování veliký pokrok v oblasti letectví 1944 Roy Liming
Trocha historie geometrické modelování veliký pokrok v oblasti letectví 944 Roy Liming analytik, North American Aviation (výrobce letadel) společně s konstruktérem a designérem Edgardem Schmuedem matematizace
Matematický ústav UK Matematicko-fyzikální fakulta
Geometrické modelování Zbyněk Šír Matematický ústav UK Matematicko-fyzikální fakulta 5. října 2016 Zbyněk Šír (MÚ UK) - Geometrické modelování 5. října 2016 1 / 14 Obsah dnešní přednášky Co je to geometrické
Počítačová grafika RHINOCEROS
Počítačová grafika RHINOCEROS Ing. Zuzana Benáková Základní otázkou grafických programů je způsob zobrazení určitého tvaru. Existují dva základní způsoby prezentace 3D modelů v počítači. První využívá
POČÍTAČOVÁ GRAFIKA - PGR 2012037 2014 2015 PROGRAM PŘEDNÁŠEK. Po 9:00-10:30, KN:A-214
PROGRAM PŘEDNÁŠEK Po 9:00-10:30, KN:A-214 1P 16. 2. Křivky definice, analytické vyjádření. Bézierova křivka definice, vlastnosti, odvození Bernsteinových polynomů, de Castejlau algoritmus. 2P 23. 2. Spojitost
NURBS REPREZENTACE KŘIVEK V MAPLE
25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Karolína Kundrátová NURBS REPREZENTACE KŘIVEK V MAPLE Abstrakt Parametrizace křivek jako NURBS (tj. neuniformní racionální B-spliny) patří k moderním postupům
Křivky a plochy technické praxe
Kapitola 7 Křivky a plochy technické praxe V technické praxi se setkáváme s tím, že potřebujeme křivky a plochy, které se dají libovolně upravovat a zároveň je jejich matematické vyjádření jednoduché.
VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ
VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ Dvě přímky v rovině mohou být: různoběžné - mají jediný společný bod, rovnoběžné různé - nemají společný bod, totožné - mají nekonečně mnoho společných bodů. ŘEŠENÉ
Rekonstrukce ploch: Polygonální a analytická reprezentace Vybrané metody aproximace ploch
Rekonstrukce ploch: Polygonální a analytická reprezentace Vybrané metody aproximace ploch Petra Surynková Matematicko-fyzikální fakulta Univerzita Karlova v Praze petra.surynkova@mff.cuni.cz Přehled (1)
Matematický ústav UK Matematicko-fyzikální fakulta
Geometrické modelování Zbyněk Šír Matematický ústav UK Matematicko-fyzikální fakulta 2. října 2018 Zbyněk Šír (MÚ UK) - Geometrické modelování 2. října 2018 1 / 15 Obsah dnešní přednášky Co je to geometrické
Plochy zadané okrajovými křivkami
Plochy zadané okrajovými křivkami Lineární plát plocha je určena dvěma okrajovými křivkami, pokud by pro tyto křivky byly intervaly, v nichž leží hodnoty parametru, různé, provedeme lineární transformaci
6. ANALYTICKÁ GEOMETRIE
Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných
Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32
Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;
Aproximační křivky. Trocha historie. geometrické modelování veliký pokrok v oblasti letectví 1944 Roy Liming
Trocha historie geometrické modelování veliký pokrok v oblasti letectví 944 Roy Liming analytik, North American Aviation (výrobce letadel) společně s konstruktérem a designérem Edgardem Schmuedem matematizace
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna
Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí
HVrchlík DVrchlík. Anuloid Hrana 3D síť
TVORBA PLOCH Plochy mají oproti 3D drátovým modelům velkou výhodu, pro snadnější vizualizaci modelů můžeme skrýt zadní plochy a vytvořit stínované obrázky. Plochy dále umožňují vytvoření neobvyklých tvarů.
Singularity rotačních obalových ploch
Singularity rotačních obalových ploch Ivana Linkeová ČVUT v Praze, Fakulta strojní, Ústav technické matematiky Karlovo nám. 13, 121 35 Praha 2 Nové Město Ivana.Linkeova@fs.cvut.cz Abstrakt. V příspěvku
Diferenciáln. lní geometrie ploch
Diferenciáln lní geometrie ploch Vjádřen ení ploch Eplicitní: z = f(,) ; [,] Ω z Implicitní: F(,,z)=0 + + z = r z = sin 0, π ; 0,1 Implicitní ploch bloob objects,, meta balls Izoploch: F(,,z)=konst. Implicitní
ě ů É ď ů š ě ů ů ž ů ě ě ú Ú ě Ú ě é ě ě é ě š ú ů š š é ě ě ů ě ě ž Í Á Á é ě ěž Ú ě ů ěž ě Ú é ě é é ů é Ž é ě ě ě é é ě ě ú é ě ě ě é ě ď Ú š ú ů é ď ů ě ů ů ě é é ě ů Ú é ů ů é ě Í Á ě ě ů é ě ěž
Matematika I 12a Euklidovská geometrie
Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky
9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy. Vyučující: Ing. Jan Pacina, Ph.D.
9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Lehký úvod Digitální modely terénu jsou dnes v geoinformačních systémech
Otázky z kapitoly Stereometrie
Otázky z kapitoly Stereometrie 10. února 015 Obsah 1 Krokované příklady (0 otázek) 1 Metrické vlastnosti (30 otázek) 1.1 Obtížnost 1 (16 otázek)....................................... 1. Obtížnost (14
Úvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
KINEMATICKÁ GEOMETRIE V ROVIN
KINEMATICKÁ GEOMETRIE V ROVIN Kivka je jednoparametrická množina bod X(t), jejíž souadnice jsou dány funkcemi: x = x(t), y = y(t), t I R. Tena kivky je urena bodem dotyku X a teným vektorem o souadnicích
Základy 3D modelování a animace v CGI systémech Cinema 4D C4D
EVROPSKÝ SOCIÁLNÍ FOND Základy 3D modelování a animace v CGI systémech Cinema 4D C4D PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Mgr. David Frýbert 2013 CGI systémy Computer - generated imagery - aplikace
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ07/500/34080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím ICT
Jana Dannhoferová Ústav informatiky, PEF MZLU
Počítačová grafika Křivky Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Základní vlastnosti křivek křivka soustava parametrů nějaké rovnice, která je posléze generativně
Matematika PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí
11 Zobrazování objektů 3D grafiky
11 Zobrazování objektů 3D grafiky Studijní cíl Tento blok je věnován základním algoritmům zobrazení 3D grafiky. Postupně budou probrány základní metody projekce kolmé promítání, rovnoběžné promítání a
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017
NÁRODNÍ ROVNÁVACÍ ZKOUŠKY Matematika T DUBNA 07 :. dubna 07 D : 807 P P P : 30 M. M. : 30 : 9,0 M. : 7,9 % : -7,3 M. P : -,5 : 5,0 Zopakujte si základní informace ke zkoušce: n Test obsahuje 30 úloh a
MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,
MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=
Kristýna Bémová. 13. prosince 2007
Křivky v počítačové grafice Kristýna Bémová Univerzita Karlova v Praze 13. prosince 2007 Kristýna Bémová (MFF UK) Křivky v počítačové grafice 13. prosince 2007 1 / 36 Pojmy - křivky a jejich parametrické
Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb
Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.
Základní vlastnosti ploch
plocha zpravidla se definuje jako výsledek spojitého pohybu jisté tvořící křivky podél zadané trajektorie lze obohatit o možnost spojitých změn tvaru tvořící křivky x v průběhu pohybu podél trajektorie
Pr niky ploch a t les
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 RONÍKOVÁ PRÁCE Prniky ploch a tles Vypracoval: Tomáš Martínek ída: 4.C Školní rok: 2013/2014 Seminá: Deskriptivní geometrie Prohlašuji, že jsem svou
Elementární křivky a plochy
Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin
TEMATICKÝ PLÁN VÝUKY
STŘEDNÍ P RŮMYSLOVÁ ŠKOLA, Praha 10, Na Třebešíně 22 TEMATICKÝ PLÁN VÝUKY Studijní 78 42 - M/01 Technické Zaměření: obor: lyceum Předmět: Matematika MAT Ročník: Počet hodin týdně: 4 3. Počet hodin celkem:
3. Souřadnicové výpočty
3. Souřadnicové výpočty 3.1 Délka. 3.2 Směrník. 3.3 Polární metoda. 3.4 Protínání vpřed z úhlů. 3.5 Protínání vpřed z délek. 3.6 Polygonové pořady. 3.7 Protínání zpět. 3.8 Transformace souřadnic. 3.9 Volné
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:
ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š
ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě
ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů
ň Š ý ě ý Ě Á ý ý ě ň Š ý ě ý ú ň ň ý ě ý ó ě ž ý ň ě ě Š ú Š ú Š ň Á ň Š ň ý ě ý Š ž ý ě ý ů ě ě ž ý ě Š ě ě ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ó ě ů ě ý Š ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ě Č Č ě Š Č ě
frekvence f (Hz) perioda T = 1/f (s)
1.) Periodický pohyb - každý pohyb, který se opakuje v pravidelných intervalech Poet Poet cykl cykl za za sekundu sekundu frekvence f (Hz) perioda T 1/f (s) Doba Doba trvání trvání jednoho jednoho cyklu
Voronoiův diagram. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta
12 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Definice V( P) nad množinou bodů P { p v rovině 1,
1. Přímka a její části
. Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v
MATEMATIKA II - vybrané úlohy ze zkoušek v letech
MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013
Výpočet průsečíků paprsku se scénou
Výpočet průsečíků paprsku se scénou 1996-2018 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Intersection 2018 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 26 Průsečík
1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje.
