Diferenciálne rovnice druhého rádu

Rozměr: px
Začít zobrazení ze stránky:

Download "Diferenciálne rovnice druhého rádu"

Transkript

1 Diferenciálne rovnice druhého rádu

2 Lineárne DR n n 1 n n 3... = a y a y a y a y a y g n n1 n n3 Veta 1 (Cauchyho veta) : Lineárna diferenciálna rovnica s danými počiatočnými podmienkami má jednoznačné riešenie t.j. riešenie eistuje a je práve jedno. Tipovanie y h +y p =y Veta : (Princíp superpozície). Nech y 1 a y sú riešeniami diferenciálnej rovnice s rôznymi pravými stranami g 1 (), g (), potom ich lineárna kombinácia y=c 1 y 1 + c y je tiež riešením lineárnej DR s pravou stranou g()=c 1 g 1 ()+c g ()

3 Partikulárne, homogénne a všeobecné riešenia y P y = Q Partikulárne riešenie hocijaké konkrétne riešenie vyhovujúce rovnici: = y h P yh = y P y Q p p Všeobecné riešenie y y y p h Homogénne riešenie riešenie vyhovujúce rovnici: y y P y y Q = = = p h p h y y P y P y Q h p p h y P y y P y Q h h p p Nájdi hocijaké partikulárne riešenie a keď k nemu pripočítaš homogénne, dostaneš všeobecné

4 Veta : Nech y 1 a y sú riešeniami diferenciálnej rovnice s rôznymi pravými stranami g 1 (), g (), potom ich lineárna kombinácia y=c 1 y 1 + c y je tiež riešením lineárnej DR s pravou stranou g()=c 1 g 1 ()+c g () a y a y a y = g a y a y a y = g 1 a c y a c y a c y c g... = a c y a c y a c y c g... = 1 a c1 y1 c y a1 c1 y1 c y a c1 y1 c y c1g1 cg... = Ak je princíp superpozície eperimentálne potvrdený, musia byť príslušné javy popísané LDR

5 Lineárne DR n n 1 n n 3... = a y a y a y a y a y g n n1 n n3 Veta : Nech y 1 a y sú riešeniami diferenciálnej rovnice s rôznymi pravými stranami g 1 (), g (), potom ich lineárna kombinácia y=c 1 y 1 + c y je tiež riešením lineárnej DR s pravou stranou g()=c 1 g 1 ()+c g () Dôsledok 1: (dôsledok pre homogénnu lineárnu DR g()=). Ak y 1 a y sú riešeniami homogénnej DR, potom ich lineárna kombinácia y=c 1 y 1 + c y je tiež riešením tejto rovnice Dôsledok : Ak y h je riešením homogénnej DR a y p je riešením tej istej DR s pravou stranou g(), potom ich súčet y=y h +y p je všeobecným riešením DR s pravou stranou

6 Dôsledok 1: (dôsledok pre homogénnu lineárnu DR g()=). Ak y 1 a y sú riešeniami homogénnej DR, potom ich lineárna kombinácia y=c 1 y 1 + c y je tiež riešením tejto rovnice a c y a c y a c y c g... = a c y a c y a c y c g... = 1 a c1 y1 c y a1 c1 y1 c y a c1 y1 c y c1g1 cg... =

7 Dôsledok : Ak y h je riešením homogénnej DR a y p je riešením tej istej DR s pravou stranou g(), potom ich súčet y=y h +y p je všeobecným riešením DR s pravou stranou a y a y... a y = h 1 h h a y p a1 y p... a y p = g a yh y p a1 yh y p a yh y p g... = ( )

8 Homogénne DR druhého rádu s konštantnými koeficientami a y a1 y a y = g y ay by Tvar riešenia (tipovanie) : y Aep( )

9 Motivácia výberu tipovaného riešenia y Aep( ) Podľa Cauchyho vety o jednoznačnosti, ak nájdeme akýmkoľvek regulérnym spôsobom riešenie ( s danou počiatočnou podmienkou), potom už iné neeistuje. Naša stratégia je založená na tipovaní. Ak tip na riešenie nevýjde, skúsime iný. Voľné ruky pri tipovaní STRATÉGIA TIPOVANIA Derivácia eponenciálnej funkcie je opäť eponenciála. DR sa zmenia na algebraické, ktoré už riešiť vieme. DR prevedieme na úlohu, ktorá je nám známa riešenie kvadratickej rovnice

10 Charakteristická rovnica y Aep( ) y ay by Charakteristická rovnica a b 1, a a 4b D D D MOŽNOSTI

11 D> Všeobecné riešenie skonštruované využitím princípu superpozície y c 4 4 1ep a a b cep a a b y y y y() 3, y()

12 D= a a a y c1ep cep C ep Neznámu konštantu C treba určiť z dvoch nezávislých počiatočných podmienok, čo však vo všeobecnosti nie je možné. y 4y 4y y(), y() 3 Počiatočné podmienky nedokážeme splniť súčastne

13 D= y ay by Charakteristická rovnica Pravdepodobne sme nenašli úplné riešenie, ale iba jeho časť. Povýšme konštantu A na funkciu A() y A ep( ) Koreň A A a A a b 1, a b a Ak konštatnta, je to riešením, skúsme zistiť, či neeistuje riešenie, kedy by A bola iná funkcia ako konštantná D= =-a/ 1 A() môže byť hocikaký polynóm prvého stupňa Charakteristická rovnica A A a a Obe funkcie sú riešeniami y a a ep( ) a ep( ) a ep( ) 1 1

14 Doplnenie receptu Ak je m násobným koreňom DR, potom okrem funkcie ep() sú riešeniami danej rovnice aj funkcie: ep(), ep(),... m-1 ep() a všeobecné riešenie je ich lineárnou kombináciou: Y=c 1 ep() +c ep() +...+c m m-1 ep()

