Přednáška 11 Od chaosu ke komplexitě všechnofyzika

Rozměr: px
Začít zobrazení ze stránky:

Download "Přednáška 11 Od chaosu ke komplexitě všechnofyzika"

Transkript

1 Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK Přednáška Od chaosu ke komplexitě všechnofyzika Fyzika jako dobrodružství poznání MFF UK v Praze, letní semestr 05

2 Fyzika. druhu: kódování rot E roth B t D t j Maxwellovy rovnice div D divb 0

3 Fyzika. druhu: dekódování Henri Poincaré (854-9) ) ( 3 ) ( i j i j i j j i r r r r m G r }, {,,3 j i problém 3 těles

4 ) Klasický chaos ) Komplexita 3) Kvantový chaos-nechaos

5 (Ne)integrabilní systémy Učebnice klasické mechaniky si všímají především tzv. integrabilních systémů (např. matematické kyvadlo, harmonický oscilátor nebo Keplerův systém), ale naprostá většina skutečných systémů integrabilní není! p / ml f= f= Hamiltonovy rovnice H p q q (, ) p H p q p (, ) q vyjadřují tok po nadploše E=const ve fázovém prostoru (pro f = nadplocha 3D). Integrabilita: Systém s f stupni volnosti má f integrálů pohybu I, I I f v involuci : { I i, I j } = 0. Trajektorie int.systému ve fáz.prostoru leží na nadplochách topologicky ekvivalentních torům Pro f = integrabilita vyžaduje existenci dodatečného integrálu pohybu Pro f = jsou všechny systémy integrabilní tory = kružnice

6 (Ne)integrabilní systémy Učebnice klasické mechaniky si všímají především tzv. integrabilních systémů (např. matematické kyvadlo, harmonický oscilátor nebo Keplerův systém), ale naprostá většina skutečných systémů integrabilní není! Hamiltonovy rovnice zachovávají objem buňky fázového prostoru představují tok nestlačitelné kapaliny. Tvar buňky fázového prostoru se ale může stávat velmi Hamiltonovy rovnice H p q q (, ) p komplikovaným => možnost chaotických řešení vykazujících exponenciální citlivost k počátečním podmínkám efekt motýlího křídla H p q p (, ) q vyjadřují tok po nadploše E=const ve fázovém prostoru (pro f = nadplocha 3D). t t t = exponenciální vzdalování některých trajektorií

7 Problém 3 těles Existence chaotických řešení znamená faktický pád klasického determinismu zformulovaného v roce 84 Laplacem Příklad chaotického rozptylu 3 těles: Henri Poincaré (854-9) Pierre-Simon Laplace (749 87) Intelekt, jenž by v jistém okamžiku znal všechny síly, které uvedly přírodu do pohybu, a polohy všech věcí, z nichž se příroda skládá, by v jediné formuli obsáhl pohyby největších těles vesmíru i pohyby těch nejmenších atomů; pro takový intelekt by nic nebylo nejisté a před jeho očima by se zpřítomňovala budoucnost stejně jako minulost P. Hut, J.N. Bahcall, Astrophys. J. 68, 39 (983)

8 Problém 3 těles z historie V roce 885 vyhlašuje švédský & norský král Oscar II. u příležitosti svých 60. narozenin vědeckou soutěž (ceny: zlatá medaile a 500 zlatých korun) s cílem nalezení obecného analytického řešení (ve formě konvergující řady) dynamiky systému mnoha těles v nebeské mechanice. Henri Poincaré V roce888 se do soutěže přihlašuje Henri Poincaré (34 let) prací (854-9) nazvanou O problému tří těles a rovnicích dynamiky. Komise soutěže (Karl Weierstrass, Charles Hermite, Gösta Mittag-Leffler) jej vyhlašuje vítězem (i když plné řešení zadaného problému nepředložil). Když má být jeho 60 stránková práce publikována, editor upozorňuje na určité nejasnosti. Po dlouhém mlčení nachází Poincaré fatální chybu. Stahuje mezitím již vytištěné vydání práce a v roce 890 publikuje novou práci v rozsahu 70 stránek na vlastní náklady >500 korun (také zlatá medaile mu byla později ukradena). Její výsledky odhalují do té doby převážně skrytou bohatost a složitost řešení dynamických rovnic klasické mechaniky a ukazují jejich nestabilitu. Nová práce pokládá základy pozdějšího studia chaosu a komplexity ve fyzice i mimo ni

9 Problém 3 těles zjednodušení Redukovaný problém 3 těles: m m, m 0 & ( x, y, z) ( x, y,0) 0 3 Vyřeším pohyb těles + (rotace kolem těžiště) a hledám pohyb tělesa 3 v rotující soustavě v gravitačním poli těles + tj. se započtením => problém se stupni volnosti odstředivé & Coriolisovy síly L, L, L 3, L 4, L 5 Lagrangeovy body L 4 m m L 3 L R.Moeckel L m m L 3 Země-Měsíc: μ=0.05 Vhodnou volbou jednotek lze dosáhnout: x & x a za předpokladu kruhového pohybu + nabývají dynamické rovnice tvaru: x y y x x U (nestabilní rovnováha tělesa 3) y x y U U, kde: ( x ) y ( x ) y Existuje integrál pohybu (Jacobiho energie): E ( x y ) U( x, y Odvození: viz např. )

10 Problém 3 těles vizualizace Poincarého mapa: Poincaré vynalezl způsob vizualizace dynamiky obecného systému pomocí zobrazení opakovaných průchodů trajektorií řezem fázového prostoru ( stroboskopické zobrazení, návratová mapa ). Pro konzervativní (E=const) systém se stupni volnosti je mapa -rozměrná Všechny trajektorie leží na 3D nadploše E=const ve 4D fázovém prostoru x x y 0 Každý bod řezu protíná právě trajektorie (díky zachování E) Pokud by existoval. integrál pohybu, body patřící stejným trajektoriím by v rovině řezu ležely na křivkách průsečících řezu s tory (integrabilní systém) Pokud. integrál pohybu neexistuje, může řez vypadat třeba i takto:

11 Problém 3 těles vizualizace Země - Měsíc μ=0.05 E.59 EL Pavel Stránský x rovina řezu: y=0 směr průchodu x

12 Vznik chaosu je úchvatný! Proces vzniku chaosu při narušení integrabilního systému je fascinující a na jeho pochopení pracují generace matematiků kanonická poruchová teorie, KAM teorie symbolická dynamika, diskrétní mapy ergodická teorie stabilita diferenciálních rovnic George Birkhoff ( ) Andrej Kolmogorov ( ) disipativní systémy, atraktory proudění, turbulence Vladimir Arnold (937-00) Jürgen Moser (98-999)

13 Vznik chaosu je úchvatný! Proces vzniku chaosu při narušení integrabilního systému je fascinující a na jeho pochopení pracují generace matematiků ) ) Kolmogorov-Arnold-Moserův (KAM) teorém (954,63,6): racionální tory umírají nejdřív, silně iracionální tory přežívají nejdéle D: m const m m,, poměr frekvencí podél obou kružnic toru zlatý řez má nejpomaleji konvergující řadu tory s tímto (nebo obdobným) poměrem frekvencí přežijí nejdéle, m m >0 podmínka pro přežití toru (konstanta je úměrná síle poruchy) m m dolní mez m horní mez m Aproximace iracionálního čísla racionálním zlomkem m

14 Vznik chaosu je úchvatný! Proces vzniku chaosu při narušení integrabilního systému je fascinující a na jeho pochopení pracují generace matematiků ) ) ) Kolmogorov-Arnold-Moserův (KAM) teorém (954,63,6): racionální tory umírají nejdřív, silně iracionální tory přežívají nejdéle D: m const m,,, m m m ) Poincaré-Birkhoffův teorém (9,35): zánikem toru vzniká n periodických orbit, n z nich je stabilních, n nestabilních >0 Simulace M. Macek (ilustrativní příklad) P. Cejnar, P. Stránský, AIP Conf.Proc.575(04)3

15 Vznik chaosu Člověk je ohromen složitostí tohoto obrázku, který se zde ani neodvažuji nakreslit Proces vzniku chaosu při narušení integrabilního systému je fascinující a na jeho pochopení pracují generace matematiků ) ) 3) Simulace C.Simó (ilustrativní příklad) A. Chenciner: Seminaire Poincaré XVI(0)45 ) Kolmogorov-Arnold-Moserův (KAM) teorém (954,63,6): racionální tory umírají nejdřív, silně iracionální tory přežívají nejdéle D: m const m,,, m m m ) Poincaré-Birkhoffův teorém (9,35): zánikem toru vzniká n periodických orbit, n z nich je stabilních, n nestabilních 3) Heteroklinická změť (890): stabilní a nestabilní nadplochy kolem nestabilní orbity vytvářejí komplikovaný propletenec >0

16 Modelování chaosu Geometrický model atomového jádra (schematický popis jaderných vibrací) H px py 0 M 3 A( x y ) B( x 3y x) C( x y Hénon-Heilesův model 0 (schematický popis pohybu hvězd kolem centra galaxie) ) Potenciál pro A= 0.84, B,C,M= y Vysoká variabilita chování při změnách parametrů a energie: Poincarého mapy pro řez y=0 x E=4.4 A=.6, B,C,M= E=3 A= 0.84, B,C,M= E=.4 x x

17 Modelování chaosu Geometrický model atomového jádra (schematický popis jaderných vibrací) H px py 0 M 3 A( x y ) B( x 3y x) C( x y Hénon-Heilesův model 0 (schematický popis pohybu hvězd kolem centra galaxie) ) Potenciál pro A= 0.84, B,C,M= y P h y s i c a Magia Maxima E=4.4 A=.6, B,C,M= E=3 A= 0.84, B,C,M= E=.4 x

18 Modelování chaosu Geometrický model atomového jádra (schematický popis jaderných vibrací) H px py 0 M 3 A( x y ) B( x 3y x) C( x y Hénon-Heilesův model 0 (schematický popis pohybu hvězd kolem centra galaxie) ) f reg ( E) reg tot ( E) ( E) [0,] objem regulární části nadplochy E celkový (f -)-dim.objem nadplochy E A=, C,M= E=0 (energie lokálního maxima pro x,y=0) B= y 0 x integrabilní limita částečná regularita P. Stránský, M. Kurian, P. Cejnar, Phys. Rev. C 74 (006) P. Cejnar, P. Stránský, Phys. Rev. Lett. 93 (004) 050 Pavel Stránský x

19 Vláda chaosu Pro plně chaotické systémy platí ergodická teorie: Každá trajektorie po dostatečně dlouhém čase projde libovolně blízkým okolím všech bodů na dané energetické nadploše fázového prostoru všechny trajektorie jsou v podstatě ekvivalentní fyzikální veličiny sice podléhají nepředvídatelným fluktuacím, ale jejich střední hodnoty se dají dobře odhadnout integrací veličiny po energetické nadploše statistická předvídatelnost není tak hrozná G. Birkhoff 93 J. von Neumann 93 T lim dt Op( t), q( t) O O dpdq ( EH( p, q) ) T čas fázový T prostor ( E) 0 tot O( p, q) celkový (f -)-dimenzionální objem energetické nadplochy

20 ) Klasický chaos ) Komplexita 3) Kvantový chaos-nechaos

21 Fraktály Geometrické útvary, jejichž struktura je stejně Im c složitá při každé volbě škály +i Re c + N Fraktální dimenze D Pokrytí objektu d-dim mřížkou o straně L Předpoklad objem lin.rozmer d L L pro L 0 L počet obsahujících objekt X i X D L počet podél jedné strany objektu ln ln N N Dln X L ln C X L D Mandelbrotova množina hodnoty c, pro něž je komplexní posloupnost z n+ =(z n ) +c omezená

22 Celulární automaty C.a. = pravidelný systém buněk (obvykle D mříž), z nichž každá může nabývat diskrétní množiny stavů, např. {, }. C.a. se vyvíjí podle jistých lokálních pravidel v diskrétním čase t = 0,,,3 Navzdory jednoduchosti svých pravidel c.a. vytvářejí velmi složité struktury Sandpile modely popisují procesy podobné sesouvání hromádek písku: B ij Bij Bij 4 kl B kl počet zrnek v buňce (i,j) rozdíl vůči sousedním buňkám Dynamika: pokud ΔB ij B c (kritická hodnota) pak proveď: 4, B B B B B B ij ij 5 c původní buňka kl kl 5 sousední buňky Z historie: 940s: Stanislaw Ulam, John von Neumann: návrh a analýza prvních celulárních automatů 970: John Conway: model The Game of Life 987: Per Bak, Chao Tang, Kurt Wiesenfeld: semenný článek Self-Organized Criticality 00: Stephen Wolfram: kniha A New Kind of Science c periodická struktura ( gun ) generovaná v modelu Game of Life C.Rocchini (Wikipedia)

23 Celulární automaty Rovnoměrné přihazování zrnek do náhodných buněk. Při překročení kritického gradientu rozdělení zrnek dochází ke kaskádovitému přerozdělování. Vzniklé laviny vykazují škálovou invarianci a vznikají při nich fraktální útvary! Time t=6 Time t=8 Time t=3 Sandpile modely viz např. M.J. Aschwanden, Astronomy & Astrophysics 539 (0); arxiv:.4859 Nafitovaná fraktální dimenze: (teoretická předpověď: D = 3/) D lavina #68: vybrané momentky počátek laviny

24 Celulární automaty Škálová invariance v akci: celulární automat se samovolně vyvine do stavu, kdy jakkoli malý podnět může způsobit lavinu libovolné velikosti. Pravděpodobnosti výskytu lavin o rozloze S a s dobou trvání T je určena mocninnými závislostmi: self-organized criticality (samosezorganizovavší kritikalita ) Per Bak, Chao Tang, Kurt Wiesenfeld, Phys. Rev. A 38, 364 (988) P P P( t) T S T ( S) S. 57 S P T R.V. Solé: Phase Transitions (0) S T zemětřesení lesní požáry USA kritický Isingův model Slope -.0 s D.L. Turcotte, Rep. Prog. Phys. 6 (999) 377 S (km )

25 Škálová invariance Nezávislost na škále (byť jen v konečném rozsahu hodnot ) vykazuje řada reálných jevů! Benfordův zákon Namátkou: Sesuvy půdy, laviny Sluneční erupce Evoluce & extinkce druhů Války, nehody, katastrofy Burzovní obchody Difuze, turbulence Srdeční, mozková aktivita Lingvistika, DNA R.V. Solé: Phase Transitions (0) Wienerův proces (ideální Brownův pohyb) zdroj: Wikipedia P( x) Škálově invariantní rozdělení x hodnot x nějaké sledované veličiny vede k nerovnoměrnému rozdělení zastoupení první platné cifry: P( dx) log0( dx) log0 Že se tímto zákonem řídí mnoho odlišných souborů čísel si všiml astronom S. Newcomb v r.88. V r.938 fyzik Frank Benford jeho platnost ověřil na 0 9 souborech čísel (délky 335 řek, velikost 359 amer.obcí, hodnoty 04 fyzikálních konstant, 800 molekulárních vah, 5000 položek matematické příručky, 308 čísel z Reader's Digest, adresy 34 osob v American Men of Science..) d x zdroj: Wikipedia zemětřesení lesní požáry USA kritický Isingův model Slope -.0 s D.L. Turcotte, Rep. Prog. Phys. 6 (999) 377 S (km )

26 Logistické mapy Schematický model pro vývoj populace inspirovaný Verhulstovou rovnicí z roku 838. Relativní populace n. generace: populace (n+).generace: N / N [0, ] max x x n f ( x ) n n n n r x parametr, jenž zásadním způsobem ovlivňuje evoluci r =3.74 x 0 = ( x ) r [0,4] x n x n pro r > 4 posloupnost x n opouští povolený interval Pierre François Verhulst (804 49) x n x n zdroj: WolframMathWorld zdroj: Wikipedia

27 Logistické mapy Atraktor: množina hodnot x n, do nichž se systém vyvíjí při n z libovolné poč. hodnoty x 0 (tyto hodnoty se pro velká n budou opakovat v periodických cyklech) x * x x f ( x ) n n n n r x x ( x ) x x a c d r n r 3.5 n r 3.8 n b r 3. n r 0 = atraktor 0 r =3 perioda= r = perioda=4 r 3 = r = perioda= r lim n r perioda=8 n r r n n n Feigenbaumova konstanta ostrovy regularity soběpodobné struktury a Fraktální dimenze atraktoru v bodě r je D = Základy modelu - viz např.: r b c d

28 x 0 x 0 Bernoulliova mapa Lineární kongruenční rovnice: x x x n n (mod) V binárním zápisu je tato transformace vyjádřena jako ciferný posun (doleva o jedno místo): () () (3) (4) 0 bn bn bn b 0 3 () () (3) (4) n n 0. bn bn bn bn 4 () ( ) (3) ( 4) b () ( ) (3) ( 4) n bn bn bn b n b n b n b n () (3) (4) (5) () (3) (4) (5) 0 bn bn bn bn xn 0. bn bn bn bn cifra lokalizuje bod v levé/pravé ½ intervalu [0,]. cifra daného ½-intervalu 3. cifra daného ¼-intervalu... 0 levá ½ (k) b n pravá ½ 0 ¼ ½ ¾ Bernoulliova transformace generuje chaotické trajektorie! Např. sekvence vycházející z těchto počátečních bodů jsou ve 4. kroku v opačných ½-intervalech:

29 Algoritmická komplexita n Složitost K(B n n ) binární sekvence bi B i délky n je rovna minimální bitové délce počítačového programu schopného tuto sekvenci vygenerovat n n Pro jednoduché sekvence: K( B ) log n např. for i= to n print n n Pro složité sekvence: K(B ) n výčet elementů: print { b, b,, b n } Složitost nekonečné sekvence: K( B K( B ) lim n n n ) 0 jednoduché sekvence 0 složité Maximálně složité sekvence jsou z praktického hlediska zcela náhodné! Pozn.: teorie algoritmické složitosti viz A. Kolmogorov, G. Chaitin, R. Solomonov (970s); fyzikální důsledky J. Ford (& G.Mantica), Physics Today 983, p.40 & Am. J. Phys. 60 (99) 086 Bernoulliova mapa generuje maximálně složité sekvence Klasická mechanika generuje maximálně složité sekvence fázový prostor Dim = 6N #i 0 Rozdělení fázového prostoru na očíslované buňky. Sledujeme sekvenci buněk #i 0,#i,, #i k, kterými prochází trajektorie z definovaného počátečního bodu t #i k

30 ) Klasický chaos ) Komplexita 3) Kvantový chaos-nechaos

31 Kvantová evoluce je unitární! Vývoj stavového vektoru je lineární a zachovává skalární součiny: Změna počáteční podmínky: nový stavový vektor (0) (0) porucha (infinitesimální koeficient δ ) (0) původní stavový vektor Dim ~ exp N ( t) i ˆ ( t) e Ht (0) vývoj nového vektoru: e ( t) Rozdíl řešení: ˆ ( t) i i Ht (0) e Ht (0) ˆ ( t) ( t) ( t) ( t) d ( t) ( t) Kvantová mechanika je algoritmicky jednoduchá (sic )!!! Hilbertův prostor Vzdálenost řešení Aproximace stavového vektoru v čase 0 na dané úrovni přesnosti umožňuje predikce pro libovolné časy t na stejné úrovni přesnosti! ( t) ( t) ( t) ( t) ( t) ( t) t 0 se nemění! t

32 Kvantově-klasická korespondence S linearitou kvantové evoluce (bez měření) ožívá myšlenka Laplaceova démona. Predikce pro libovolné časy lze provést na kvantové úrovni fázový prostor Dim = 6N a pak přejít na klasickou úroveň pomocí klasické limity QM t kvantování systému a evoluce pro zvolený semiklasický počáteční stav (např. vlnový balík) Hilbertův prostor Dim ~ exp N To má ale háček klasická limita ħ 0 t

33 Kvantově-klasická korespondence Korespondence mezi klasickou a kvantovou mechanikou (pro semiklasické počáteční stavy) na velmi dlouhé časové škále zaniká L Ehrenfestův čas t E tchaos ln Heisenbergův čas fázový prostor Dim = 6N Interakce systému s prostředím zpravidla nástup kvantového režimu oddaluje (tím víc, čím větší je prostředí) ale vesmír jako celek (je-li to izolovaný kvantový systém) by měl být nechaotický! Hilbertův prostor Dim ~ exp N Q kvantové fluktuace ničí jemná vlákna ve fázovém prostoru nastupuje kvantový režim E t t H E 3N kvantová buňka klasická limita ħ 0 t

34 Kvantový chaos Energie Regularita/chaoticita klasické dynamiky má zásadní vliv na vzájemné korelace mezi hladinami kvantových spekter Např. rozdělení normalizovaných vzdáleností mezi sousedními hladinami E n3 E n E n E n s E E střední energ.vzdálenost v dané oblasti spektra Fenomén odpuzování hladin v chaotických systémech There is no quantum chaos in the sense of exponential sensitivity to initial conditions, but there are several novel quantum phenomena which reflect the presence of classical chaos. The study of these phenomena is quantum chaology. Michael Berry (*94) regulární biliár Poissonovo rozdělení s P( s) e chaotický biliár T-symetrický případ Wignerovo rozdělení P( s) 4 se s absence korelací mezi hladinami silné korelace mezi hladinami A.Bäcker (007)

35 Kvantový chaos Energie Regularita/chaoticita klasické dynamiky má zásadní vliv na vzájemné korelace mezi hladinami kvantových spekter Např. rozdělení normalizovaných vzdáleností mezi sousedními hladinami E n3 E n E n E n s E E střední energ.vzdálenost v dané oblasti spektra Fenomén odpuzování hladin v chaotických systémech There is no quantum chaos in the sense of exponential sensitivity to initial conditions, but there are several novel quantum phenomena which reflect the presence of classical chaos. The study of these phenomena is quantum chaology. Michael Berry (*94) regulární biliár Poissonovo rozdělení s P( s) e P( s) 4 s e 3 s chaotický biliár T-symetrický případ Wignerovo rozdělení P( s) 4 se s absence korelací mezi hladinami silné korelace mezi hladinami A.Bäcker (007)

36 Kvantový chaos Korelace ve spektrech chaotických systémů mají univerzální charakter a jsou popsány teorií náhodných matic dá se aplikovat v různých fyzikálních systémech 56 Gd Spektrum atomového jádra Elastomechanické módy nepravidelného krystalu Si (experiment) Neutrální atomy Hf, Ta, W, Re, Os, Ir (exp.data) Rosenzweig, Porter (960) energie po absorpci neutronu Ellegaard et al. (996) Vzdálenost jaderných rezonancí (76 experimentálních hodnot) Niels Bohr (936) Eugene Wigner (955) Oriol Bohigas et al. (98) Wigner Atom H v silném mg.poli (num. výpočet) Wintgen, Friedrich (987)

37 Kvantový chaos Korelace ve spektrech chaotických systémů mají univerzální charakter a jsou popsány teorií náhodných matic přesah do mnoha oblastí daleko mimo fyziku Vzdálenost vlastních hodnot autokorelačních matic EEG signálu Cuernavaca Vzdálenost autobusů MHD (v Mexiku) Puebla Šeba (003) Šeba et al. (000) Vzdál. vl.hodnot korel. matic pro různé meteorologické veličiny Santhanam et al. (00) Vzdál. vl.hodnot korel.matic pro fluktuace cen akcií Plerou et al. (00) Vzdál.vl.hod.korel.matic pro posunutí molekul v proteinech Potestio et al. (009)

38 Vesmír možná není chaotický ale i tak je krásný! kvantový svět??? klasický svět Četba: Linda E. Reichl: The Transition to Chaos: Conservative Classical Systems and Quantum Manifestations (Springer, 004) A. Lesne, M. Leguës: Scale Invariance: From Phase Transitions to Turbulence (Springer 0)

chaosu Od motýlích křídel ke kvantovému Pavel Cejnar Brno 2016 Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK Praha

chaosu Od motýlích křídel ke kvantovému Pavel Cejnar Brno 2016 Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK Praha Brno 06 Pavel Cejnar Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK Praha Od motýlích křídel ke kvantovému chaosu Lorenzo Lotto (480-557), Magnum Chaos (Basilica di Santa Maria Maggiore,

Více

Singulární charakter klasické limity

Singulární charakter klasické limity Singulární charakter klasické limity obecná speciální Teorie O Teorie S Parametr δ : δ ) O S) O S Pieter Bruegel starší +569) Velké ryby jedí malé ryby 556) obecná speciální Teorie O Teorie S Parametr

Více

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15 Obsah PŘEDMLUVA...9 ÚVOD...11 1. TEORETICKÁ MECHANIKA...15 1.1 INTEGRÁLNÍ PRINCIPY MECHANIKY... 16 1.1.1 Základní pojmy z mechaniky... 16 1.1.2 Integrální principy... 18 1.1.3 Hamiltonův princip nejmenší

Více

Dynamické kritické jevy

Dynamické kritické jevy Dynamické kritické jevy statické vs. dynamické Ve statické situaci je kritické chování určeno: i. dimenzí parametru uspořádání ii. dimenzí fyzikálního prostoru každý obor začíná nejprve statickými jevy

Více

Celulární automaty (CA) a jejich aplikace. Samoorganizace Vlastnosti CA Samoorganizovaná kritikalita Vývoj rozhraní

Celulární automaty (CA) a jejich aplikace. Samoorganizace Vlastnosti CA Samoorganizovaná kritikalita Vývoj rozhraní Celulární automaty (CA) a jejich aplikace Samoorganizace Vlastnosti CA Samoorganizovaná kritikalita Vývoj rozhraní Samorganizace Pojem samorganizace je užíván v různých kontextech v: informační teorii,

Více

Nelineární systémy a teorie chaosu

Nelineární systémy a teorie chaosu Martin Duspiva KOIF2-2007/2008 Definice Lineární systém splňuje podmínky linearita: f (x + y) = f (x) + f (y) aditivita: f (αx) = αf (x) Každý systém, který nesplňuje jednu z předchozích podmínek nazveme

Více

FYZIKÁLNÍ CHAOS A FRAKTÁLY

FYZIKÁLNÍ CHAOS A FRAKTÁLY FYZIKÁLNÍ CHAOS A FRAKTÁLY Pavel Stránský www.pavelstransky.cz Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta Univerzity Karlovy Gymnázium Brandýs nad Labem 15. února 2016 Co si odnášíme

Více

Symetrie a chaos v mnohočásticových systémech

Symetrie a chaos v mnohočásticových systémech Profesorská přednáška Pavel Cejnar Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta Universita Karlova v Praze Symetrie a chaos v mnohočásticových systémech cejnar @ ipnp.troja.mff.cuni.cz

Více

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při

Více

Buněčné automaty a mřížkové buněčné automaty pro plyny. Larysa Ocheretna

Buněčné automaty a mřížkové buněčné automaty pro plyny. Larysa Ocheretna Buněčné automaty a mřížkové buněčné automaty pro plyny Larysa Ocheretna Obsah Buněčný automat: princip modelu, vymezení pojmů Mřížkový buněčný automat pro plyny Příklady aplikace principů mřížkových buněčných

Více

Úvod do moderní fyziky

Úvod do moderní fyziky Úvod do moderní fyziky letní semestr 2015/2016 Vyučující: Ing. Jan Pšikal, Ph.D Tématický obsah přednášek speciální a obecná teorie relativity kvantování energie záření, vlnové vlastnosti částic struktura

Více

Úvod do nebeské mechaniky

Úvod do nebeské mechaniky OPT/AST L09 Úvod do nebeské mechaniky pohyby astronomických těles ve společném gravitačním poli obecně: chaotický systém nestabilní numerické řešení speciální případ: problém dvou těles analytické řešení

Více

10 Funkce více proměnných

10 Funkce více proměnných M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y

Více

Dynamické systémy 4. Deterministický chaos. Ing. Jaroslav Jíra, CSc.

Dynamické systémy 4. Deterministický chaos. Ing. Jaroslav Jíra, CSc. Dynamické systémy 4 Deterministický chaos Ing. Jaroslav Jíra, CSc. Jednorozměrné mapy Jednorozměrné mapy (též známé jako diferenční rovnice) jsou matematické systémy, které modelují vývoj proměnné v čase

Více

Úvod do zpracování signálů

Úvod do zpracování signálů 1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

Aplikace multifraktální geometrie na finančních trzích

Aplikace multifraktální geometrie na finančních trzích Aplikace multifraktální geometrie na finančních trzích 5. studentské kolokvium a letní škola matematické fyziky Stará Lesná Fakulta jaderná a fyzikálně inženýrská ČVUT, Praha 1. 9. 2011 Úvod náhodné procesy

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

Fyzika IV. g( ) Vibrace jader atomů v krystalové mříži

Fyzika IV. g( ) Vibrace jader atomů v krystalové mříži Vibrace jader atomů v krystalové mříži v krystalu máme N základních buněk, v každé buňce s atomů, které kmitají kolem rovnovážných poloh výchylky kmitů jsou malé (Taylorův rozvoj): harmonická aproximace

Více

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Předmět: MA 4 Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Četba: Text o lineární algebře v Příručce přežití na webových

Více

Kvantová fyzika atomárních soustav letní semestr VIII. KOTLÁŘSKÁ 23. DUBNA 2014

Kvantová fyzika atomárních soustav letní semestr VIII. KOTLÁŘSKÁ 23. DUBNA 2014 F40 Kvantová fyzika atomárních soustav letní semestr 03-04 VIII. Vibrace víceatomových molekul cvičení KOTLÁŘSKÁ 3. DUBNA 04 Úvodem capsule o maticích a jejich diagonalisaci definice "vibračních módů"

Více

Potenciální proudění

Potenciální proudění Hydromechanické procesy Potenciální proudění + plíživé obtékání koule M. Jahoda Proudění tekutiny Pohyby elementu tekutiny 2 čas t čas t + dt obecný pohyb posunutí lineární deformace rotace úhlová deformace

Více

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021 Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,

Více

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Fyzika IV Dynamika jader v molekulách

Fyzika IV Dynamika jader v molekulách Dynamika jader v molekulách vibrace rotace Dynamika jader v molekulách rotační energetické hladiny (dvouatomová molekula) moment setrvačnosti kolem osy procházející těžištěm osa těžiště m2 m1 r2 r1 R moment

Více

Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model

Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model Elementární částice 1. Leptony 2. Baryony 3. Bosony 4. Kvarkový model 5. Slabé interakce 6. Partonový model I.S. Hughes: Elementary Particles M. Leon: Particle Physics W.S.C. Williams Nuclear and Particle

Více

Okruhy k maturitní zkoušce z fyziky

Okruhy k maturitní zkoušce z fyziky Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

Přednášky z předmětu Aplikovaná matematika, rok 2012

Přednášky z předmětu Aplikovaná matematika, rok 2012 Přednášky z předmětu Aplikovaná matematika, rok 2012 Robert Mařík 23. ledna 2015 2 Obsah 1 Přednášky 2012 5 2 Písemky 2012 9 3 4 OBSAH Kapitola 1 Přednášky 2012 1. prednaska, 16.2.2012 -----------------------

Více

Simulace pohybu chodců pomocí celulárních modelů

Simulace pohybu chodců pomocí celulárních modelů Simulace pohybu chodců pomocí celulárních modelů Marek Bukáček výzkumná skupina GAMS při KM KIPL FJFI ČVUT v Praze 8. červen 2011 Obsah Úvod Celulární modely úprava Floor field modelu Proč modelovat Akademický

Více

Operátory obecně (viz QMCA s. 88) je matematický předpis který, pokud je aplikován na funkci, převádí ji na

Operátory obecně (viz QMCA s. 88) je matematický předpis který, pokud je aplikován na funkci, převádí ji na 4 Matematická vsuvka: Operátory na Hilbertově prostoru. Popis vlastností kvantové částice. Operátory rychlosti a polohy kvantové částice. Princip korespondence. Vlastních stavy a spektra operátorů, jejich

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) 1 Statistická fyzika Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Cíl statistické fyziky: vysvětlit makroskopické vlastnosti látky na základě mikroskopických vlastností jejích elementů,

Více

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15 Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření

Více

Fourierovské metody v teorii difrakce a ve strukturní analýze

Fourierovské metody v teorii difrakce a ve strukturní analýze Osnova přednášky na 31 kolokviu Krystalografické společnosti Výpočetní metody v rtg a neutronové strukturní analýze Nové Hrady, 16 20 6 2003 Fourierovské metody v teorii difrakce a ve strukturní analýze

Více

Úvod do kvantového počítání

Úvod do kvantového počítání 2. přednáška Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 17. března 2005 Opakování Část I Přehled z minulé hodiny Opakování Alternativní výpočetní modely Kvantové počítače

Více

Matematika 1 Jiˇr ı Fiˇser 19. z aˇr ı 2016 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 19. z aˇr ı / 19

Matematika 1 Jiˇr ı Fiˇser 19. z aˇr ı 2016 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 19. z aˇr ı / 19 Matematika 1 Jiří Fišer 19. září 2016 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 19. září 2016 1 / 19 Zimní semestr KMA MAT1 1 Úprava algebraických výrazů. Číselné obory. 2 Kombinatorika, základy teorie

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Petr Chvosta. vlevo, bude pravděpodobnost toho, že se tyč na počátku intervalu τ B nachází nad vpravo

Petr Chvosta. vlevo, bude pravděpodobnost toho, že se tyč na počátku intervalu τ B nachází nad vpravo MOLEKULÁRNÍ MOTORY Petr Chvosta. Automobil v krupobití aneb brzděním k pohybu Uvažme automobil stojící na mírném svahu a bombardovaný rovnoměrně ze všech stran obrovskými kroupami. Svah stoupá směrem doprava

Více

Vlny. částice? nebo. Pavel Cejnar ÚČJF MFF UK FJDP 2018/19. Objevování kvantového světa

Vlny. částice? nebo. Pavel Cejnar ÚČJF MFF UK FJDP 2018/19. Objevování kvantového světa Objevování kvantového světa Pavel Cejnar ÚČJF MFF UK Vlny nebo částice? FJDP 2018/19 Entrée Sloupy stvoření oblaky chladného plynu a prachu v Orlí mlhovině NASA, ESA Hubble Space Telescope Vizualizace

Více

Fyzika - Sexta, 2. ročník

Fyzika - Sexta, 2. ročník - Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

Příklad 1: Komutační relace [d/dx, x] Příklad 2: Operátor B = i d/dx

Příklad 1: Komutační relace [d/dx, x] Příklad 2: Operátor B = i d/dx 1 Příklad 1: Komutační relace [d/, x] Mějme na dva operátory: ˆ d/ a ˆ 5 D X x, například na prvek x působí takto Určeme jejich komutátor ˆ 5 d 5 4 ˆ 5 5 6 D x x 5 x, X x xx x ˆ ˆ ˆ ˆ ˆ ˆ d d [ DX, ] f

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

Opakování: shrnutí základních poznatků o struktuře atomu

Opakování: shrnutí základních poznatků o struktuře atomu 11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické

Více

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2, Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Fyzika 6. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. témata / učivo. očekávané výstupy RVP. očekávané výstupy ŠVP

Fyzika 6. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. témata / učivo. očekávané výstupy RVP. očekávané výstupy ŠVP očekávané výstupy RVP témata / učivo 1. Časový vývoj mechanických soustav Studium konkrétních příkladů 1.1 Pohyby družic a planet Keplerovy zákony Newtonův gravitační zákon (vektorový zápis) pohyb satelitů

Více

Počítačové simulace a statistická mechanika

Počítačové simulace a statistická mechanika Počítačové simulace a statistická mechanika Model = soubor aproximaci přijatých za účelem popisu určitého systému okrajové podmínky mezimolekulové interakce Statistické zpracování průměrování ve fázovém

Více

Pavel Cejnar. pavel.cejnar @ mff.cuni.cz. Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze

Pavel Cejnar. pavel.cejnar @ mff.cuni.cz. Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze Podivuhodná říše kvant Pavel Cejnar pavel.cejnar @ mff.cuni.cz Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze Hvězdárna a planetárium Brno, 22. 1. 2015 Podivuhodná

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Optické spektroskopie 1 LS 2014/15

Optické spektroskopie 1 LS 2014/15 Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)

Více

Fraktály. Kristina Bártová. Univerzita Karlova v Praze 9.prosince

Fraktály. Kristina Bártová. Univerzita Karlova v Praze 9.prosince Fraktály Kristina Bártová Univerzita Karlova v Praze 9.prosince 2008 kristinka.b@tiscali.cz Úvodní informace Fraktální geometrie je samostatná a dnes již poměrně rozsáhlá vědní disciplína zasahující

Více

Teorie náhodných matic aneb tak trochu jiná statistika

Teorie náhodných matic aneb tak trochu jiná statistika Teorie náhodných matic aneb tak trochu jiná statistika B. Vlková 1, M.Berg 2, B. Martínek 3, O. Švec 4, M. Neumann 5 Gymnázium Uničov 1, Gymnázium Václava Hraběte Hořovice 2, Mendelovo gymnázium Opava

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr.

Více

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.

Více

I a II. Kvantová mechanika. JSF094 Akademický rok

I a II. Kvantová mechanika. JSF094 Akademický rok Kvantová mechanika JSF094 kademický rok 017-018 I a II Čas a místo Úterý 13:10-14:40 Středa 10:40-1:10 cvičení posluchárna ÚČJF3/945 Čtvrtek 10:40-1:10 Přednášející prof. Pavel Cejnar ÚČJF místnost: 934

Více

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Kombinatorická minimalizace

Kombinatorická minimalizace Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Detekce interakčních sil v proudu vozidel

Detekce interakčních sil v proudu vozidel Detekce interakčních sil v proudu vozidel (ANEB OBECNĚJŠÍ POHLED NA POJEM VZDÁLENOSTI V MATEMATICE) Doc. Mgr. Milan Krbálek, Ph.D. Katedra matematiky Fakulta jaderná a fyzikálně inženýrská České vysoké

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015

Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015 Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31

Více

Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -

Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok - Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé

Více

Monte Carlo. Simulační metoda založená na užití stochastických procesů a generace náhodných čísel.

Monte Carlo. Simulační metoda založená na užití stochastických procesů a generace náhodných čísel. Monte Carlo Simulační metoda založená na užití stochastických procesů a generace náhodných čísel. Typy MC simulací a) MC integrace b) Geometrické MC c) Termodynamické MC d) Modelování vývoje na strukturální

Více

Úvod Teorie Studium CA Aplikace Souvislosti. Radek Pelánek

Úvod Teorie Studium CA Aplikace Souvislosti. Radek Pelánek Buněčné automaty Radek Pelánek Souvislosti Kam směřujeme? modelování systémů od spodu - individua, lokální interakce agent based modeling (ABM) modelování založené na agentech proč buněčné automaty (cellular

Více

2. Atomové jádro a jeho stabilita

2. Atomové jádro a jeho stabilita 2. Atomové jádro a jeho stabilita Atom je nejmenší hmotnou a chemicky nedělitelnou částicí. Je tvořen jádrem, které obsahuje protony a neutrony, a elektronovým obalem. Elementární částice proton neutron

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli: Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly

Více

Lorenzův atraktor. MM semestrální práce. Jméno a příjmení: Pavel Martínek Osobní číslo: A08N0203P. Datum odevzdání: 12.2.

Lorenzův atraktor. MM semestrální práce. Jméno a příjmení: Pavel Martínek Osobní číslo: A08N0203P. Datum odevzdání: 12.2. Lorenzův atraktor Jméno a příjmení: Osobní číslo: A08N0203P Obor: MA E-mail: pmartine@students.zcu.cz Datum odevzdání: 12.2.2009 Strana 1 (celkem 25) Obsah Lorenzův atraktor...1 Úvod...3 Dynamický systém...3

Více

Úvod do nebeské mechaniky

Úvod do nebeské mechaniky OPT/AST L09 Úvod do nebeské mechaniky pohyby astronomických těles ve společném gravitačním poli obecně: chaotický systém nestabilní numerické řešení speciální případ: problém dvou těles analytické řešení

Více

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy

Více

Fraktály a chaos. Za otce fraktální geometrie je dnes považován Benoit Mandelbrot. Při zkoumání chyb při

Fraktály a chaos. Za otce fraktální geometrie je dnes považován Benoit Mandelbrot. Při zkoumání chyb při Martin Šarbort 8.května 2006 Fraktály a chaos 1 Fraktály - základní pojmy 1.1 Úvod Za otce fraktální geometrie je dnes považován Benoit Mandelbrot. Při zkoumání chyb při přenosu signálu zjistil, že při

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 207 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Význam a výpočet derivace funkce a její užití

Význam a výpočet derivace funkce a její užití OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat

Více

aneb jiný úhel pohledu na prvák

aneb jiný úhel pohledu na prvák Účelná matematika aneb jiný úhel pohledu na prvák Jan Hejtmánek FEL, ČVUT v Praze 24. června 2015 Jan Hejtmánek (FEL, ČVUT v Praze) Technokrati 2015 24. června 2015 1 / 18 Outline 1 Motivace 2 Proč tolik

Více

Skalární a vektorový popis silového pole

Skalární a vektorový popis silového pole Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma

Více

Požadavky ke zkoušce. Ukázková písemka

Požadavky ke zkoušce. Ukázková písemka Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 1 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní

Více

Krystalografie a strukturní analýza

Krystalografie a strukturní analýza Krystalografie a strukturní analýza O čem to dneska bude (a nebo také nebude): trocha historie aneb jak to všechno začalo... jak a čím pozorovat strukturu látek difrakce - tak trochu jiný mikroskop rozptyl

Více

Geometrické transformace

Geometrické transformace 1/15 Předzpracování v prostoru obrazů Geometrické transformace Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/

Více

Parciální diferenciální rovnice

Parciální diferenciální rovnice Parciální diferenciální rovnice Obsah kurzu Co bude obsahovat... úvod do PDR odvození některých PDR klasická teorie lineárních PDR 1. a 2. řádu řešení poč. a okraj. úloh vlastnosti řešení souvislost s

Více

elektrony v pevné látce verze 1. prosince 2016

elektrony v pevné látce verze 1. prosince 2016 F6122 Základy fyziky pevných látek seminář elektrony v pevné látce verze 1. prosince 2016 1 Drudeho model volných elektronů 1 1.1 Mathiessenovo pravidlo............................................... 1

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 13.10.2014 Mechanika tekutin 1/13 1 Mechanika tekutin - přednášky 1. Úvod, pojmy,

Více

VYPOUŠTĚNÍ KVANTOVÉHO DŽINA

VYPOUŠTĚNÍ KVANTOVÉHO DŽINA VYPOUŠTĚNÍ KVANTOVÉHO DŽINA ÚSPĚŠNÉ OMYLY V HISTORII KVANTOVÉ FYZIKY Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK Praha Prosinec 2009 1) STARÁ KVANTOVÁ TEORIE Světlo jsou částice! (1900-1905) 19.

Více

Nerovnovážné systémy Onsagerova hypotéza, fluktuačně disipační teorém

Nerovnovážné systémy Onsagerova hypotéza, fluktuačně disipační teorém Nerovnovážné systémy Onsagerova hypotéza, fluktuačně disipační teorém Omezení se na nerovnážné systémy v blízkosti rovnováhy Chování systému lze popsat v rámci linear response theory (teorie lineární odezvy)

Více

Vybrané podivnosti kvantové mechaniky

Vybrané podivnosti kvantové mechaniky Vybrané podivnosti kvantové mechaniky Pole působnosti kvantové mechaniky Středem zájmu KM jsou mikroskopické objekty Typické rozměry 10 10 až 10 16 m Typické energie 10 22 až 10 12 J Studované objekty:

Více

Otázky k ústní zkoušce, přehled témat A. Číselné řady

Otázky k ústní zkoušce, přehled témat A. Číselné řady Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte

Více

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné

Více

2. Dynamika hmotného bodu

2. Dynamika hmotného bodu . Dynamika hmotného bodu Syllabus:. Dynamika hmotného bodu. Newtonovy zákony. Síly působící při známém druhu pohybu. Pohybová rovnice hmotného bodu, vrhy, harmonický pohyb. Inerciální a neinerciální soustavy

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.

Více

Slapový vývoj oběžné dráhy. Michaela Káňová, Marie Běhounková Geodynamický seminář

Slapový vývoj oběžné dráhy. Michaela Káňová, Marie Běhounková Geodynamický seminář Slapový vývoj oběžné dráhy Michaela Káňová, Marie Běhounková Geodynamický seminář 20. 5. 2015 Problém dvou těles v nebeské mechanice: dva hmotné body + gravitační síla = Keplerova úloha m keplerovská rychlost

Více

Chyby měření 210DPSM

Chyby měření 210DPSM Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů

Více

Úvod do analytické mechaniky

Úvod do analytické mechaniky Úvod do analytické mechaniky Vektorová mechanika, která je někdy nazývána jako Newtonova, vychází bezprostředně z principů, které jsou vyjádřeny vztahy mezi vektorovými veličinami. V tomto případě např.

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více