1/7 ANALYTICKÁ GEOMETRIE V PROSTORU Základní pojmy: Parametrické vyjádření přímky, roviny Obecná rovnice roviny Vzájemná poloha přímek a rovin Odchylka přímek a rovin Vzdálenosti www.karlin.mff.cuni.cz/katedry/kdm/diplomky/jan_koncel/
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
2. Bodové pole a souřadnicové výpočty
2. Bodové pole a souřadnicové výpočty 2.1 Body 2.2 Bodová pole 2.3 Polohové bodové pole. 2.3.1 Rozdělení polohového bodového pole. 2.3.2 Dokumentace geodetického bodu. 2.3.3 Stabilizace a signalizace bodů.
Výpočet průsečíků paprsku se scénou
Výpočet průsečíků paprsku se scénou 1996-2008 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz NPGR004, intersection.pdf 2008 Josef Pelikán, http://cgg.ms.mff.cuni.cz/~pepca
Opakovací kurs středoškolské matematiky podzim
. Opakovací kurs středoškolské matematiky podzim František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou
Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Maturitní témata z matematiky
Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou
Ě Ý Í Č ě ř ŠÍ Á Ú Ř Ž ú Ž Ž Ú ž ě ů ž ý ř ď ř ů ů ž ý ě ř ř ě ě ý ú ď ž ý ě ě ř Í ž ý ý ě ý ú ď ž ý ý ů ě ý ž Ž Í ř ž ě ž ě ý ú ď ž é ř ý ž ď ž ř ů ý ř ý é ú ž ř é ž ů ř é é ů é ř ě é ž ě ý ř é é ř Ž
Základní vlastnosti křivek
křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky
Základní topologické pojmy:
Křivky Marie Ennemond Camille Jordan (88 9): Křivka je množina bodů, která je surjektivním obrazem nějakého intervalu Giuseppe Peano (858 9): Zobrazení intervalu na čtverec Wacław Franciszek Sierpiński
Subdivision křivky a plochy
Subdivision křivky a plochy KMA/ITG Informační technologie ve vyučování geometrie + KMA/GM1 Geometrické modelování 1 Subdivision křivky a plochy ITG 1 / 46 Plochy volného tvaru opakování Plochy volného
Maturitní témata z matematiky
Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy
Křivky kolem nás. Webinář. 20. dubna 2016
Křivky kolem nás Webinář 20. dubna 2016 Přístup k funkcím Funkce (zobrazení) Předpis, který přiřazuje jedné hodnotě x hodnotu y = f (x). Je to množina F uspořádaných dvojic (x, y) takových, že pokud (x,
CVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 40 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Vypočtěte pro a 1; 3 hodnotu výrazu 4 + a 3 + a 3 ( 2). 1 bod VÝCHOZÍ TEXT
14. cvičení z Matematické analýzy 2
4. cvičení z atematické analýzy 2 8. - 2. ledna 28 4. (Greenova věta) Použijte Greenovu větu k nalezení práce síly F (x, y) (2xy 3, 4x 2 y 2 ) vykonané na částici podél křivky Γ, která je hranicí oblasti
Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.
6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje
Přednáška 3. 1GIS2 Digitální modely terénu, odvozené charakteristiky DMT, základní analýzy využívající DMT FŽP UJEP
Přednáška 3 1GIS2 Digitální modely terénu, odvozené charakteristiky DMT, základní analýzy využívající DMT FŽP UJEP Digitální modely terénu - DMT (digitální model reliéfu DMR) (Digital Terrain Model(ing)
Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o
ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška
Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace
Píkazy pro kreslení.
