Mechanika kontinua Mechanika elastických těles Mechanika kapalin
Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika
Kontinuum Pro vyšetřování pohybu kapalin, plynů a pro vyšetřování mechanických dějů, při nichž se mění vzájemné vzdálenosti jednotlivých bodů pevné látky, se zavádí představa spojitého prostředí kontinua Makroskopický popis pohybu kapalin i plynů a popis deformačního chování pevných látek dobře provést na základě představy o spojitém prostředí kontinuu V mechanice kontinua připisujeme charakteristické veličiny prostředí k jednotlivým geometrickým bodům
Kontinuum V předchozím výkladu jsme pracovali s modelem tělesa, u kterého jsme mohli zanedbat deformační účinek působících sil Neexistuje absolutně tuhé těleso a tak dalším přiblížením k reálnému tělesu se dostaneme pokud uvážíme deformaci Omezení na malé deformace těles pokud síla přestane působit, deformace zmizí a těleso se vrátí do původního stavu
Kontinuum Tím zavádíme pojem pružného (elastického) tělesa, který ovšem zcela nevystihuje reálné těleso Existují i tělesa plastická, která zůstávají po deformaci ve změněném stavu Vedle pevných látek známe i jiná spojitá prostředí tvořená kapaliny nebo plyny, které souhrnně nazýváme tekutiny Na rozdíl od pevných těles kapaliny mění snadno svůj tvar, zaujímají tvar nádoby, ale málo mění svůj objem jsou málo stlačitelné
Kontinuum Plyny se vyznačují velkou stlačitelností a snaží se vždy zaplnit celý objem nádoby, který mají k dispozici Přes uvedené rozdíly mezi pevnými tělesy, kapalinami a plyny, je můžeme shrnout pod pojmem kontinuum Jednotlivé části kontinua se mohou lišit např. v hustotě, teplotě, tlaku, atd. Z povahy kontinua vyplývá, že tyto veličiny jsou spojitými funkcemi polohy, případně času V daném časovém okamžiku je tedy fyzikální stav kontinua popsán hodnotami fyzikálních veličin, které jsou spojitými funkcemi souřadnic zvoleného souřadnicového systému, vůči kterému popisujeme polohu kontinua
Kinematika kontinua Lagrangeova metoda popisu pohybu kontinua Eulerova metoda popisu pohybu kontinua Případ, kdy platí, že předchozí rovnice je na čase nezávislá nazýváme stacionárním nebo ustáleným pohybem kontinua
Proudnice, proudová trubice Ve stacionárním případě se elementy tekutiny pohybují po tzv. proudnicích Elementární konfigurací ve stacionárním proudění je tzv. proudová trubice, což je plocha vytvořená proudnicemi probíhajícími malou uzavřenou křivkou
Pohyb kontinua Dá se ukázat, že pro pohyb kontinua platí: První dva členy souvisí s rychlostí translace a rotace, poslední člen je členem novým popisuje změny rychlost s jakou se mění vzdálenosti častic a popisuje tedy deformaci kontinua I. Helmholtzova věta pohyb kontinua v okolí určitého bodu lze rozložit na pohyb translační (posuvný), na pohyb rotační (otáčivý) a na pohyb deformační.
Síly v kontinuu Síly, které působí na kontinuum jsou dvojího druhu objemové plošné Objemové síly působí na všechny elementy objemu kontinua (např. síla tíhová): Vztah pro vyjadřuje tzv. intenzitu objemové síly
Síly v kontinuu Plošné síly působí na povrch uvažované části tělesa Tyto síly můžeme popsat pomocí vektoru napětí, které má význam vektoru plošné síly působící na jednotku plochy:
Síly v kontinuu Tečné napětí je určeno tečnou složkou plošné síly vztaženou na jednotku plochy tělesa Normálové napětí je dáno normálovou složkou plošné síly vztaženou na jednotku plochy tělesa
Deformace pevných tělest Působí-li plošná síla ve směru tečny, vyvolává namáhání smykem nebo ohybem. Normálová složka plošné síly může vyvolat namáhání tahem nebo tlakem Deformace tahem a tlakem Vyvolává normálová složka plošné síly
Podmínky rovnováhy, pohybová rovnice kontinua Rovnováha nastane je-li výslednice všech vnějších sil (objemové a plošné), působící na kontinuum nulová Je-li výslednice nenulová, můžeme pohybovou rovnici pro kontinuum napsat následujícím způsobem
Deformace pevných těles Hook(e) (e)ův zákon Deformace a napětí těles působením vnější síly Pro malé deformace platí Hookův zákon:
Křivka deformace
Deformace tlakem V řadě praktických příkladů (např. namáhání těles vnořených do kapaliny) je třeba znát chování tělesa vystaveného všestrannému kolmému tlaku Relativní příčné prodloužení:
Deformace tlakem Z předchozího vidíme, že výsledné působení všestranného tlaku vyvolá u každé hrany jedno podélné zkrácení a dvě příčná prodloužení Hookův zákon pro změnu objemu (relativní změna objemu je přímo úměrná normálovému napětí): Modul objemové pružnosti tělesa K a objemová stlačitelnost γ:
Deformace smykem O deformaci smykem mluvíme tehdy, jestliže se jednotlivé vrstvy namáhaného materiálu navzájem posouvají, aniž by se měnila jejich kolmá vzdálenost Zavádíme pojem poměrného posunutí:
Deformace torzí (kroucením) Modul pružnosti ve smyku G se nazývá také modul torze, protože smyk se vyskytuje také při kroucení tyče, zatížené kroutícím momentem sil Deformace při torzi je podle Hookeova zákona úměrná tečnému napětí, což můžeme matematicky zapsat předchozí rovnicí Mezi všemi uvedenými moduly platí vzájemný vztah:
Další typy deformací - ohyb
Hodnoty modulů pro různr zné materiály
Mechanika tekutin Název tekutina užíváme jako společné označení pro kapalinu a plyn Mechanika tekutin značí mechaniku kapalin (hydromechaniku) a mechaniku plynů (aeromechaniku) Mechanické chování kapalin a plynů je do té míry podobné, že je výhodné jeho obecný popis dělat společně a pouze při diskusi dílčích výsledků rozlišit zvláštnosti obou druhů látek Tekutiny se liší od pevných látek tím, že jejich částice nejsou vázány na určité rovnovážné polohy jsou vůči sobě volně pohyblivé
Mechanika tekutin V důsledku toho mění tekutiny snadno svůj tvar, případně objem Z makroskopického hlediska lze tekutiny považovat za kontinuum při popisu vycházíme tedy z podmínek rovnováhy a pohybové rovnice pro kontinuum Rovnovážný stav tekutiny v tekutině neexistují tečná napětí Tekutiny nemají vlastní tvar přizpůsobují se tvaru nádoby
Mechanika tekutin Kapaliny se snaží vytvořit volnou hladinu, která je kolmá k výslednici působících sil Při proudění reálné tekutiny se uplatňují síly vnitřního tření mezi jednotlivými vrstvami tekutiny způsobují disipaci mechanické energie Jednodušší případ je studium ideální tekutiny, která se pohybuje bez vnitřního tření
Kinematika kapalin Mechanický stav kapaliny je v každém okamžiku určen hustotou a rychlostí pohybu objemového elementu kapaliny Sudujeme-li pohyb kapaliny vzhledem k vztažné soustavě (např. potrubí) můžeme zakreslit vektorové pole rychlosti proudění
Kinematika kapalin Vektory rychlostí mají směr proudění kapaliny a současně směr tečny ke křivkám, po kterých se jednotlivé elementy pohybují Tyto spojité a neprotínající se křivky nazýváme proudnice (nebo proudové čáry) Mění-li se s časem tvar proudnic, mění se i rozložení vektorů rychlosti nestacionární proudění Nemění-li se s časem proudnice, je rozložení vektorů rychlostí stálé jedná se o stacionární proudění kapaliny
Tok vektoru rychlosti plochou Tok vektoru rychlosti plochou Objemový a hmotnostní tok:
Rovnice kontinuity Vložíme-li do proudící kapaliny uzavřenou křivku, vytváří proudnice procházející body této křivky trubicovitý útvar proudovou trubici (proudotrubici) Hmotnost kapaliny procházející každým průřezem proudotrubice je konstantní
Rovnice kontinuity (spojitosti toku) Jedná se v podstatě o zákon zachování hmotnosti a z toho vyplývá tzv. rovnice kontinuity Podrobněji rozebereme odvození rovnice kontinuity na semináři
Rovnice kontinuity (spojitosti toku) Zákon zachování hmoty co do trubice vteče musí také vytéct, a tedy platí: