Control Laboratory Model Řízení laboratorního modelu
|
|
- Miloslava Šmídová
- před 6 lety
- Počet zobrazení:
Transkript
1 XXX. Seminr SR '7 nstruments nd Control, Frn, Smutný, Kočí & iuch (eds) 7, VŠ-UO, Ostrv, SN Control Lortory Model Řízení lortorního modelu KOUDEL, omáš ng., Ktedr Ř-35, VŠ-U Ostrv, 7. listodu, Ostrv - Poru, toms.oudel.fs@vs.cz strt: lortory model of level control in continer is one of the models t dertment 35 designed y students within the frme of their thesis. he theory of utomtic control is licle on the model. t is the model of level control in continer with outut disturnce cused y electro control vlve. he urose ws n liction of synthesis of controlling system method to the lortory model. he djustle rmeters of regultor were otined y method of required model, modulus otimum nd y model exeriments. ll the clculted vlues were verified y simultion on rel model. he liction ControlWe nd the rogrmme module WinGP CRL, which were develoed t Ř dertment, were used on regultion rocess. Klíčová slov: řízení, lortorní model, lineární systémy Lortorní model Lortorní model regulce výšy hldiny v nádoě je jeden z modelů n tedře 35, teré yly vytvořeny studenty v rámci jejich dilomové ráce. N modelu se může liovt roírná teorie utomtizčního řízení. Jedná se o model regulce výšy hldiny v nádoě s oruchou n výstuu zůsoenou eletroregulčním ventilem. Oráze Lortorní model regulce výšy hldiny
2 čním členem v soustvě je sojitě řízené čerdlo, teré je řízené frevenčním měničem. en dostává odněty chodu od regulátoru KS98, terý zrcovává informce o výšce hldiny řes zesilovcí člen římo ovládá onorné čerdlo umístěné v oddní nádoě. Množství liny, teré z nádoy odteče je závislé ouze n ůsoení hydrostticé síly v nádoě otevření eletroregulčího ventilu, terý je řízen CRL jednotou. Soustv je nvíc dolněn o ovládcí modul řes terý se dá růěžně měnit žádná výš hldiny neo otevření ventilu. K měření výšy hldiny je oužitý onttní rdrový hldinoměr. Vysílné imulzy z řístroje se částečně odrzí od měřené hldiny oté se vrcí zět do snímče. Vzdálenost mezi řevodníem ovrchem měřeného médi je t římo úměrná doě růchodu imulzu ovrchu měřeného médi zět (viz Or.). Oráze Princi měření rdrovým hldinoměrem Do růchodu imulzu, tím té řesnost měření výšy hldiny, je zcel nezávislá n reltivní ermitivitě n hustotě měřeného médi. Měřeným médiem v modelu je destilovná vod. Regulátor KS98 je volně struturovná utomticá jednot, terá nízí sestvení omlexních mtemticých výočtů multinálových regulčních strutur v jednom zřízení. Výhodou tohoto regulátoru je nezávislost regulce n PC možnost monitorování růěhů regulování ez oužití osoního očítče. Syntéz lortorního modelu Účelem yl lice metod syntézy regulčního ovodu n lortorní model. Z měřené řechodové chrteristiy vylynulo, že se jedná o roorcionální soustvu se setrvčností.řádu, terou lze ost řenosem: G S () s () s de je zesílení soustvy, čsová onstnt soustvy. Zísné onstnty zesílení,8 čsové onstnty 54 [s] yly ovlivněny množstvím odtéjící liny z nádoy tj.veliostí otevření ventilu.
3 35, 3, Výš hldiny [cm] 5,, 5,, 5,, t [s] Oráze 3 Přechodová chrteristi soustvy Pro regulátor ltí řenos PD regulátoru s intercí: G R () s ( Ds) s () de je G R řenos regulátoru s intercí, roorcionální zesílení regulátoru s intercí, D derivční čsová onstnt regulátoru s intercí integrční čsová onstnt regulátoru s intercí 3 Výočet stvitelných rmetrů regulátoru Metodou oždovného modelu Dle [VÍEČEKOVÁ, M., 6] ro ty soustvy () nlogový regulátor ltí: (3) (4) w 54 s w de je w volitelná čsová onstnt. Podle vzthů (3) (4) určíme stvitelné rmetry regulátoru.,35 54 Metodou Otimálního modulu Dle [VÍEČEKOVÁ, M., 6] ro ty soustvy () nlogový P regulátor ltí: ( s ) Gwy s s s ( ) ( ) (5) 3
4 4 ) Seřízení s omenzcí čsových onstnt Pro s s s G w wy (6) Řešení vede n Metodu oždovného modelu, de volíme w. ) Seřízení ez omenzce Pro řenos soustvy (5) ( ) (7), ( ) (7) (8) Poud se ude lížit mximální možné hodnotě, hodnot se ude rovnt. Poud udeme uvžovt fyziální omezení reálného modelu, t metod v oou řídech vede n Metodu oždovného modelu. Metodou ous omyl Stvitelné rmetry regulátoru, yly zísány omocí exerimentů s modelem. Postuně yly urvovány hodnoty regulátoru to t, y ylo dosženo oždovné výsy hldiny s odoným neo i leším růěhem jo u ředchozích metod. Nejvhodnější růěh měly hodnoty 54
5 8, 7, 6, w, y [cm], u [%] 5, 4, 3,, Žádná VH ční veličin Sutečná VH,, t [s] Oráze 4 Průěh řízení ro veličiny zísné metodou oždovného modelu, 35, 54 6, 5, w, y [cm], u [%] 4, 3,, Žádná VH ční veličin Sutečná VH,, t [s] Oráze 5 Průěh řízení ro veličiny zísné omocí exerimentů s modelem, 54 5