Píkazy pro kreslení. Tento text je psán pro AUTOCAD 2006, eskou modifikaci. V jiných verzích se proto vyskytnou odchylky. Jsou to píkazy, které umožují nakreslit jednotlivé entity v AUTOCADu. Z menu je
Polygonální objekty v Rhinoceros Volné modelování
přednáška 10 Polygonální objekty v Rhinoceros Volné modelování 10.1 Polygonální objekty v Rhinoceros Jak již bylo zmíněno v první přednášce, program Rhinoceros je plošný modelář a při popisu svých objektů
CZ 1.07/1.1.32/02.0006
PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI
4. EZY NA KUŽELÍCH 4.1. KUŽELOVÁ PLOCHA, KUŽEL
4. EZY NA KUŽELÍCH 4.1. KUŽELOVÁ PLOCHA, KUŽEL Definice : Je dána kružnice k ležící v rovin a mimo ni bod V. Všechny pímky jdoucí bodem V a protínající kružnici k tvoí kruhovou kuželovou plochu. Tyto pímky
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
5. závod Klatovy. Poznámka. Index Název RZ
Seznam všech aktivních RZ 5. závod Klatovy Index Název RZ Stav Čas startu 1 1 RZ Dokončená 11.0710:12 2 2 RZ Dokončená 11.0711:02 3 3 RZ Dokončená 11.0711:58 4 4 RZ Dokončená 11.0712:45 5 5 RZ Dokončená
Plošný integrál Studijní text, 16. května Plošný integrál
Plošný integrál tudijní text, 16. května 2011 Plošný integrál Jednoduchý integrál jsme rozšířili zavedením křivkového integrálu. Rozlišovali jsme dva druhy integrálu, přičemž křivkový integrál 2. druhu
Á Ý Á Í Š š ů Š ž ú ř ž ú ř ř š ů ř ř ů Ů ř ů ň ů ř š é ů ž ř š ž é ř é ř š š ž ř ž ř ů ž ř ů ž ů é ř ž é ž ž ř ř ň ž ř ř ů š é ř ž ů ŠÍ é ř ň ů ř š é ř é ř š é ů ž š é ů é ú š é ž š š é é ř é é š ř ň
ú Í Š Š Ť Í Š Š ň Ó Š Í Í Š Í ž Í Í Í ú Š Ů Č Š Š Á Í Š ú Í Ť Ů Í ž ž Ť Š Í ž ú ž Č ž Ú ž ť Í Í ú Ú ž ú ú Í ž Í Í Í ú ú Ú Í Ó ú Í Ů ú ú Ú Ó Í Í Í ú ú ž ú Í ú ž Č Ú Í ň É Í ú Í ú Í Č ň ň Č Ú ň ň ž Í Í ž
Matematika pro geometrickou morfometrii
Matematika pro geometrickou morfometrii Václav Krajíček Vaclav.Krajicek@mff.cuni.cz Department of Software and Computer Science Education Faculty of Mathematics and Physics Charles University Přednáška
terminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy
2. Plošný integrál. Poznámka. Obecně: integrování přes k-rozměrné útvary (k-plochy) v R n. Omezíme se na případ k = 2, n = 3. Definice. Množina S R 3 se nazve plocha, pokud S = ϕ(), kde R 2 je otevřená
Analytická geometrie (AG)
Analytická geometrie (AG) - zkoumá geometrické útvary pomocí algebraických a analytických metod Je založena na vektorech a soustavě souřadnic, rozděluje se na AG v rovině a v prostoru. Analytická geometrie
Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R
Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při
. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti:. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup
1 Analytická geometrie
1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice
3.2. ANALYTICKÁ GEOMETRIE ROVINY
3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou
Vytyčovací sítě. Výhody: Přizpůsobení terénu
Typ liniové sítě záleží na požadavcích na přesnost. Mezi tyto sítě patří: polygonové sítě -> polygonový pořad vedený souběžně s liniovou stavbou troj a čtyřúhelníkové řetězce -> zdvojený polygonový pořad
MATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
Ukázka hustoty bodového pole
Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz síť bodů pokrývající území ČR u bodů jsou známé souřadnice Y, X v S-JTSK, případně souřadnice B, L v ERTS pro každý bod jsou vyhotoveny geodetické údaje (GÚ) ukázka
Rekonstrukce křivek a ploch metodou postupné evoluce
Rekonstrukce křivek a ploch metodou postupné evoluce Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz Přehled Evoluce křivek princip evoluce použití evoluce křivky ve
Počítačová grafika 2 (POGR2)
Počítačová grafika 2 (POGR2) Pavel Strachota FJFI ČVUT v Praze 19. února 2015 Kontakt Ing. Pavel Strachota, Ph.D. Katedra matematiky Trojanova 13, místnost 033a E-mail: pavel.strachota@fjfi.cvut.cz WWW:
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 207 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia