Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu Deformace a posuny v tělese Hookeův zákon Deformace od změny teploty Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita Ostrava
PRUŽNOST A PLASTICITA Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228) LPH 407/1 tel. 59 732 1348 vladimira.michalcova@vsb.cz http://fast10.vsb.cz/michalcova 2
Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita 3
Doporučená literatura Skripta Benda: Stavební statika I., VŠB-TU Ostrava 2005 Kniha Šmířák: Pružnost a plasticita I., VUT Brno 1999 Skripta Šmířák, Hlavinková: Pružnost a plasticita I, Příklady, VUT Brno 2000 4
Prerekvizity Vstupní požadavky: Matematika, Fyzika, Stavební statika Požadavky pro udělení zápočtu (18-35 bodů) minimálně 70 % aktivní účast ve výuce zpracování příkladů s individuálním zadáním a jejich uznání prokázání znalostí procvičované látky formou písemek všechny písemky uznané, možnost neúspěšné pokusy 2x opravit Požadavky na složení zkoušky : zápočet úspěšná písemná zkouška ústní zkouška prokazující znalosti probírané látky Maximální bodové ohodnocení u zkoušky: (písemná část / ústní část): 65 (35 / 30) Výsledná známka / odpovídající počet bodů: 3 / 51 65 2 / 66 85 1 / 86 100 Úvod do studia předmětu Pružnost a plasticita na Stavební fakultě VŠB-TU Ostrava 5
Teorie pružnosti a plasticity Teorie Pružnosti a plasticity je součástí mechaniky pevné fáze deformovatelných těles. Předmětem zkoumání jsou především: Napětí (intenzita vnitřních sil) Deformace (přetvoření) Stabilita Pružnost a pevnost ve stavebním inženýrství 6
Vnitřní síly Na těleso (konstrukci) působí vnější síly: primární zatížení F i (i=1, 2,, n) sekundární reakce vazeb (odezva) a F 1 F 2 b R ax R az R bz Vnitřní síly: působí na sebe v libovolném řezu konstrukce dle principu akce a reakce. Vztahy mezi vnitřními silami a napětími v průřezu 7
Namáhání přímého nosníku vnitřní síly φ F 2 F 1 V prostoru: N V y V z T=M x M y M z V rovině xz: N V z M y +y +z F 3 h +x V y o=m N +y M y V z M z T=M x +x +z Vztahy mezi vnitřními silami a napětími v průřezu 8
Vnitřní síly, napětí Vnitřní síly nevypovídají nic o míře namáhání tělesa nebo prvku konstrukce. Nutno uvažovat také s vlivem tvaru a velikosti průřezové plochy, které do výpočtu vstupují ve formě průřezových charakteristik. Významnější veličinou je napětí jeden z klíčových pojmů teorie pružnosti a plasticity. Vztahy mezi vnitřními silami a napětími v průřezu 9
Vnitřní síly a napětí Napětí je míra intenzity vnitřních sil vnitřní síly napětí 10
Vnitřní síly, napětí V r F r N r V r A... Normála výslednice F r... Složka výslednice F r M N r A, rovnoběžná s rovinou řezu (tangenciální)... Element průřezové plochy A(průřezová charakteristika) σ = lim A 0 r N r A Napětí normálové smykové τ = lim A 0 r V r A Vztahy mezi vnitřními silami a napětími v průřezu 11
Napětí Napětí: vektor, charakterizovaný svými složkami. Měrná jednotka: Pascal... [Pa] Rozměr napětí: Pa = N 2 m MN m 6 MPa = 10 Pa = = 2 N mm 2 Vztahy mezi vnitřními silami a napětími v průřezu 12
Vztahy mezi vnitřními silami a napětími v průřezu prutu dn = σ x. da N = σ A obdobně V V y z M M = τ da A A xy = τ da x y xz A x d ( τ. y. z) da = V. y V. z = τ z = N. z = σ x A y A (. z) da xz xy Průřez prutu Těžiště průřezu Střednice prutu Působiště výslednice vnitřních sil +y z V y V z (str.8 učebnice) τ σ x xy τ xz +x N +z M z = N. y = σ x A (. y) da y Vztahy mezi vnitřními silami a napětími v průřezu 13
Stav napjatosti tělesa Znaménková konvence, indexy u napětí 14
Věta o vzájemnosti smykových napětí - důležité 15
Posuny (přemístění) konkrétních bodů zkoumaného tělesa 16
Poměrné deformace a posuny - geometrické rovnice Vlivem zatížení nebo změny teploty se tělesa deformují, což lze popsat pomocí: poměrných deformací složek posunutí. Vztahy mezi deformacemi a posuny popisují geometrické rovnice Deformace a posuny v tělese 17
Poměrné deformace Poměrné deformace: - délkové ε (poměrné prodloužení nebo zkrácení) - úhlové γ (zkosení) 3 prostý tah ε x = dx dx kroucení dz γ xz = γ zx = 3 dz dx dx Teorie malých deformací: << 1 ε γ << 1 Zjednodušení: tan γ γ Deformace a posuny v tělese 18
Poměrné deformace, geometrické rovnice Délkové: podélné příčné ε x = dx dx ε y = dy dy ε z = dz dz Úhlové: γ xy = 1 dx γ yz = 2 dy γ xz = 3 dz prostý tah N N +y +z +x kroucení 3 dz T +x dx dx Deformace a posuny v tělese 19
Základní typy namáhání Název Vnitřní síla Napětí Osové namáhání (tah, prostý tlak) N σ x Ohyb M y, M z σ x Smyk V y, V z τ xy, τ xz Kroucení T τ xy, τ xz Základní pojmy, výchozí předpoklady σ = napětí normálové τ = napětí smykové 20
Výchozí předpoklady klasické lineární pružnosti 1. Spojitost látky: Těleso pokládáme za kontinuum, mající celý objem bez mezer, nezabýváme se mikrostrukturou materiálu. Díky tomu lze brát napětí i deformaci jako spojitou funkci. 2. Homogenita a izotropie 3. Lineární pružnost 4. Malé deformace 5. Statické zatěžování 6. Počáteční nenapjatost (str. 4 učebnice) Základní pojmy, výchozí předpoklady 21
Výchozí předpoklady klasické lineární pružnosti 1. Spojitost látky 2. Homogenita a izotropie: Homogenní (stejnorodá) látka má fyzikální vlastnosti ve všech místech shodné. Nerespektují se náhodné vady a nerovnoměrnosti beton, ocel a dřevo. Při kombinaci dvou a více materiálů (např. beton a ocel) se předpoklad homogenní látky opouští. Izotropní materiál má vlastnosti nezávislé na směru. ANO - beton, ocel, NE - dřevo! 3. Lineární pružnost 4. Malé deformace 5. Statické zatěžování 6. Počáteční nenapjatost (str. 4 učebnice) Základní pojmy, výchozí předpoklady 22
Výchozí předpoklady klasické lineární pružnosti 1. Spojitost látky 2. Homogenita a izotropie 3. Lineární pružnost: Pružnost je schopnost látky vracet se po odstranění příčin změn (např. zatížení) do původního stavu. Pokud platí přímá úměrnost mezi napětím a deformací Hookův zákon, jedná se o tzv. fyzikální linearitu 4. Malé deformace 5. Statické zatěžování 6. Počáteční nenapjatost (str. 4 učebnice) Základní pojmy, výchozí předpoklady 23
Výchozí předpoklady klasické lineární pružnosti Plasticita: Schopnost látky deformovat se bez porušení nevratným, tvárným způsobem. Zatížení a odlehčení se neřídí shodnými zákonitostmi po odstranění zatížení zůstávají trvalé deformace. Plastických vlastností oceli se využívá při navrhování ocelových a železobetonových konstrukcí. σ ideálně pružno-plastický materiál ε Základní pojmy, výchozí předpoklady 24
Výchozí předpoklady klasické lineární pružnosti 1. Spojitost látky 2. Homogenita a izotropie 3. Lineární pružnost 4. Malé deformace: Změny tvaru konstrukce jsou vzhledem k rozměrům konstrukce malé. Možnost řady zjednodušení při matematickém řešení úloh pružnosti, které obvykle vedou k lineárním závislostem. 5. Statické zatěžování 6. Počáteční nenapjatost (str. 4 učebnice) Základní pojmy, výchozí předpoklady 25
Výchozí předpoklady klasické lineární pružnosti Teorie malých deformací F δ << l H b Teorie konečných (velkých) deformací H F b δ l Teorie I.řádu l Teorie II.řádu geometrická nelinearita δ l a a M ay =H.l M ay Základní pojmy, výchozí předpoklady Sestavení podmínek rovnováhy na deformované konstrukci. M ay M ay =H.l+F.δ 26
Výchozí předpoklady klasické lineární pružnosti 1. Spojitost látky 2. Homogenita a izotropie 3. Lineární pružnost 4. Malé deformace 5. Statické zatěžování: Předpoklad postupného narůstání vnějších účinků (např. zatížení) a v důsledku toho i napětí a deformací, lze zanedbat dynamické účinky. 6. Počáteční nenapjatost (str. 4 učebnice) Základní pojmy, výchozí předpoklady 27
Výchozí předpoklady klasické lineární pružnosti 1. Spojitost látky 2. Homogenita a izotropie 3. Lineární pružnost 4. Malé deformace 5. Statické zatěžování 6. Počáteční nenapjatost: Ve výchozím stavu jsou všechna napětí rovna nule. Vnitřní pnutí, vyvolaná např. výrobou (válcování ocelových nosníků, svařování), nejsou zahrnuta. (str. 4 učebnice) Základní pojmy, výchozí předpoklady 28
Výchozí předpoklady klasické lineární pružnosti 1. Spojitost látky 2. Homogenita a izotropie 3. Lineární pružnost 4. Malé deformace 5. Statické zatěžování 6. Počáteční nenapjatost Tyto předpoklady umožňují uplatnění principu superpozice (skládání účinků), který je založen na linearitě všech matematických závislostí. (str. 4 učebnice) Základní pojmy, výchozí předpoklady 29
Princip superpozice a úměrnosti Základní zákony statiky Issac Newton (1642-1727) 1) Princip akce a reakce: Každá akce vyvolává reakci stejně velikou, ale opačného smyslu. Tlačí-li těleso tíhy G na podložku (základ), musí tato působit na těleso stejně velikou, ale opačného smyslu. 2) Princip superpozice (skládání) účinků: Rozdělíme-li obecnou soustavu sil působící na těleso do dílčích silových soustav (dále jen SS) 1, 2,... n, od každé stanovíme účinky R 1, R 2,... R n, pak výsledný účinek obdržíme vektorovým součtem účinků od jednotlivých dílčích SS. 3) Princip úměrnosti: Působí-li na těleso SS F 1, F 2,..., F n vyvolávající výsledný účinek R, potom SS k.f 1, k.f 2,..., k.f n vyvolává výsledný účinek k.r pro k = konst. Základní pojmy, výchozí předpoklady 30
Složené typy namáhání Základní typy namáhání: a) prosté (osové, ohyb, kroucení, smyk) b) složené Kombinace základních případů namáhání: prostorový (obecný) ohyb excentrický tah a tlak (kombinace ohybu s tahem nebo tlakem) kroucení s tahem nebo tlakem a s ohybem Díky principu superpozice, který platí v lineárně pružném oboru, pak lze řešit složené případy namáhání rozkladem na základní stavy a výsledné účinky složit superponovat. Základní pojmy, výchozí předpoklady 31
Saint - Venantův princip lokálního účinku F neovlivněná část Jean Claude Saint-Venant (1797-1886) q F F oblast poruchy oblast blízkého okolí Usnadňuje řešení napjatosti těles. Rovnovážná soustava ovlivní stav napjatosti jen v blízkém okolí Ve vzdálenějších bodech má zanedbatelné účinky Používá se: a) ke zjednodušení povrchového zatížení jeho náhradou - staticky ekvivalentním, pro výpočet výhodnějším zatížením (spojité zatížení na malé ploše lze nahradit osamělým břemenem) (str.9 učebnice) Vztahy mezi vnitřními silami a napětími v průřezu 32
Saint - Venantův princip lokálního účinku b) skutečné rozměry prutu můžeme idealizovat do střednice. (síla působí na střednici prutu nikoliv na horní nebo spodní líc) F oblast blízkého okolí, nutno provést korekci R az R bz R az F R bz Po provedení výpočtu, zejména jsou-li vyčíslena i napětí v průřezech, je nutno provést korekce napětí s ohledem na provedené idealizace. Vztahy mezi vnitřními silami a napětími v průřezu 33
Pracovní diagram Vztah napětí - deformace vyjadřuje pracovní diagram. Závisí na fyzikálních a mechanických vlastnostech materiálů. σ x σ x = N A TAH ε = x l l α = arctg E ε x Fyzikální vztahy mezi napětími a deformacemi 34
Lineárně pružný materiál, Hookeův zákon Hookeův zákon: vyjadřuje lineární závislost mezi napětím a poměrnou deformací (prodloužením) σ x σ x E = tanα = σ x = ε x E ε TAH x α = arctg E Hookeův zákon N A = l l σ σ = x E N A Hookeův zákon odvozený vztah ε x... poměrné prodloužení [-] σ x... normálové napětí [Pa] E... modul pružnosti v tahu a tlaku (Youngův) [Pa] x = ε x ε x l = E = l l N. l E. A Fyzikální vztahy mezi napětími a deformacemi ε x 35
Lineárně pružný materiál, H.Z., fyzikální rovnice Hookeův zákon: vyjadřuje lineární závislost mezi napětím a poměrnou deformací (prodloužením) σ TAH Závislost mezi napětím a deformacemi popisují fyzikální rovnice Jedná se o matematické vyjádření Hookeova zákona σ x = ε x E α = arctg E ε x Fyzikální vztahy mezi napětími a deformacemi 36
Lineárně pružný materiál, H.Z., fyzikální rovnice σ x σ x dy dx V příčném směru: σ x ε y = ε z = υ. ε x = υ. E po deformaci dx dy υ (dříve µ )... Poissonův součinitel příčné deformace [-] υ 0,5 σ σ x y σ z 1 Při současném působení σ x, σ y a σ z ε = υ. υ. =.[ σ υ. ( σ + σ )] Obdobně v osách y a z. Fyzikální rovnice x E E E E x y z Fyzikální vztahy mezi napětími a deformacemi 37
Lineárně pružný materiál, Hookeův zákon ve smyku G τ xy = tanα = τ xy = γ γ τ xy = τ yx xy xy G G... modul pružnosti ve smyku [Pa] τ xy... smykové napětí [Pa] γ xy... zkosení [-] Hookeův zákon ve smyku τ xy = γ xy G Obdobně v rovinách xz, zy. γ = arctg G Fyzikální rovnice - 2.část γ xy Fyzikální vztahy mezi napětími a deformacemi 38
Fyzikální konstanty U izotropní látky není E, G a υ vzájemně nezávislé. E G = 2. ( 1+υ) 0 υ 0,5 E 3 G E 2 Orientační hodnoty fyzikálních konstant některých látek: E G υ Ocel 210 000 MPa 81 000 MPa 0,3 Sklo 70 000 MPa 28 000 MPa 0,25 Žula 12 000 až 50 000 MPa - 0,2 Dřevo jehličnaté E = 10 000 MPa E = 300 MPa 600 MPa - Fyzikální vztahy mezi napětími a deformacemi 39
Pracovní diagram oceli - vztah napětí-deformace Plasticita: schopnost materiálu deformovat se trvale bez porušení. Tažnost: plastické protažení přetržené tyče (vzdálenost /OT/), ocel 15%. 40
Ideálně pružno-plastický materiál - pracovní diagram úsek Y-Y Y-A Hookeův zákon Plastický stav volný nárůst deformací f y σ x ε e Y ε p A,C TAH A-B B-C Odlehčení Opětovné zvýšení napětí α = arctan E B 0 ε x TLAK Y - f y ε p plastická (trvalá) deformace ε e pružná deformace Lineární závislost mezi napětím a deformacemi tzv. Hookeův zákon Fyzikální vztahy mezi napětími a deformacemi 41
Pracovní diagram V první fázi v oblasti platnosti Hookova zákona je normálové napětí přímo úměrné relativnímu prodloužení. Matematicky vyjádřeno: σ x = E.ε x Koeficient přímé úměrnosti E se nazývá modul pružnosti v tahu (jednotkou je Pascal, skutečné hodnoty jsou však dost velké, takže je vyjadřujeme v MPa). Lineární část grafu odpovídá elastické deformaci tělesa. Jestliže deformační síly přestanou působit, těleso se vrátí do původního tvaru. Po překročení meze kluzu nastává plastická (trvalá) deformace. 42
Deformace od změny teploty dy dy T ( o C) dx dx ε = ε = ε =. T γ γ = γ = 0 x, T y, T z, T αt xy = yz zx α t součinitel tepelné roztažnosti [ o C -1 ] Ocel α t =12.10-6 o C -1 Dřevo α t =3.10-6 o C -1 Beton α t =10.10-6 o C -1 Zdivo α t =5.10-6 o C -1 Deformace od změny teploty 43
Okruhy k ústní zkoušce Vnitřní síly a napětí Stav napjatosti tělesa, věta o vzájemnosti smykových napětí Základní typy namáhání Výchozí předpoklady klasické lineární pružnosti Princip superpozice a úměrnosti Složené typy namáhání Sain-Venantův princip lokálního účinku Deformace, posuny, geometrické rovnice Pracovní diagram ideálně pružnoplastického materiálu, schéma, popis os, sklon lineární oblasti Hookeův zákon, definice, schéma, rovnice, odvození odvozeného vztahu H.Z. Fyzikální konstanty Fyzikální rovnice, definice, matematický popis Pojem plasticita, teorie malých deformací, teorie II. řádu Deformace od změny teploty 44