6 3 Závěr Všechny vyočtené hodnoty yly ověřeny simulčně i n reálném modelu. K růěhu regulce yl využit lice ControlWe rogrmový modul WinGP CRL, vyvinutého n tedře Ř. Pro zísné hodnoty yl vyzoušen celová roustnost modelu to změnou veliosti oruchové veličiny, terá se vš díy dlouhé doě řenstvení eletroregulčního ventilu nedoázl lně rojevit. Díy zísným závěrům, model není vhodný n širší ultnění v mé disertční ráci, le zísné oznty závěry udou využity řízení modelu v lortoři studenty nší tedry model jo cele se využije rezentci neo jo názorná uáz ro studenty druhého ročníu lářsého studi n nší fultě. Zísjí t širší řehled o změření tedry možnostech jejich studi. Použitá litertur LÁĚ, J. 3. utomticé řízení. Prh: EN echnicá litertur, 664 s. SN LŠÁNEK, M. 5. Řízení lortorních modelů. Ostrv: tedr Ř-35 VŠ-U Ostrv, 5, 77 s. Dilomová ráce, vedoucí: Smutný, L. NOSKEVČ, P Modelování identifice systémů. Ostrv: MONNEX, 76 s. SN ŠULC,. & VÍEČKOVÁ, M. 4 eorie rxe návrhu regulčních ovodů. Prh: ČVU 4, 333 s. SN VÍEČKOVÁ, M. & VÍEČEK,. 6 Záldy utomticé regulce. Ostrv: tedr Ř- 35 VŠ-U Ostrv, 6, s. SN
Podpora cvičení z předmětu "Teorie automatického řízení II" Vladimír Gerlich
Podor cvičení ředmětu "eorie utomticého říení II" Vldimír Gerlich Blářsá ráce 6 ABSRAK Astrt čes Cílem této ráce lo vtvořit eletronicou omůcu orývjící osh cvičení ředmětu "eorie utomticého říení II".
Technická kybernetika. Regulační obvod. Obsah
Akdemický rok 6/7 Připrvil: Rdim Frn echnická kybernetik Anlogové číslicové regulátory Stbilit spojitých lineárních systémů Obsh Zákldní přenosy regulčního obvodu. Anlogové regulátory. Číslicové regulátory.
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 10. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
( s) ( ) ( ) ( ) Stabilizace systému pomocí PID regulátoru. Řešený příklad: Zadání: Uvažujme řízený systém daný přenosovou funkcí
tbilizce ytému pomocí regulátoru Řešený příld: Zdání: Uvžujme řízený ytém dný přenoovou funcí ) ožte, že je ytém netbilní. ) Nvrhněte dnému ytému regulátor, terý bude ytém tbilizovt. ) Úpěšnot vého nárhu
zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, napájen do kotvy, indukčnost zanedbáme.
Teorie řízení 004 str. / 30 PŘÍKLAD zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, naájen do kotvy, indukčnost zanedbáme. E ce ω a) Odvoďte řenosovou funkci F(): F( ) ω( )/ u( ) b)
ž š ř ú ž ř ž š ř ř ř ř ů š ř ž ř ó ň ó ř š š ž š ř ú ž ú ž ň ř š ř ů ž ž ř ň ř ú ř ř ů ú ú ů ř ú ň ř ž ó ř š ž ž ř ň ř ř ž Ť ó ř ž ú š Á ž ž ř ž ž ž š ž ř š š Á ž ž ž ž ú š ú š ť š ú š ž Š ž ř ž ř š š
Nejistoty v mìøení II: nejistoty pøímých mìøení
V úvodí èásti [] volého cylu èláù yl uvede struèý pøehled proletiy ejistot v ìøeí, pøilíže historicý vývoj v této olsti zèey dùvody výhody používáí souèsé odifice v širších souvislostech eziárodí etrologie
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE
ě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě
Regulace f v propojených soustavách
Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny
ňď Ó Ó Š ť ř ř ř Č ř ť ř Ř Š Ě Č Č ř Č Ý Ě ť Ě ť ř ý ř Ř ť ň Ě Ý ř Ě ř ř ň ť Š Š Š ň ť Ó ť Á ť ř Ů Ú Ě Č ť ň Š ř Ď Č Š ň Ř Ě ň ý řň ř ř ř Č Š ť Š Š Š Ú Š Á Ý Ú Š Š Š Š Š ť Á ť ť Ě ť ť ť ř Ú Ú Ú Š Ů Š ý
ř š ú š Č š ž ř š Š Š Í ú š ď ř š ú Š ů ú ř ř ř ř ů ř Ž š ů ú ů ř Š Š Š ř ů řň ň řň řň ů ř ř š Í ř ř ř ř ř ř ř ř Ž Ž ř ú ů ú ú š Ú ú ú Í Ž Ž ů Ž Ž Č ň Ú řš ř řš ú Ž ú ť ň Í ř ř ů ť š š ř Í řš ú Ý Í ť ú
Multimediální podpora výuky předmětu TAŘ II
Multimediální odo výuy ředmětu AŘ II Rde Kunde Blářsá áce 6 Univeit omáše Bti ve Zlíně Fult liovné infomtiy Vložit oficiální dání lářsé áce Poděování: Chci oděovt vedoucímu mé lářsé áce of. Ing. Vldimíu
Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými
1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte
VYUŽITÍ CITLIVOSTNÍ ANALÝZY V ELEKTROTECHNICE A ŘÍDÍCÍ TECHNICE - II
8 Informčné utomtizčné technológie v ridení kvlity produkcie Vernár,.-4. 9. 5 VYUŽIÍ CILIVONÍ ANALÝZY V ELEKROECHNICE A ŘÍDÍCÍ ECHNICE - II KÜNZEL Gunnr Abstrkt Příspěvek nvzuje n předchozí utorův článek
VLIV TUHOSTI ZLOMU NA NAPJATOST A DEFORMACI RÁMU
VYSOKÉ UČENÍ TEHNIKÉ V BRNĚ BRNO UNIVERSITY O TEHNOLOGY AKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MEHANIKY TĚLES, MEHATRONIKY A BIOMEHANIKY AULTY O MEHANIAL ENGINEERING INSTITUTE O SOLID MEHANIS, MEHATRONIS AND
České vysoké učení technické v Praze Fakulta biomedicínského inženýrství
Česé vsoé učení technicé v Pre ult iomedicínsého inženýrství Úloh K0/č. 6: Určování oloh těžiště stilometricou lošinou Ing. Ptri Kutíle Ph.D. Ing. dm Žiž (utile@fmi.cvut.c i@fmi.cvut.c) Poděování: Tto
3.4.7 Konstrukce trojúhelníků III (doplňování)
3.4.7 Konstrue trojúhelníů III (dolňování) Předoldy: 3406 Shrnutí dvou ředešlýh hodin: oážeme sestrojit trojúhelníy, u terýh známe tři strny, dvě strny úhel neo strnu dv úhly. Poud zdání neumožňuje tímto
Lomová houževnatost. plastická deformace. R e = K C
Loová houžvntost UM - 5 Loová houžvntost Jéno: St. suin: Dtu cviční: ) Stručně oišt, co vyjdřují ojy ) nětí - z luzu b) součinitl intnzity nětí - loová houžvntost. Disutujt oužití vzthu ro výočt součinitl
Ť Í ě ě š ř ě ě ě Č Č ě ě š š ú Č Č ě ě ř ú ř ě ě ř ě ř ě ť ř ě š ě ř ř ě š ň ě Ť ď ř ř ř ě ř ě ě ě ř ř ě ř ě š ř š ř ě ř Í ř ě ř Ť ě ě ě ě ě ě Ť ě ň ř ě ú ě ě ě ň ř ř Ť ř ě ě ě ě ě ř Í ř ň š ř ě ě š ř
JAN VÁLEK, PETR SLÁDEK Katedra fyziky, chemie a odborného vzdělávání, Pedagogická fakulta, Masarykova univerzita, Poříčí 7, Brno
Veletrh nápdů učitelů fyziky 18 Fyzik cyklist JAN VÁLEK, PETR SLÁDEK Ktedr fyziky, chemie odorného vzdělávání, Pedgogická fkult, Msrykov univerzit, Poříčí 7, 603 00 Brno Astrkt Jízdní kolo spojuje mnoho
Regulace v ES na výroby
Regulce v ES n výroy Regulce v ES n strně výroy Regulce v ES n strně výroy Sttická chrkteristik Regulce v ES n strně výroy regulce více G Regulce v ES n strně výroy korektor frekvence rimární Regulce Úkol
GEOMETRIC PROGRAMMING IN EVALUATING OF EXPERIMENTAL DATA GEOMETRICKÉ PROGRAMOVÁNÍ PŘI VYHODNOCOVÁNÍ EXPERIMENTÁLNĚ STANOVENÝCH DAT
40. MEZINÁRODNÍ KONFERENCE EXPERIMENTÁLNÍ ANALÝZY NAPĚTÍ 40 th INTERNATIONAL CONFERENCE EXPERIMENTAL STRESS ANALYSIS 3. 6. VI. 2002, PRAHA/PRAGUE, CZECH REPUBLIC GEOMETRIC PROGRAMMING IN EVALUATING OF
( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308
731 Vzdálenost odu od římky I Předokldy: 7308 Pedgogiká oznámk: Pokud máte málo čsu, můžete odvodit vzore ez smosttné ráe studentů oužít některý z říkldů z dlší hodiny Tím jednu ze dvou hodin ro vzdálenost
Pájený výměník tepla, XB
Popis / plikce Deskové výměníky tepl pájené mědí řdy XB jsou určené pro použití v soustvách centrálního zásoování teplem (tzn. v klimtizčních soustvách, v soustvách určených pro vytápění neo ohřev teplé
1 stupeň volnosti vynucené kmitání. Iva Petríková
Kmitání mechnicých soustv 1 stueň volnosti vynucené mitání Iv Petríová Ktedr mechniy, ružnosti evnosti Obsh Soustv s jedním stuněm volnosti vynucené mitání Vynucené mitání netlumené Vynucené mitání tlumené
Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projekt relizovný n PŠ Nové Město nd Metují s finnční podporou v Operční proru Vzdělávání pro konkurencescopnost Královérdeckéo krje Modul 03 - Tecnické předěty In. Jn Jeelík - nuk o rovnováze kplin jejic
Elektronická opora pro výuku předmětu TAŘ II
Elektronická oor ro výuku ředmětu TAŘ II Electronic suort for teching of suject TARII Dniel Kšný Bklářská ráce 7 UTB ve Zlíně, Fkult likovné informtik, 7 ABSTRAKT Tto ráce se věnuje rolemtice teorie
Způsobilost. Data a parametry. Menu: QCExpert Způsobilost
Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány
Systémové struktury - základní formy spojování systémů
Systémové struktury - základní formy sojování systémů Základní informace Při řešení ať již analytických nebo syntetických úloh se zravidla setkáváme s komlikovanými systémovými strukturami. Tato lekce
Větvené mazací systémy a jejich proudové poměry tribologicko-hydraulické aspekty
OBHAJOBA DISETAČNÍ PÁCE Větvené mzcí systémy jejich proudové poměry triologicko-hydrulické spekty PhD student: Ing. Antonín Dvořák Školitel: Doc. NDr. Ing. Josef Nevrlý, CSc. Ústv konstruování VUT- BNO
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ. Katedra elektromechaniky a výkonové elektroniky BAKALÁŘSKÁ PRÁCE
ZÁPADOČESKÁ UNIVERZITA V PLZNI AKULTA ELEKTROTECHNICKÁ Katedra eletromechaniy a výonové eletroniy BAKALÁŘSKÁ PRÁCE Vývoj aliace ro výuu regulační techniy Václav Šeta 06 Vývoj aliace ro výuu regulační
2.3.6 Práce plynu. Předpoklady: 2305
.3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram
Ulice Agentura sociální práce, o. s. Účetní závěrka za rok 2012
Ulice Agentur sociální práce, o. s. Účetní závěrk z rok 2012 Osh: I. OBECNÉ INFORMACE... 2 1. POPIS ÚČETNÍ JEDNOTKY... 2 2. ZAMĚSTNANCI A OSOBNÍ NÁKLADY... 2 3. POSKYTNUTÉ PŮJČKY, ZÁRUKY ČI JINÁ PLNĚNÍ...
Hodnocení tepelné bilance a evapotranspirace travního porostu metodou Bowenova poměru návod do praktika z produkční ekologie PřF JU
Hodnocní tlné bilanc a vaotransirac travního orostu mtodou Bownova oměru návod do raktika z rodukční kologi PřF JU Na základě starších i novějších matriálů uravil a řiravil Jakub Brom V Čských Budějovicích,
NÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL
NÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL 1. ZADÁNÍ Navrhněte růměr a výztuž vrtané iloty délky L neosuvně ořené o skalní odloží zatížené v hlavě zadanými vnitřními silami (viz
Stabilita prutu, desky a válce vzpěr (osová síla)
Stabilita rutu, deky a válce vzěr (oová íla) Průběh ro ideálně římý rut (teoretický tav) F δ F KRIT Průběh ro reálně římý rut (reálný tav) 1 - menší očáteční zakřivení - větší očáteční zakřivení F Obr.1
Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného plynu - statistické zpracování dat
Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného lynu - statistické zracování dat Teorie Tam, kde se racuje se stlačenými lyny, je možné ozorovat zajímavý jev. Jestliže se do nádoby, kde je
Bytové družstvo Žerotínova Vsetín se sídlem Vsetín, nám. Svobody 1321, PSČ , IČ Účetní závěrka 2015
Bytové družstvo Žerotínov Vsetín se sídlem Vsetín, nám. Svoody 1321, PSČ 755 01, IČ 65138562 zpsné v OR vedeném KS v Ostrvě, oddíl Dr., vložk č. 375 Účetní závěrk 2015 Zprcováno v souldu s vyhláškou č.
ř ě é é ě ř ž ě é Ž Ý Ú ž é ě ů é ř é Ý é ů ÁŠ ú é é é ž ž é ě ů ž ř ž ů ě ň ú ě š ě é ú ú š ť š ě é ř é ú š ú š ě é ř ť é ž š ě ě ů ě ě ž ř ě ž ř ž ú ú š š ě ř é é ř š ě ř é ě ř ě ů š Ů é ž ů š ě ě ě
Cvičení z termomechaniky Cvičení 5.
Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon
Ý š ě ů ĺ ě ř Š ř ř ĺ Č Č ř ě Ú ř ě Č Č Č Ú ř ř ě ě š ěž ř Ö ý ě Ú Ú š ě Š ě ě ý ý ů ě ř ĺ ě Ž ĺ Ž ý ř řĺ ý ý ě š ě ý ů ĺ ě ě ĺ ý š ě Š ě ů Í ě ě ŕ ě ý ů řĺ ř š ě ý ů řě ě ř ĺ ĺ ř ě ě ĺ ř ŕ Ž ř ě ĺ ř ě
Á Á Ě ĺ ć É Í řč Áľ Á Á ř č ě ě ě š ř ů ä č š ě ě ĺ ě ě š ř ů č č ý ě ř ý ě ě š ř ů ě š ř ž Ú š ě š ě ř Ú š ě Š ě Č ĺ č úč ě ĺ ž ě ĺ ě řč ä š ě ě ř Úř Č Í Í Č ě ří ě č úě ď Š ě ý Ú ľĺ ě ř ř ř ř š ě ř ä
Slovní úlohy na sjednocení dvou množin s neprázdným průnikem. II b III
Slovní úlohy n sjenoení vou množin s neprázným průnikem Vennův igrm ( John Venn 1834 (Hull, Anglie) 1923 (Cmrige, Anglie) ) A V Životopis John Venn: http://www-groups.s.st-n..uk/ history/mthemtiins/venn.html
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ ECHNCKÁ UNVERZA OSRAVA FAKULA SROJNÍ ZÁKLAY AUOMACKÉHO ŘÍZENÍ. týden doc. ng. Renata WAGNEROVÁ, Ph.. Ostrava 03 doc. ng. Renata WAGNEROVÁ, Ph.. Vysoá šola báňsá echnicá niverzita Ostrava
NÁVRH PREDIKTIVNÍCH REGULÁTORŮ POMOCÍ MINIMALIZACE l p NORMY V PROSTŘEDÍ MATLAB. Jaroslav Pekař *, Jan Štecha *, Vladimír Havlena *, **
NÁVRH PREDIKIVNÍCH REGULÁORŮ POMOCÍ MINIMALIZACE l NORMY V PROSŘEDÍ MALAB Jaroslav Pekař *, Jan Štecha *, Vladimír Havlena *, ** * Katedra řídicí techniky, Fakulta elektrotechnická, České vysoké učení
ý ú Ú Ú ý ý ý Ž ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý Ž ř Á ý ý ý ů Ž ř ý ý ý ý ý ý ý ý ý ý ý ý Ž ý ř ý ý Ž Ů ž Ů ý ř ý ý ó ó Ú Ú Ž ý ý Ů ý ý Ů Á ý ý ý Ú Ý Ý ý Ů ý ů Ž ý ř Ů ý Ž ý ý ý ř ž Ž Ž ř š ň ř ů ř ň ř ř
POŽADAVKY NA REGULACI
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V RAZE, FAKULTA ELEKTROTECHNICKÁ, KATEDRA ŘÍDICÍ TECHNIKY Základy řízení systémů cvičení 5 OŽADAVKY NA REGULACI etr Hušek (husek@control.felk.cvut.cz) Základními požadavky
Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.
Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce
Závislost indexů C p,c pk na způsobu výpočtu směrodatné odchylky
Závislost indexů C,C na zůsobu výočtu směrodatné odchyly Ing. Renata Przeczová atedra ontroly a řízení jaosti, VŠB-TU Ostrava, FMMI Podni, terý chce usět v dnešní onurenci, musí neustále reagovat na měnící
Ý Ě Ú Ý Ů Ý Ů ě ě ú É Ř É Ý ú š ě Ú ť Ó Ó ó ď ů ď ů ů ů ě ů ú ů ů ů ů ě ů ú ě ů ď ů ů ů ě ů ú ů ů ů ů ě ů ú ů ž ěž ěž ú ů Ú ů ú Ř ů ď Ť Ó Ř ů ů ů ů ů ů ů ť ů Ú ú ú ě ů ů ů ó ů ó ď ó ó ů ů ú ó ó ů ů ú Ř
Výstupní tlak Outlet pressure. bar 12,0 1,5. Kapacitní křivka - acetylen Capacity curve - acetylene 1,4 1,2 1,0 0,8. Outlet pressure p 0,6 0,4 0,2
line line Rozvodový redukční ventil JC+ 7 Manifold ressure regulator of JC+ 7 7 7 Ty Tye JC+ 7 - kyslík JC+ 7 - oxygen JC+ 7 - acetylen JC+ 7 - acetylene Vstuní ressure,, Výstuní ressure,, růtok Q flow
Zkoušky povlaků řezných nástrojů ze slinutého karbidu při frézování ocelí
Zkoušky povlků řezných nástrojů ze slinutého kridu při frézování ocelí Ing. Pvel Zemn Ph.D. 1), Ing. Ondřej Zindulk 2) 1) VCSVTT, ČVUT v Prze, Horská 3, 12800 Prh 2, tel: 605205923, p.zemn@rcmt.cvut.cz
ń ď ł đ Á Đ ł đ ł Í ľ ľäę ř č ě ř č ů č Š ř č Í č č ě řĺ ĺ Č č ř ř ů č ř ě č úč Č č ř ů ž ĺ Č Úč č ř ř Č č ě Ż č Í ĺ Ć Č É ě ř ř č ě ĺ ĺ ř ť č ů Č ř Ž ř ĺ ě ř Í ě Šĺ č ĺ ř ĺ ř ĺ ř Ž ř ř Úč ř Š Ú ů č ě
Výpočet svislé únosnosti osamělé piloty
Inženýrský manuál č. 13 Aktualizace: 04/2016 Výočet svislé únosnosti osamělé iloty Program: Soubor: Pilota Demo_manual_13.gi Cílem tohoto inženýrského manuálu je vysvětlit oužití rogramu GEO 5 PILOTA ro
í á á ě č é úč í á á ě č é úč ý á č á íí Ž á Ž á í í í ú á č é ř í ě ě í č ý ří ů ů ů ý ří ů ý ů ě í í ě íč í č í ř ů á í í í úč ů á í ří ů ý ů ří ů ý
ě ú ě ú Ž Ž ú ř ě ě ř ů ů ů ř ů ů ě ě ř ů ú ů ř ů ů ř ů ů ř ě ú ř ě ě úř ř ě ÚČ Č ě ě ř Ž Č ě ú ř ř ě Ř ř Ň É ŘÍ ň ř ň ů ř ú ř ě ř ú ů ř Ů ř ř ě Ý ř Ě É ě ř š ě ú š ě ě š ě ú ů š ě ů ň ř Ý ř ř ě Á Í ě
Užitečné základní vzorce počítačové grafiky
řenáš Vetorové oere Veliot vetoru Užitečné zální vzore očítčové rfi oučet vou vetorů lární oučin Vetorový oučin Litertur zroje: Žár, J., Beneš, B., Felel,.: Moerní očítčová rfi. Brno : Comuter re, 998.
ř ě ě š ř ů ř ěž ú ěž ú ú Č ě Ú š ž ú ž ě ě ř ž ě ú ů ě ř š ž ú ě š ž ě ů š ě ř ě Ú ř ě ř ě ř ě ě ř š ž ž ř ě ť ř ě ů š ř š ě ě ř š ď ů ř ř ž Ž ř ě ž ř ě ř š ř ě ř ř ů ř ž ř ř ř ě ě š ž ř ě ě ž ž ř ž š
š ů Á Ě Ž Í Ř Í ě ř ě ř Ž š š ě ě úť š Č ě Ř ÁŠ ě ž ř ě ě ř š úř ě ě ě ů ě ě š ř ů ě ř š úř ř ě ďě š ř ů ů úř ú ř ě ř ž ď ě Č ě ě š Č ě ě ě ú ě ě ě ě ú ě ě ú ě ě ú ě ě ú ě ě ě ě ú ě ě ú ě ě ě ě ě ě Í ú
Á É É ě ě ů ě Č Ú Í ě Ž ě Í ě Í š ú ě ě Ú ě ě Í Ž ů Č Ž ě ě Ž Ž ě Í Ž Ž ě ú Í ě š Í Í Š ú ě ě Č Ž ě ě ú Š ě š Í Š ě ě ň ě ě Č ď ě Č ů ú ě ú ě Ž ě Č ě ě ů ě Ž ě ů ě ě ě ě ěž Ž Ž ě Ž ě ě ň ú Ž ů ě ě Ž Ž
Lineární nerovnice a jejich soustavy
teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice
Téma 6 Spojitý nosník
Stvení mechnik.očník kářského studi AST Tém Sojitý nosník Zákdní vstnosti sojitého nosníku Řešení sojitého nosníku siovou metodou yužití symetie sojitého nosníku Kted stvení mechniky Fkut stvení ŠB - Technická
Ř Ě ř ě á ř Ž é ě é ř š ý ý ě ý Ťř ě ě ý ý ě ý ě ř é ý á ý é ř é š ň Ť Ť é Ž ě šš Ť ř ř Ť š Ť Ž ř ě ří š š é ř ř ě Ťě ě ň é ě ě á š řšř ě ž á á ě á á ř Ř ář š Ř é ě á ž á á ř áš ř ž Ř ž Ř áž ě š š éř ě
ř š ě ž ž ó đ ž ě ě ů ž ě ří ĺ Č ć ú Č ĺ š ř Ž Č ří ě Ž ř ĺ ą Č Č ď ž ě Ž ř ě ú š Ž Ú ě ř ř ĺ Š ř ř ĺ ĺ ĺ ž ĺ ě ĺ ě ĺ ž ř ř Ž ř ě ř Žš ě š ř Ú ú Š ě ě Ž ř Ž š ř ěž š š ů ř ř ů ż š ě ě ó š ĺ ě Ú ů ž ĺ ě
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Ústav kovových a dřevěných konstrukcí
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Ústv ovových dřevěných onstrucí Ing. Miln Pilgr PROBLEMATIKA SKUTEČNÉHO PŮSOBENÍ STYČNÍKŮ S KRÁTKOU ČELNÍ DESKOU V OCELOVÝCH KONSTRUKCÍCH PROBLEMS OF ACTUAL
Předpjatý beton Přednáška 12
Předjatý beton Přednáška 12 Obsah Mezní stavy oužitelnosti - omezení řetvoření Deformace ředjatých konstrukcí Předoklady, analýza, Stanovení řetvoření. Všeobecně - u ředjatých konstrukcí nejen růhyb od
Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení.
4. Booleov lger Booleov lger yl nvržen v polovině 9. století mtemtikem Georgem Boolem, tehdy nikoliv k návrhu digitálníh ovodů, nýrž jko mtemtikou disiplínu k formuli logikého myšlení. Jko příkld použijeme
Dynamické programování
ALG Dynamické rogramování Nejdelší rostoucí odoslounost Otimální ořadí násobení matic Nejdelší rostoucí odoslounost Z dané oslounosti vyberte co nejdelší rostoucí odoslounost. 5 4 9 5 8 6 7 Řešení: 4 5
Kopie z www.dsagro.cz
ó š š ú š ó ú š Á ó ú ě Ť ú ě ó ěž ú ú ěž ú ó ď ú É úó ě ě ž ř ť ž ó š Ý š Á Ú š É óň ú ú ř ď š ó ď ď Ň ň Ťž ó ě ú ž ž ó Ů ó ř ž óú ú Á ž ž ž ó ť ž ě ě ž Ř ó ř ě š š ÉÚ š ě ě ž ř ž ž š ě ř ň ě ř ě ě ú
Í ř ě ě ě ě ě ě ě ý ě ř Ž ů ý Ž ř ý é ů ě š Ů ý ě ř Ž ě ý ý ů ě é ř Ž ů ě ě Ž ě š ě ř Ů š ů ň Ž ě ě Ž ě ý ý ř ů ě ů Ž ů ř ě ě é ě Ž é š é ů ě Ž ýš ý ů
Í ř é é ě Ž é ř Í Š ů Ž ř é ž é Č é ě ě Ž é ý ř ě š ý Ž é ý ě ý ý ě š ě ř ě Ž Ž ý Í ř ě ě ě ě ě ě ě ý ě ř Ž ů ý Ž ř ý é ů ě š Ů ý ě ř Ž ě ý ý ů ě é ř Ž ů ě ě Ž ě š ě ř Ů š ů ň Ž ě ě Ž ě ý ý ř ů ě ů Ž ů
ú ř ý é č č ě ůž ř č ř š é é é ý ý ž ě č ř ů ě ůž é ě ý ů žč š ř ěř é ý ž úč š ř ý č ř ř ě ě š é ý č ř ř ě ě ůž ř č ř ž č ž č ů ř ěš řš ř Ě č č š č č ž č č ě ř ý ž ž ě č č ě ě č č č š é ř ř ž č č ř ě ě
Ú Š Ú é š Ú š Ú Í Ú š Ú ú š č ú š ů Ž ú ů é é č ú š Č Ý Š Ě Í Š Č š ú ú ú ú ů é č é č ú š č ú š ů é é č é Ů é é š Ž č š č é ú ů é é č ů č é ú Ž č ů é ů š é č š é Ž Ó Ž é č ú ú é č é Ú Ž Š ů Ů š Ů é Ž Ž
ř ě ě ř ř ě ě ů š ž é ý Č é ř ř ž é ž ď é ř ě ě é š ů ú ž Ž Ž ř ř š ů ý Í Ž ř ě ě ď ý ě ý ř Ž ř ě ř ě ě ů ú ž ř ř ř é ě ě ě Č ř ř ě ě ř ě é ě ú ěš é ř
ě ž é ď ú š ďš Š ěř Š ž é Č ý ě é ě ú ř ě ě ř ř ě ě ů š ž é ý Č é ř ř ž é ž ď é ř ě ě é š ů ú ž Ž Ž ř ř š ů ý Í Ž ř ě ě ď ý ě ý ř Ž ř ě ř ě ě ů ú ž ř ř ř é ě ě ě Č ř ř ě ě ř ě é ě ú ěš é ř ř ě ů ě é ě
Ý Ř Č Ě É Ř Ř ý ě ú ý ů ý ů Í ě ú ý Ž ě ě ě ý ú ú Š ó ý ó ó Ř É ě ý ý ý ú ý Í Ů Č Í ě Í ě ú Ž ý É ě ě ý ů š ý Č Š ý Č Í ú š ú Í ý ú Ó ě ý ů ý ě ý ě ý ý Í ě ý Č ě ý ě ý ú ý Č ú Í ů ú ě ýš Í ý Ů ě ě ý ý
Ú ů Ú ů Č Ú Í Ú ú ů Š ů ř ů ž ř Ž Ě šť Ž ř ž ů ř ů Ž ů Ž ř š šť Ž ř š ř Ž ř šť ž ř ů ůž ů š š Ž ř š ůž ř š ůž š ó ů ú Ě š Ť šš Ž š ů ů ř úó Í Í ž Ž Ž š ž Ú ň ř š š Ž ř š ú ů ř ř š ů Ž ů ů ř Í ř š ů ř ů
Směrová kalibrace pětiotvorové kuželové sondy
Směrová kalibrace ětiotvorové kuželové sondy Matějka Milan Ing., Ústav mechaniky tekutin a energetiky, Fakulta strojní, ČVUT v Praze, Technická 4, 166 07 Praha 6, milan.matejka@fs.cvut.cz Abstrakt: The
ň ř ň ř é ň ř ň ř é ň ř ú ň ř ň ř ě Ž Ž ň ř é ě ž ě ě ě éů ů Ž ř é ě ř é ř ěž ř Š é ů ř é ř ů ěř é ŽÚ é ů ř é ů ěř é Ž ř ř Úř é ě ň ň é ř ě Ž Úř ě Ý ř
Ú ř Ý ř ř ě ě ě ř ú ř ě ř ě ř ě ě ň ř ň ř é ň ř ň ř é ň ř ú ň ř ň ř ě Ž Ž ň ř é ě ž ě ě ě éů ů Ž ř é ě ř é ř ěž ř Š é ů ř é ř ů ěř é ŽÚ é ů ř é ů ěř é Ž ř ř Úř é ě ň ň é ř ě Ž Úř ě Ý ř é š Á Ž ů ů Ž Ž
Výpočet vnitřních sil přímého nosníku
Stvení sttik, 1.ročník klářského studi ýpočet vnitřních sil přímého nosníku nitřní síly přímého vodorovného nosníku prostý nosník konzol nosník s převislým koncem Ktedr stvení mechniky Fkult stvení, ŠB
MĚŘENÍ VÝKONU V SOUSTAVĚ MĚNIČ - MOTOR. Petr BERNAT VŠB - TU Ostrava, katedra elektrických strojů a přístrojů
MĚŘENÍ VÝKONU V SOUSAVĚ MĚNIČ - MOOR Petr BERNA VŠB - U Ostrava, katedra elektrických strojů a řístrojů Nástu regulovaných ohonů s asynchronními motory naájenými z měničů frekvence řináší kromě nesorných
Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem
Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je
Zvyšování kvality výuky technických oborů
Zvyšování kvlity výuky technických oorů Klíčová ktivit IV. Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol Tém IV.. Algerické výrzy, výrzy s mocninmi odmocninmi Kpitol
Technická kybernetika. Obsah. Realizace kombinačních logických obvodů.
08.03.207 Akemiký rok 206/207 řiprvil: Rim Frn Tehniká kernetik Relize kominčníh logikýh ovoů 2 Osh Relize kominčníh logikýh ovoů. Kontktní shémt. Bloková shémt. rogrmovtelné logiké utomt. říkl sntéz kominčního
ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š
ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě
ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů
ň Š ý ě ý Ě Á ý ý ě ň Š ý ě ý ú ň ň ý ě ý ó ě ž ý ň ě ě Š ú Š ú Š ň Á ň Š ň ý ě ý Š ž ý ě ý ů ě ě ž ý ě Š ě ě ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ó ě ů ě ý Š ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ě Č Č ě Š Č ě
Č Á ě Ě Á é é ě ďě ě ů ú é é é ě é é ď ď š ě Č Á ě ú é ů š š Ť ď é Ž ě é š ů Č ů ů é ů ů ě é ě é é é ě Č Á ě Ě Á é Ř ě é ú ó é š é Ž Ž é ě é ě ě é š éž é ě ě š ě ě ě š ě š ě ú é š ě ů Ěú Á ě Ž š é š ě
ZÁKLADY AUTOMATIZACE TECHNOLOGICKÝCH PROCESŮ V TEORII
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATIZACE TECHNOLOGICKÝCH PROCESŮ V TEORII Ing. Romn Grinová, Ph.D. Ing. Ondřej Zimný, Ph.D. prof. Ing. Zor Jnčíková, CSc. Ostrv
Ý č í é é ř š í é č í é ľ ľá á í ě í č říč í á Ú ý č říčí č ľ ý ł ĺ á á łí ĺ ě ř ĺ í ě ĺ ř á í ĺł ĺĺ ďĺ í á á ĺ ľ ĺ ĺí é ł í ĺ ĺé ťł ť łĺĺ ľ á í ĺ ĺ ę
Ý č é é ř š é č é ľ ľá á ě č řč á Ú ý č řč č ľ ý á á ě ř ě ř á ď á á ľ é é ť ť ľ á ę ľ ř á é ý á ý č á é é ě é á ě é ú ě Ú ň é é ú á ž é ř Ż č Ż č ř č š ě ě š ů é č á ě ř š ě č ě á č úř ň é Ż ě č ř č ě
Výpočet svislé únosnosti osamělé piloty
Inženýrský manuál č. 13 Aktualizace: 06/2018 Výočet svislé únosnosti osamělé iloty Program: Soubor: Pilota Demo_manual_13.gi Cílem tohoto inženýrského manuálu je vysvětlit oužití rogramu GEO 5 PILOTA ro
É ú ž ž č ž ů ý ů ř ů ý ň ú ň č ůč Ž ř č ý ů Í ý č Ž ř č ř č ší ý ů ř š š ů ř Ž š ů č č ň Í ý ř š š č Ž š š ý č Ž č š ú Ž ř Š Ž Í ů ř č š č č ůč Ž ř Í č č ý Í ř ý č š Ž Š š Ž ř č Í ý úč ý ý ř š ý š ř Ž
E = 1,1872 V ( = E Cu. (γ ± = 0, ,001 < I < 0,1 rozšířený D-H vztah)
GALVANICKÉ ČLÁNKY E = E red,rvý E red,levý E D = E red,rvý E ox,levý E D G = z E E E S = z = z T E T T Q= T S [] G = z E rg E E rs = = z, r rg T rs z = = T E T T T E E T T ν i E = E ln i z i mimo rovnováhu
EXPERIMENTÁLNÍ URČENÍ TUHOSTI ZDVIHOVÉHO LANA A JEJI OVĚŘENÍ TAHOVOU ZKOUŠKOU DLE ČSN 420305
EXPERIMENTÁLNÍ URČENÍ TUHOSTI ZDVIHOVÉHO LANA A JEJI OVĚŘENÍ TAHOVOU ZKOUŠKOU DLE ČSN 420305 EXPERIMENTAL DETERMINATION OF STIFFNESS WINCH RUNNER AND HER ATTESTATION OF THE TENSION EXAMINATION ACCORDING
6. Zobrazení δ: (a) δ(q 0, x) obsahuje x i, x i Z. (b) δ(x i, y) obsahuje y j, x i y j P 7. Množina F je množinou koncových stavů.
Vzth mezi reg. výrzy kon. utomty Automty grmtiky(bi-aag) 7. Převody mezi reg. grm., reg. výrzy kon. utomty Jn Holu Algoritmus (okrčování): 6. Zorzení δ: () δ(, x) oshuje x i, x i Z. () δ(x i, y) oshuje
ý Á ľ Í äľä Š ý ž ř č ř ý ě ě š ř ů č č ý č ý č ě řč č š ě ě ř úř ě š ě č ř č ř ĺ Ú š ě č ĺ ř ř č ł ý Á Ę äľ Š č š ě Š ě č ř ř ž ě ý š ě ř Š č ř ý ý ž ě úč ž ě š ě ř šúč ž ě ý ě š ě ř ĺ ä ľľä ľ ľ ľľľ ĺľ
14/03/2016. PROGRAM PŘEDNÁŠEK letní 2015/2016. Předpínací síla ČSN EN ZTRÁTY PŘEDPĚTÍ. Změny předpětí
14/3/216 133 K5 TONOVÉ KONSTRUK 5 Číslo atum ROGRM ŘNÁŠK letní 215/216 Téma přednášky 1 23.2. rincipy předpjatého betonu, historie, materiály oznámky 2 1.3. Technologie předem předpjatého betonu Výklad
Oddělení technické elektrochemie, A037. LABORATORNÍ PRÁCE č.9 CYKLICKÁ VOLTAMETRIE
ÚSTV NORGNIKÉ THNOLOGI Oddělení technické elektrochemie, 037 LBORTORNÍ PRÁ č.9 YKLIKÁ VOLTMTRI yklická voltametrie yklická voltametrie atří do skuiny otenciodynamických exerimentálních metod. Ty doznaly
Nelineární model pneumatického pohonu
XXVI. SR '1 Seminar, Instruments and Control, Ostrava, ril 6-7, 1 Paer 48 Nelineární model neumatického ohonu NOSKIEVIČ, Petr Doc.,Ing., CSc., Katedra TŘ-35, VŠ-TU Ostrava, 17. listoadu, Ostrava - Poruba,
Robustnost regulátorů PI a PID
Proceedings of International Scientific Conference of FME Session 4: Automation Control and Applied Informatics Paper 45 Robustnost regulátorů PI a PID VÍTEČKOVÁ, Miluše Doc. Ing., CSc., katedra ATŘ, FS