15 D< 1, i a 4b a Rôzne formy zápisu všeobecného riešenia ep y c1ep i c i y ep A cos Bsin cos y Dep Vždy dve konštanty, ktoré sa určia z počiatočnźch hodnôt y y5y

16 ep y c1 i ep i c i ep i y c ep i c i 1 1 Re y c i c i c c i c c y c c Re 1 1 1

17 Zhrnutie y ay by a b 1, a a 4b D D D y c 4 4 1ep a a b cep a a b a a y c1ep c ep ep y c1ep i c i y ep A cos Bsin cos y Dep 1, a 4b a i

18 Vyšetrite pohyb tlmeného oscilátora bez vonkajšej vynucujúcej sily k m m m = 1, = m C - aperiodický pohyb B - hraničný prípad A- periodický pohyb

19 Zhrnutie k m m B - rozhranie medzi periodickým a aperiodickým pohybom oscilátora C - aperiodický pohyb B - hraničný prípad 4km D 4km m 4km A- periodický pohyb t 1 D c e c e t 1 D 1, C C te 1 D t Kmity sú tlmené

20 c e c e t 1 t 1 Kmitavý pohyb postupne zaniká a jeho mechanická energia sa postupne celá premení na vnútornú energiu prostredia 1, C C t e 1 bt Ae sin t t lim t t

21 Schéma riešenia LDR y ay by g( ) 1.Nájdeme homogénne riešenie DR y H.Nájdeme partikulárne riešenie y P metóda variácie konštánt metóda neurčitých koeficientov prechod do komplenej roviny univerzálna metóda špecifické metódy 3.sčítame obe riešenia y y y H P

22 Cramerove pravidlo a a y a a y y y a a a 1 1 a a 11 1 a 1 a a a a y 11 1 y a a 1

23 Metóda variácie konštánt Nech y 1 a y sú LN riešenia homogénnej DR, potom všeobecné riešenie DR s pravou stranou g() : bude mať tvar: kde: y ay by g( ) W1 W y Ay1 By y 1 d y d W W y y W y y y W g y ( ) y W 1 y g 1 ( )

24 Hľadanie neznámych funkcií c 1 () a c () LK y y 1 1 = c y c y = c1 ' y1 c1 y1 c' y c y' Na určenie dvoch neznámych funkcií potrebujeme dve rovnice c ' y c ' y 1 1 = Ak to neurobíme, nemá zmysel pokračovať Nedostatok rovníc na nájdenie c 1 () a c () nutnosť vytvorenia ďalšej rovnice DR Zabránenie vzniku DR druhého rádu pre funkcie C(), ktorú nevieme riešiť DR

25 Nezávislé rovnice pre určenie funkcie c 1 () a c () c ' y c ' y 1 1 c ' y c ' y = g( ) 1 1 Nedostatok rovníc na nájdenie c 1 () a c () nutnosť vytvorenia ďalšej rovnice Zabránenie vzniku DR druhého rádu pre funkcie C(), ktorú nevieme riešiť

26 Príklad y y 1 cos 3 1.Nájdeme homogénne riešenie DR y H.Nájdeme partikulárne riešenie y P y p = c 1 y 1 + c y W1 c 1 d W W c d W y y y h p

27 Metóda neurčitých koeficientov Špecifický tvar pravej strany (eponenciálna, trigonometrická, polynóm, kombinácia ) y=y p +y h y p v tvare pravej strany F ep 9m 3 m ep 3t c1 c 1.Nájdeme homogénne riešenie DR y H.Nájdeme partikulárne riešenie y P 1 y c1cos csin 4 4 Pád telesa v odporovom prostredí v homogénnom gravitačnom poli

28 y ay by P ( ) e Q a Q a b Q P n n y p : CHR: y p Q e a b Z porovnania pravej a ľavej strany dokážeme získať iba n+1 rovníc polynóm naľavo, môže obsahovať iba n neznámych koeficientov Skúmajme, aké vlastnosti musí mať polynóm Q() a b a CHR a b a a b a nie je koreňom CHR Q a Q a b Q P n Q musí byť polynóm n tého stupňa n Q R = je jednonásobným koreňom Q CHR Q a Q P n Q-polynóm n+1 stupňa n Q R je dvojnásobným koreňom CHR Q P n Q-polynóm n+ stupňa Q Rn

29 Metóda neurčitých koeficientov Nech P n () je polynóm n-tého stupňa, potom funkcia : r ( ) Q ( ) e p je partikulárnym riešením diferenciálnej rovnice: kde: a b P ( ) e P n,q n polynómy stupňa n r je číslo, ktoré udáva koľkonásobným koreňom charakteristickej rovnice je číslo n n

30 F = cos t m m = sin t m F m Diferenciálne rovnice F ˆ ˆ ˆ = epit m m KODOVANIA ˆ i Re Im Re ˆ Im ˆ DEKODOVANIA F = F cost F = F sint

31 = m m m 4???? i by muselo byť rýdzo imaginárne F ˆ ˆ = epit m

32 F F cost VYNUCUJÚCA SILA F F t sin OKREM & ˆ F ˆ p = Aep it = ep i t m m Ẑ i m tan = m & ˆ F ˆ p = At ep it = t ep i t m Konkrétna hodnota fázového posunu

33 F F cos ˆt p OKREM & = cos m p = Re( ) F p m t & tan = m F p = t cos t m Konkrétna hodnota fázového posunu

34 F F sin ˆt p OKREM & = sin m p = Im( ) F p m t & tan = m F p = t sin t m Konkrétna hodnota fázového posunu

35 Amplitúdová charakteristika A = F / m m rez = m Rezonancia veľké rozkmitanie systému periodickou vonkajšou silou s malou amplitúdou F

36 Príklad Na tlmený oscilátor pôsobí periodická sila : F t = F F T pre t <, > T pre t <, T > Nájdite výchylku (t) tohto systému v ľubovoľnom čase! F t 4F 1 1 = = sint sin 3t sin 5 t... m m m 3 5

37 F t 4F = = sin t m m m F F t sin F = sin m m t F t 4F 1 = = sin 3t m m m 3 Princíp superpozície p1 p t t p 4F = m 4F 1 = m 3 = sin sin F t 1 / m sin 3t 3 3 m t tan = F t 4F 1 1 = = sint sin 3t sin 5 t... m m m 3 5 tan = tan = i m m 3 3 m F t 4F 1 = = sin 5t m m m 5 p3 t = 4F 1 m 5 sin 5t 5 5 tan = 5 5 m 3

38 Príklad Na tlmený oscilátor pôsobí periodická sila : F t = F F T pre t <, > T pre t <, T > Nájdite výchylku (t) tohto systému v ľubovoľnom čase! F t 4F 1 1 = = sint sin 3t sin 5 t... m m m 3 5 t 4F = m i tan i = i m sin t sin 3 t Ak rezonančné frekvencie zodpovedajú frekvenciám, ktoré sú zastúpené vo Fourierovom rozvoji, môže dôjsť k deštrukcii systému

39 Harmonický pohyb z pohľadu ZZE Ak celková energia systému sa dá vyjadriť v tvare kvadratickej formy: 1 1 q q E q q 1 1 qq qq potom systém vykonáva harmonický pohyb s uhlovou frekvenciou: a jeho výchylka je v ľubovolnom čase: to je vlastne rovnica harmonického pohybu s uhlovou frekvenciou q qm cos t Určí sa z počiatočných podmienok

40 Čítanie rovníc Často používané rovnice 1 1 q q E q q q q cos t m

41 Harmonický oscilátor 1 1 k m E m k Energia má tvar kvadratickej formy Systém vykonáva harmonický pohyb s frekvenciou k m k mcos t mcos t m

42 Matematické kyvadlo cos 1! 1 mgl1 cos ml E h 1 1 g l E v m L L Lcos v L 1 1 gml ml E Energia má tvar kvadratickej formy Systém vykonáva harmonický pohyb s frekvenciou h g L g mcos t mcos t L

43 Fyzikálne kyvadlo Os otáčania M r T rt h cos Malé kmity uhly 4 cos 1...! 4! 1 1 g l E 1 mgrt 1 cos J E 1 1 mgrt J E Energia má tvar kvadratickej formy Systém vykonáva harmonický pohyb s frekvenciou mgr T J mgrt mcos t mcos t J

44 Príklad Valček s polomerom r je spojený s pružinami s tuhosťami k podľa obr. Určte jeho periódu = I mv k E T 1 1 = 1 1 = I mr kr E R I m k E = R J m k R v R T = = =

Funkcia - priradenie (predpis), ktoré každému prvku z množiny D priraďuje práve jeden prvok množiny H.

Funkcia - priradenie (predpis), ktoré každému prvku z množiny D priraďuje práve jeden prvok množiny H. FUNKCIA, DEFINIČNÝ OBOR, OBOR HODNÔT Funkcia - priradenie (predpis), ktoré každému prvku z množiny D priraďuje práve jeden prvok množiny H. Množina D definičný obor Množina H obor hodnôt Funkciu môžeme

Více

Limita funkcie. Čo rozumieme pod blížiť sa? y x. 2 lim 3

Limita funkcie. Čo rozumieme pod blížiť sa? y x. 2 lim 3 Limita funkcie y 2 2 1 1 2 1 y 2 2 1 lim 3 1 1 Čo rozumieme pod blížiť sa? Porovnanie funkcií y 2 2 1 1 y 2 1 2 2 1 lim 3 1 1 1-1+ Limita funkcie lim f b a Ak ku každému číslu, eistuje také okolie bodu

Více

7.3. Diferenciální rovnice II. řádu

7.3. Diferenciální rovnice II. řádu Diferenciální rovnice 7 Diferenciální rovnice II řádu Ve stručném přehledu se budeme zabývat výhradně řešením lineárních diferenciálních rovnic II řádu s konstantními koeficienty Obecný tvar: ay + ay +

Více

9.7. Vybrané aplikace

9.7. Vybrané aplikace Cíle V rámci témat zaměřených na lineární diferenciální rovnice a soustavy druhého řádu (kapitoly 9.1 až 9.6) jsme dosud neuváděli žádné aplikace. Je jim společně věnována tato závěrečné kapitola, v níž

Více

i j, existuje práve jeden algebraický polynóm n-tého stupˇna Priamym dosadením do (2) dostávame:

i j, existuje práve jeden algebraický polynóm n-tého stupˇna Priamym dosadením do (2) dostávame: 0 Interpolácia 0 Úvod Hlavnou myšlienkou interpolácie je nájs t funkciu polynóm) P n x) ktorá sa bude zhodova t s funkciou fx) v n rôznych uzlových bodoch x i tj P n x) = fx i ) = f i = y i i = 0 n Niekedy

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

I. část - úvod. Iva Petríková

I. část - úvod. Iva Petríková Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,

Více

8. Relácia usporiadania

8. Relácia usporiadania 8. Relácia usporiadania V tejto časti sa budeme venovať ďalšiemu špeciálnemu typu binárnych relácií v množine M - reláciám Najskôr si uvedieme nasledujúce štyri definície. Relácia R definovaná v množine

Více

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující

Více

Kvadratické funkcie, rovnice, 1

Kvadratické funkcie, rovnice, 1 Kvadratické funkcie, rovnice, 1. ročník Kvadratická funkcia Kvadratickou funkciu sa nazýva každá funkcia na množine reálnych čísel R daná rovnicou y = ax + bx + c, kde a je reálne číslo rôzne od nuly,

Více

Matice. Matica typu m x n je tabuľka s m riadkami a n stĺpcami amn. a ij. prvok matice, i j udáva pozíciu prvku

Matice. Matica typu m x n je tabuľka s m riadkami a n stĺpcami amn. a ij. prvok matice, i j udáva pozíciu prvku Matice Matice Matica typu m x n je tabuľka s m riadkami a n stĺpcami a11 a12... a1 n a21 a22... a2n............ am1 am2... amn a ij prvok matice, i j udáva pozíciu prvku i- čísluje riadky J- čísluje stĺpce

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních diferenciálních rovnic y = a (x)y + a (x)y + + a n (x)y n + f (x) y = a (x)y + a (x)y + + a n (x)y n + f (x). y n = a

Více

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D19_Z_OPAK_KV_Mechanicke_kmitani_T Člověk a příroda Fyzika Mechanické kmitání Opakování

Více

Přechodné děje 2. řádu v časové oblasti

Přechodné děje 2. řádu v časové oblasti Přechodné děje 2. řádu v časové oblasti EO2 Přednáška 8 Pavel Máša - Přechodné děje 2. řádu ÚVODEM Na předchozích přednáškách jsme se seznámili s obecným postupem řešení přechodných dějů, jmenovitě pak

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

6.3. Lineární diferenciální rovnice druhého řádu s konstantními koeficienty

6.3. Lineární diferenciální rovnice druhého řádu s konstantními koeficienty H VRBENSKÁ J BĚLOHLÁVKOVÁ 63 Lineární diferenciální rovnice druhého řádu s onstantními oeficienty 631 Definice Definice Lineární diferenciální rovnicí druhého řádu s onstantními oeficienty nazýváme rovnici

Více

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6) 1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht

Více

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy

Více

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2 Matematika 2 13. přednáška Obyčejné diferenciální rovnice Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel

Více

Ak stlačíme OK, prebehne výpočet a v bunke B1 je výsledok.

Ak stlačíme OK, prebehne výpočet a v bunke B1 je výsledok. Hľadanie riešenia: ak poznáme očakávaný výsledok jednoduchého vzorca, ale vstupná hodnota, ktorú potrebujeme k určeniu výsledku je neznáma. Aplikácia Excel hľadá varianty hodnoty v určitej bunke, kým vzorec,

Více

Obyčejné diferenciální rovnice

Obyčejné diferenciální rovnice Obyčejné diferenciální rovnice Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie, FS Katedra matematiky, FAST Vysoká škola báňská Technická Univerzita Ostrava Ostrava 2019 OBSAH

Více

Lineárne nerovnice, lineárna optimalizácia

Lineárne nerovnice, lineárna optimalizácia Opatrenie:. Premena tradičnej škol na modernú Gmnázium Jozefa Gregora Tajovského Lineárne nerovnice, lineárna optimalizácia V tomto tete sa budeme zaoberat najskôr grafickým znázornením riešenia sústav

Více

Test. Ktorý valec by ste použili? A. Jednočinný valec B. Dvojčinný valec. Odpoveď:

Test. Ktorý valec by ste použili? A. Jednočinný valec B. Dvojčinný valec. Odpoveď: Test Týmto testom môžete zistiť, či sú Vaše základné znalosti o pneumatickom riadení postačujúce pre nadstavbový seminár P121, alebo je pre Vás lepšie absolvovať základný seminár EP111. Test je rýchly,

Více

Mechanické kmitání a vlnění

Mechanické kmitání a vlnění Mechanické kmitání a vlnění Pohyb tělesa, který se v určitém časovém intervalu pravidelně opakuje periodický pohyb S kmitavým pohybem se setkáváme např.: Zařízení, které volně kmitá, nazýváme mechanický

Více

Kapitola 11: Lineární diferenciální rovnice 1/15

Kapitola 11: Lineární diferenciální rovnice 1/15 Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +

Více

Diferenciální rovnice

Diferenciální rovnice Diferenciální rovnice Průvodce studiem Touto kapitolou se náplň základního kurzu bakalářské matematiky uzavírá. Je tomu tak mimo jiné proto, že jsou zde souhrnně využívány poznatky získané studiem předchozích

Více

3 Determinanty. 3.1 Determinaty druhého stupňa a sústavy lineárnych rovníc

3 Determinanty. 3.1 Determinaty druhého stupňa a sústavy lineárnych rovníc 3 eterminanty 3. eterminaty druhého stupňa a sústavy lineárnych rovníc Začneme úlohou, v ktorej je potrebné riešiť sústavu dvoch rovníc o dvoch neznámych. a x + a 2 x 2 = c a 22 a 2 x + a 22 x 2 = c 2

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

9.2. Zkrácená lineární rovnice s konstantními koeficienty

9.2. Zkrácená lineární rovnice s konstantními koeficienty 9.2. Zkrácená lineární rovnice s konstantními koeficienty Cíle Řešíme-li konkrétní aplikace, které jsou popsány diferenciálními rovnicemi, velmi často zjistíme, že fyzikální nebo další parametry (hmotnost,

Více

Mechanické kmitání (oscilace)

Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu

Více

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9 Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů

Více

Příklady kmitavých pohybů. Mechanické kmitání (oscilace)

Příklady kmitavých pohybů. Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

Iracionálne rovnice = 14 = ±

Iracionálne rovnice = 14 = ± Iracionálne rovnice D. Rovnica je iracionálna, ak obsahuje neznámu pod odmocninou. P. Ak ide o odmocninu s párnym odmocniteľom, potom musíme stanoviť definičný obor pod odmocninou nesmie byť záporná hodnota

Více

Diferenciální rovnice 3

Diferenciální rovnice 3 Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty

Více

(test version, not revised) 9. prosince 2009

(test version, not revised) 9. prosince 2009 Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie

Více

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t. 1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co

Více

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y

Více

Matematika 4 FSV UK, LS Miroslav Zelený

Matematika 4 FSV UK, LS Miroslav Zelený Matematika 4 FSV UK, LS 2017-18 Miroslav Zelený 13. Diferenční rovnice 14. Diferenciální rovnice se separovanými prom. 15. Lineární diferenciální rovnice prvního řádu 16. Lineární diferenciální rovnice

Více

Dodanie tovaru a reťazové obchody Miesto dodania tovaru - 13/1

Dodanie tovaru a reťazové obchody Miesto dodania tovaru - 13/1 Dodanie u a reťazové obchody Miesto dodania u - 13/1 ak je dodanie u spojené s odoslaním alebo prepravou u - kde sa nachádza v čase, keď sa odoslanie alebo preprava u osobe, ktorej má byť dodaný, začína

Více

Metóda vetiev a hraníc (Branch and Bound Method)

Metóda vetiev a hraníc (Branch and Bound Method) Metóda vetiev a hraníc (Branch and Bound Method) na riešenie úloh celočíselného lineárneho programovania Úloha plánovania výroby s nedeliteľnosťami Podnikateľ vyrába a predáva zemiakové lupienky a hranolčeky

Více

AR, MA a ARMA procesy

AR, MA a ARMA procesy Beáta Stehlíková FMFI UK Bratislava Overovanie stacionarity a invertovateľnosti Opakovanie - stacionarita AR procesu Zistite, či je proces x t = 1.2x t 1 + 0.5x t 2 + 0.3x t 3 + u t stacionárny. Napíšte

Více

PROGRAM VZDELÁVACEJ ČINNOSTI. Anotácia predmetu

PROGRAM VZDELÁVACEJ ČINNOSTI. Anotácia predmetu PROGRAM VZDELÁVACEJ ČINNOSTI Číslo predmetu : 2B001 Názov predmetu : Matematika I. Typ predmetu : Povinný Študijný odbor: Všetky odbory bakalárskeho štúdia SjF Zameranie: Ročník : 1. Semester : zimný Počet

Více

Matematika 3. m působíme silou F, uvedeme ho do pohybu a udělíme mu zrychlení a. Úkolem

Matematika 3. m působíme silou F, uvedeme ho do pohybu a udělíme mu zrychlení a. Úkolem Matematika 3. Ing. Marek Nikodým, Ph.D. Katedra matematiky a deskriptívní geometrie VŠB-TU Ostrava DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice jsou velmi důležité a mají obrovské využití hlavně ve fyzice.

Více

Referenčná ponuka na prístup ku káblovodom a infraštruktúre. Príloha 7 Poplatky a ceny

Referenčná ponuka na prístup ku káblovodom a infraštruktúre. Príloha 7 Poplatky a ceny Príloha 7 Poplatky a ceny Príloha 7: Poplatky a ceny strana 1 z 5 Obsah 1. CENY V RÁMCI DOHODY NDA A RÁMCOVEJ ZMLUVY... 3 2. CENY V RÁMCI ZMLUVY O DUCT SHARING... 3 2.1 CENA ZA POSKYTOVANIE ZÁKLADNEJ SLUŽBY

Více

Matematika Postupnosti

Matematika Postupnosti Matematika 1-06 Postupnosti Definícia: Nekonečnou postupnosťou reálnych čísel nazývame zobrazenie f: N R množiny prirodzených čísel N do množiny reálnych čísel R. Označenie: a n n=1 = a 1, a 2,, a n, Matematika

Více

Zvyškové triedy podľa modulu

Zvyškové triedy podľa modulu Zvyškové triedy podľa modulu Tomáš Madaras 2011 Pre dané prirodzené číslo m 2 je relácia kongruencie podľa modulu m na množine Z reláciou ekvivalencie, teda jej prislúcha rozklad Z na systém navzájom disjunktných

Více

PROGRAM VZDELÁVACEJ ČINNOSTI. Anotácia predmetu

PROGRAM VZDELÁVACEJ ČINNOSTI. Anotácia predmetu PROGRAM VZDELÁVACEJ ČINNOSTI Číslo predmetu : 2B001 Názov predmetu : Matematika I. Typ predmetu : Povinný Študijný odbor: Všetky odbory externého bakalárskeho štúdia Zameranie: Ročník : 1. Semester : zimný

Více

Finančné riaditeľstvo Slovenskej republiky

Finančné riaditeľstvo Slovenskej republiky Finančné riaditeľstvo Slovenskej republiky Informácia k výpočtu preddavkov na daň z príjmov FO Výška preddavkov na daň v preddavkovom období od 1.4.2015 do 31.3.2016 sa vyčísli z poslednej známej daňovej

Více

PODPROGRAMY. Vyčlenenie podprogramu a jeho pomenovanie robíme v deklarácii programu a aktiváciu vykonáme volaním podprogramu.

PODPROGRAMY. Vyčlenenie podprogramu a jeho pomenovanie robíme v deklarácii programu a aktiváciu vykonáme volaním podprogramu. PODPROGRAMY Podprogram je relatívne samostatný čiastočný algoritmus (čiže časť programu, ktorý má vlastnosti malého programu a hlavný program ho môže volať) Spravidla ide o postup, ktorý bude v programe

Více

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2 Cvičení Lineární rovnice prvního řádu. Najděte řešení Cauchyovy úlohy x + x tg t = cos t, které vyhovuje podmínce xπ =. Máme nehomogenní lineární diferenciální rovnici prvního řádu. Funkce ht = tg t a

Více

Mechanické kmitání - určení tíhového zrychlení kyvadlem

Mechanické kmitání - určení tíhového zrychlení kyvadlem I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 9 Mechanické kmitání - určení

Více

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní

Více

9.5. Soustavy diferenciálních rovnic

9.5. Soustavy diferenciálních rovnic Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li

Více

Diplomový projekt. Detská univerzita Žilinská univerzita v Žiline Matilda Drozdová

Diplomový projekt. Detská univerzita Žilinská univerzita v Žiline Matilda Drozdová Diplomový projekt Detská univerzita Žilinská univerzita v Žiline 1.7.2014 Matilda Drozdová Pojem projekt Projekt je určitá časovo dlhšia práca, ktorej výsledkom je vyriešenie nejakej úlohy Kto rieši projekt?

Více

Funkcionální řady. January 13, 2016

Funkcionální řady. January 13, 2016 Funkcionální řady January 13, 216 f 1 + f 2 + f 3 +... + f n +... = f n posloupnost částečných součtů funkcionální řada konverguje na množine M konverguje posloupnost jeho částečných součtů na množine

Více

PROGRAM VZDELÁVACEJ ČINNOSTI. Anotácia predmetu

PROGRAM VZDELÁVACEJ ČINNOSTI. Anotácia predmetu PROGRAM VZDELÁVACEJ ČINNOSTI Číslo predmetu : 3B0100 Názov predmetu : Matematika I. Typ predmetu : Povinný Študijný odbor: Všetky odbory bakalárskeho štúdia EF Zameranie: Ročník : 1. Semester : zimný Počet

Více

Finančné riaditeľstvo Slovenskej republiky. Informácia k výpočtu preddavkov na daň z príjmov fyzických osôb

Finančné riaditeľstvo Slovenskej republiky. Informácia k výpočtu preddavkov na daň z príjmov fyzických osôb Finančné riaditeľstvo Slovenskej republiky Informácia k výpočtu na daň z príjmov fyzických osôb Výška na daň v om období od 1.4.2017 do 3.4.2018 sa vyčísli z poslednej známej daňovej povinnosti vypočítanej

Více

Základy optických systémov

Základy optických systémov Základy optických systémov Norbert Tarjányi, Katedra fyziky, EF ŽU tarjanyi@fyzika.uniza.sk 1 Vlastnosti svetla - koherencia Koherencia časová, priestorová Časová koherencia: charakterizuje koreláciu optického

Více

Výsledky úloh. 1. Úpravy výrazů + x 0, 2x 1 2 2, x Funkce. = f) a 2.8. ( ) ( ) 1.6. , klesající pro a ( 0, ) ), rostoucí pro s (, 1)

Výsledky úloh. 1. Úpravy výrazů + x 0, 2x 1 2 2, x Funkce. = f) a 2.8. ( ) ( ) 1.6. , klesající pro a ( 0, ) ), rostoucí pro s (, 1) Výsledky úloh. Úpravy výrazů.. +, + R.., a 0, a b.., a ± b, a b a b a +.. + a +, 0, a.., a 0; ± ; n + a.. a + b 9, > 0.7., a ± b a b m n.8., m 0, n 0, m n.9. a, a > 0 m + n.0., ;0; ;;.., k.. tg, k sin.

Více

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy

Více

Rezonanční jevy na LC oscilátoru a závaží na pružině

Rezonanční jevy na LC oscilátoru a závaží na pružině Rezonanční jevy na LC oscilátoru a závaží na pružině M. Stejskal, K. Záhorová*, J. Řehák** Gymnázium Emila Holuba, Gymnázium J.K.Tyla*, SPŠ Hronov** Abstrakt Zkoumali jsme rezonanční frekvenci závaží na

Více

PROGRAM VZDELÁVACEJ ČINNOSTI. Anotácia predmetu

PROGRAM VZDELÁVACEJ ČINNOSTI. Anotácia predmetu PROGRAM VZDELÁVACEJ ČINNOSTI Číslo predmetu : 211014 Názov predmetu : Matematika II. Typ predmetu : Povinný Študijný odbor: Všetky odbory bakalárskeho štúdia Zameranie: Ročník : 1. Semester : letný Počet

Více

Maxwellove rovnice, elektromagnetické vlny

Maxwellove rovnice, elektromagnetické vlny Mawellove rovnice, elektromagnetické vln Mawellove rovnice Zákon achovania elektrického náboja Popis elektromagnetického vlnenia lnové vlastnosti elektromagnetického žiarenia Mawellove rovnice, elektromagnetické

Více

1 1 x 2. Jedná se o diferenciální rovnici se separovanými proměnnými, která má smysl pro x ±1 a

1 1 x 2. Jedná se o diferenciální rovnici se separovanými proměnnými, která má smysl pro x ±1 a . Řešené úlohy Příklad. (separace proměnných). Řešte počáteční úlohu y 2 + yy ( 2 ) = 0, y(0) = 2. Řešení. Rovnici přepíšeme do tvaru y 2 = yy ( 2 ) y = y2 y 2. Jedná se o diferenciální rovnici se separovanými

Více

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární

Více

MESTSKÝ ÚRAD V ŽILINE SPRÁVA

MESTSKÝ ÚRAD V ŽILINE SPRÁVA MESTSKÝ ÚRAD V ŽILINE Materiál na rokovanie Mestského zastupiteľstva v Žiline Číslo materiálu: /2017 K bodu programu SPRÁVA K PROTESTU PROKURÁTORA PROTI VŠEOBECNE ZÁVÄZNÉMU NARIADENIU MESTA ŽILINA Č. 16/2016

Více

MAT I. Logika, množiny 6. Finančná matematika 4. Geometria 8. Planimetria 14. Výrazy 18. Funkcie Függvények 4

MAT I. Logika, množiny 6. Finančná matematika 4. Geometria 8. Planimetria 14. Výrazy 18. Funkcie Függvények 4 MAT I Logika, množiny 6 1. Výrok, pravdivostná hodnota výroku, výroková forma 2. Logické spojky. Kvantifikované výroky 3. Pravdivostná hodnota zložených výrokov 4. Množina, prvok, množina prázdna, konečná,

Více

Riešenie cvičení z 3. kapitoly

Riešenie cvičení z 3. kapitoly Riešenie cvičení z 3. kapitoly Cvičenie 3.1. Prepíšte z prirodzeného jazyka do jazyka výrokovej logiky: (a) Jano pôjde na výlet a Fero pôjde na výlet; (1) vyjadrite túto vetu pomocou implikácie a negácie

Více

MANUÁL K PROGRAMU MATEMATIKA 2.0 STIAHNUTIE A INŠTALÁCIA PROGRAMU:

MANUÁL K PROGRAMU MATEMATIKA 2.0 STIAHNUTIE A INŠTALÁCIA PROGRAMU: MANUÁL K PROGRAMU MATEMATIKA 2.0 Program na precvičovanie učiva z matematiky na nájdeme na stránke http://www.slunecnice.cz/sw/4321-matematika/. STIAHNUTIE A INŠTALÁCIA PROGRAMU: Po kliknutí na Stáhnout

Více

Riešené úlohy Testovania 9/ 2011

Riešené úlohy Testovania 9/ 2011 Riešené úlohy Testovania 9/ 2011 01. Nájdite číslo, ktoré po vydelení číslom 12 dáva podiel 57 a zvyšok 11. 57x12=684 684+11=695 Skúška: 695:12=57 95 11 01. 6 9 5 02. V sude je 1,5 hektolitra dažďovej

Více

Manuál na prácu s databázou zmlúv, faktúr a objednávok Mesta Martin.

Manuál na prácu s databázou zmlúv, faktúr a objednávok Mesta Martin. Manuál na prácu s databázou zmlúv, faktúr a objednávok Mesta Martin. Cieľom databázy zmlúv, faktúr a objednávok Mesta Martin je zverejnenie uvedených záznamov v zmysle ustanovení zákona č. 211/2000 Z.z.

Více

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí

Více

Prednáška 01/12. doc. Ing. Rastislav RÓKA, PhD. Ústav telekomunikácií FEI STU Bratislava

Prednáška 01/12. doc. Ing. Rastislav RÓKA, PhD. Ústav telekomunikácií FEI STU Bratislava Prednáška 01/12 doc. Ing. Rastislav RÓKA, PhD. Ústav telekomunikácií FEI STU Bratislava Prenos informácií pomocou svetla vo voľnom priestore - viditeľná oblasť svetla, - známy už z dávnych dôb, - používa

Více

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y

Více

Finančné riaditeľstvo Slovenskej republiky. Informácia k výpočtu preddavkov na daň z príjmov fyzických osôb

Finančné riaditeľstvo Slovenskej republiky. Informácia k výpočtu preddavkov na daň z príjmov fyzických osôb Finančné riaditeľstvo Slovenskej republiky Informácia k výpočtu preddavkov na daň z príjmov fyzických osôb Výška preddavkov na daň v preddavkovom období od 4.4.2018 do 1.4.2019 sa vyčísli z poslednej známej

Více

TomTom Referenčná príručka

TomTom Referenčná príručka TomTom Referenčná príručka Obsah Rizikové zóny 3 Rizikové zóny vo Francúzsku... 3 Upozornenia na rizikové zóny... 3 Zmena spôsobu upozornenia... 4 tlačidlo Ohlásiť... 4 Nahlásenie novej rizikovej zóny

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Studentove t-testy. Metódy riešenia matematických úloh

Studentove t-testy. Metódy riešenia matematických úloh Studentove t-testy Metódy riešenia matematických úloh www.iam.fmph.uniba.sk/institute/stehlikova Jednovýberový t-test z prednášky Máme náhodný výber z normálneho rozdelenia s neznámymi parametrami Chceme

Více

OCHRANA INOVÁCIÍ PROSTREDNÍCTVOM OBCHODNÝCH TAJOMSTIEV A PATENTOV: DETERMINANTY PRE FIRMY EURÓPSKEJ ÚNIE ZHRNUTIE

OCHRANA INOVÁCIÍ PROSTREDNÍCTVOM OBCHODNÝCH TAJOMSTIEV A PATENTOV: DETERMINANTY PRE FIRMY EURÓPSKEJ ÚNIE ZHRNUTIE OCHRANA INOVÁCIÍ PROSTREDNÍCTVOM OBCHODNÝCH TAJOMSTIEV A PATENTOV: DETERMINANTY PRE FIRMY EURÓPSKEJ ÚNIE ZHRNUTIE júl 2017 OCHRANA INOVÁCIÍ PROSTREDNÍCTVOM OBCHODNÝCH TAJOMSTIEV A PATENTOV: DETERMINANTY

Více

Téma 13, Úvod do dynamiky stavebních konstrukcí dynamiky

Téma 13, Úvod do dynamiky stavebních konstrukcí dynamiky Statika staveních konstrukcí II., 3.ročník akalářského studia Téma 3, Úvod do dynamiky staveních konstrukcí dynamiky Úvod Vlastní kmitání Vynucené kmitání Tlumené kmitání Podmínky dynamické rovnováhy konstrukcí

Více

M úlohy (vyriešené) pre rok 2017

M úlohy (vyriešené) pre rok 2017 M úlohy (vyriešené) pre rok 2017 Nájdite najmenšie prirodzené číslo, ktorého ciferný súčet je 2017 Ak má byť prirodzené číslo s daným ciferným súčtom čo najmenšie, musí mať čo najviac číslic 9 Pretože

Více

Uvoľnené úlohy v medzinárodných testovaniach a ich využitie vo vyučovaní

Uvoľnené úlohy v medzinárodných testovaniach a ich využitie vo vyučovaní Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov EÚ Uvoľnené úlohy v medzinárodných testovaniach a ich využitie vo vyučovaní Finančná a štatistická gramotnosť žiakov

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal

Více

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy

Více

Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb

Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Jan Slovák Masarykova univerzita Fakulta informatiky 23. 10. 2006 Obsah

Více

Verifikácia a falzifikácia

Verifikácia a falzifikácia Hypotézy Hypotézy - výskumný predpoklad Prečo musí mať výskum hypotézu? Hypotéza obsahuje vlastnosti, ktoré výskumná otázka nemá. Je operatívnejšia, núti výskumníka odpovedať priamo: áno, alebo nie. V

Více

Prevody z pointfree tvaru na pointwise tvar

Prevody z pointfree tvaru na pointwise tvar Prevody z pointfree tvaru na pointwise tvar Tomáš Szaniszlo 2010-03-24 (v.2) 1 Príklad (.(,)). (.). (,) Prevedenie z pointfree do pointwise tvaru výrazu (.(,)). (.). (,). (.(,)). (.). (,) Teraz je funkcia

Více

Riešenie nelineárnych rovníc I

Riešenie nelineárnych rovníc I Riešenie nelineárnych rovníc I Ako je už zo samotného názvu hodiny parné budeme sa venovať spôsobom výpočtu nelineárnych rovníc. Prečo je riešenie takýchto rovníc nevyhnutné? Nielen v samotnom chemickom

Více

PROGRAM VZDELÁVACEJ ČINNOSTI. Anotácia predmetu

PROGRAM VZDELÁVACEJ ČINNOSTI. Anotácia predmetu PROGRAM VZDELÁVACEJ ČINNOSTI Číslo predmetu : 32131, 2N187 Názov predmetu : Teória grafov Typ predmetu : Povinne voliteľný Študijný odbor: Biomedicinske inžinierstvo, Telekomunikácie, Aplikovaná mechanika

Více

Imagine. Popis prostredia:

Imagine. Popis prostredia: Priemerný človek si zapamätá približne: - 10 % z toho, čo číta, - 20 % z toho, čo počuje, - 30 % z toho, čo vidí v podobe obrazu, - 50 % z toho, čo vidí a súčasne počuje, - 70 % z toho čo súčasne vidí,

Více

Fyzika 9. ročník 3. Laboratórna úloha

Fyzika 9. ročník 3. Laboratórna úloha Základná škola s materskou školou Chlebnice Fyzika 9. ročník 3. Laboratórna úloha Úloha: Urč pevnú látku, z ktorej je zhotovené teleso, pomocou mernej tepelnej kapacity Príprava: Medzi telesami, ktorých

Více

Škola pre mimoriadne nadané deti a Gymnázium. Teória 2 Mechanické kmitanie a vlnenie 2.1 Mechanické kmitanie

Škola pre mimoriadne nadané deti a Gymnázium. Teória 2 Mechanické kmitanie a vlnenie 2.1 Mechanické kmitanie Meno a priezvisko: Škola: Predmet: Školský rok/blok: / Skupina: Trieda: Dátum: Škola pre mimoriadne nadané deti a Gymnázium Fyzika Teória 2 Mechanické kmitanie a vlnenie 2.1 Mechanické kmitanie 2.1.10

Více

DOBROPISY. Dobropisy je potrebné rozlišovať podľa základného rozlíšenia: 1. dodavateľské 2. odberateľské

DOBROPISY. Dobropisy je potrebné rozlišovať podľa základného rozlíšenia: 1. dodavateľské 2. odberateľské DOBROPISY Dobropisy je potrebné rozlišovať podľa základného rozlíšenia: 1. dodavateľské 2. odberateľské 1. DODAVATEĽSKÉ to znamená, že dostanem dobropis od dodávateľa na reklamovaný, alebo nedodaný tovar.

Více

Súmernosti. Mgr. Zuzana Blašková, "Súmernosti" 7.ročník ZŠ. 7.ročník ZŠ. Zistili sme. Zistite, či je ľudská tvár súmerná

Súmernosti. Mgr. Zuzana Blašková, Súmernosti 7.ročník ZŠ. 7.ročník ZŠ. Zistili sme. Zistite, či je ľudská tvár súmerná Mgr. Zuzana Blašková, "úmernosti" 7.ročník ZŠ 1 úmernosti 7.ročník ZŠ Mgr. Zuzana Blašková 2 ZŠ taničná 13, Košice Osová súmernosť určenie základné rysovanie vlastnosti úlohy s riešeniami osovo súmerné

Více

V E K T O R Y. F b) pomocou hrubo vyznačených písmen ( hlavne v tlačenom texte ): a b c d v F

V E K T O R Y. F b) pomocou hrubo vyznačených písmen ( hlavne v tlačenom texte ): a b c d v F Fyzikálne veličiny delíme n sklárne vektorové. V E K T O R Y SKALÁRNE FYZIKÁLNE VELIČINY skláry ( lt. scle stupnic ) sú jednoznčne určené veľkosťou ( = číselná hodnot + jednotk ). Sklármi sú npríkld čs,

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

Matematika test. 1. Doplň do štvorčeka číslo tak, aby platila rovnosť: (a) 9 + = (b) : 12 = 720. (c) = 151. (d) : 11 = 75 :

Matematika test. 1. Doplň do štvorčeka číslo tak, aby platila rovnosť: (a) 9 + = (b) : 12 = 720. (c) = 151. (d) : 11 = 75 : GJH-Prima 1 2 3 4 5 6 7 8 9 10 11 12 13 Súčet Test-13 Matematika test Na tento papier sa nepodpisuj. Na vypracovanie tejto skúšky máš čas 20 minút. Test obsahuje 13 úloh a má 4 strany. Úlohy môžeš riešiť

Více

PLASTOVÉ KARTY ZÁKAZNÍKOV

PLASTOVÉ KARTY ZÁKAZNÍKOV PLASTOVÉ KARTY ZÁKAZNÍKOV OBSAH 1 Plastové karty základné informácie... 1 2 Distribúcia plastových kariet zákazníkom... 1 2.1 Jednorázová hromadná distribúcia kariet... 1 2.2 Pravidelná distribúcia plastových

Více