Control Laboratory Model Řízení laboratorního modelu

Rozměr: px
Začít zobrazení ze stránky:

Download "Control Laboratory Model Řízení laboratorního modelu"

Transkript

1 XXX. Seminr SR '7 nstruments nd Control, Frn, Smutný, Kočí & iuch (eds) 7, VŠ-UO, Ostrv, SN Control Lortory Model Řízení lortorního modelu KOUDEL, omáš ng., Ktedr Ř-35, VŠ-U Ostrv, 7. listodu, Ostrv - Poru, toms.oudel.fs@vs.cz strt: lortory model of level control in continer is one of the models t dertment 35 designed y students within the frme of their thesis. he theory of utomtic control is licle on the model. t is the model of level control in continer with outut disturnce cused y electro control vlve. he urose ws n liction of synthesis of controlling system method to the lortory model. he djustle rmeters of regultor were otined y method of required model, modulus otimum nd y model exeriments. ll the clculted vlues were verified y simultion on rel model. he liction ControlWe nd the rogrmme module WinGP CRL, which were develoed t Ř dertment, were used on regultion rocess. Klíčová slov: řízení, lortorní model, lineární systémy Lortorní model Lortorní model regulce výšy hldiny v nádoě je jeden z modelů n tedře 35, teré yly vytvořeny studenty v rámci jejich dilomové ráce. N modelu se může liovt roírná teorie utomtizčního řízení. Jedná se o model regulce výšy hldiny v nádoě s oruchou n výstuu zůsoenou eletroregulčním ventilem. Oráze Lortorní model regulce výšy hldiny

2 čním členem v soustvě je sojitě řízené čerdlo, teré je řízené frevenčním měničem. en dostává odněty chodu od regulátoru KS98, terý zrcovává informce o výšce hldiny řes zesilovcí člen římo ovládá onorné čerdlo umístěné v oddní nádoě. Množství liny, teré z nádoy odteče je závislé ouze n ůsoení hydrostticé síly v nádoě otevření eletroregulčího ventilu, terý je řízen CRL jednotou. Soustv je nvíc dolněn o ovládcí modul řes terý se dá růěžně měnit žádná výš hldiny neo otevření ventilu. K měření výšy hldiny je oužitý onttní rdrový hldinoměr. Vysílné imulzy z řístroje se částečně odrzí od měřené hldiny oté se vrcí zět do snímče. Vzdálenost mezi řevodníem ovrchem měřeného médi je t římo úměrná doě růchodu imulzu ovrchu měřeného médi zět (viz Or.). Oráze Princi měření rdrovým hldinoměrem Do růchodu imulzu, tím té řesnost měření výšy hldiny, je zcel nezávislá n reltivní ermitivitě n hustotě měřeného médi. Měřeným médiem v modelu je destilovná vod. Regulátor KS98 je volně struturovná utomticá jednot, terá nízí sestvení omlexních mtemticých výočtů multinálových regulčních strutur v jednom zřízení. Výhodou tohoto regulátoru je nezávislost regulce n PC možnost monitorování růěhů regulování ez oužití osoního očítče. Syntéz lortorního modelu Účelem yl lice metod syntézy regulčního ovodu n lortorní model. Z měřené řechodové chrteristiy vylynulo, že se jedná o roorcionální soustvu se setrvčností.řádu, terou lze ost řenosem: G S () s () s de je zesílení soustvy, čsová onstnt soustvy. Zísné onstnty zesílení,8 čsové onstnty 54 [s] yly ovlivněny množstvím odtéjící liny z nádoy tj.veliostí otevření ventilu.

3 35, 3, Výš hldiny [cm] 5,, 5,, 5,, t [s] Oráze 3 Přechodová chrteristi soustvy Pro regulátor ltí řenos PD regulátoru s intercí: G R () s ( Ds) s () de je G R řenos regulátoru s intercí, roorcionální zesílení regulátoru s intercí, D derivční čsová onstnt regulátoru s intercí integrční čsová onstnt regulátoru s intercí 3 Výočet stvitelných rmetrů regulátoru Metodou oždovného modelu Dle [VÍEČEKOVÁ, M., 6] ro ty soustvy () nlogový regulátor ltí: (3) (4) w 54 s w de je w volitelná čsová onstnt. Podle vzthů (3) (4) určíme stvitelné rmetry regulátoru.,35 54 Metodou Otimálního modulu Dle [VÍEČEKOVÁ, M., 6] ro ty soustvy () nlogový P regulátor ltí: ( s ) Gwy s s s ( ) ( ) (5) 3

4 4 ) Seřízení s omenzcí čsových onstnt Pro s s s G w wy (6) Řešení vede n Metodu oždovného modelu, de volíme w. ) Seřízení ez omenzce Pro řenos soustvy (5) ( ) (7), ( ) (7) (8) Poud se ude lížit mximální možné hodnotě, hodnot se ude rovnt. Poud udeme uvžovt fyziální omezení reálného modelu, t metod v oou řídech vede n Metodu oždovného modelu. Metodou ous omyl Stvitelné rmetry regulátoru, yly zísány omocí exerimentů s modelem. Postuně yly urvovány hodnoty regulátoru to t, y ylo dosženo oždovné výsy hldiny s odoným neo i leším růěhem jo u ředchozích metod. Nejvhodnější růěh měly hodnoty 54

5 8, 7, 6, w, y [cm], u [%] 5, 4, 3,, Žádná VH ční veličin Sutečná VH,, t [s] Oráze 4 Průěh řízení ro veličiny zísné metodou oždovného modelu, 35, 54 6, 5, w, y [cm], u [%] 4, 3,, Žádná VH ční veličin Sutečná VH,, t [s] Oráze 5 Průěh řízení ro veličiny zísné omocí exerimentů s modelem, 54 5

6 3 Závěr Všechny vyočtené hodnoty yly ověřeny simulčně i n reálném modelu. K růěhu regulce yl využit lice ControlWe rogrmový modul WinGP CRL, vyvinutého n tedře Ř. Pro zísné hodnoty yl vyzoušen celová roustnost modelu to změnou veliosti oruchové veličiny, terá se vš díy dlouhé doě řenstvení eletroregulčního ventilu nedoázl lně rojevit. Díy zísným závěrům, model není vhodný n širší ultnění v mé disertční ráci, le zísné oznty závěry udou využity řízení modelu v lortoři studenty nší tedry model jo cele se využije rezentci neo jo názorná uáz ro studenty druhého ročníu lářsého studi n nší fultě. Zísjí t širší řehled o změření tedry možnostech jejich studi. Použitá litertur LÁĚ, J. 3. utomticé řízení. Prh: EN echnicá litertur, 664 s. SN LŠÁNEK, M. 5. Řízení lortorních modelů. Ostrv: tedr Ř-35 VŠ-U Ostrv, 5, 77 s. Dilomová ráce, vedoucí: Smutný, L. NOSKEVČ, P Modelování identifice systémů. Ostrv: MONNEX, 76 s. SN ŠULC,. & VÍEČKOVÁ, M. 4 eorie rxe návrhu regulčních ovodů. Prh: ČVU 4, 333 s. SN VÍEČKOVÁ, M. & VÍEČEK,. 6 Záldy utomticé regulce. Ostrv: tedr Ř- 35 VŠ-U Ostrv, 6, s. SN

Podpora cvičení z předmětu "Teorie automatického řízení II" Vladimír Gerlich

Podpora cvičení z předmětu Teorie automatického řízení II Vladimír Gerlich Podor cvičení ředmětu "eorie utomticého říení II" Vldimír Gerlich Blářsá ráce 6 ABSRAK Astrt čes Cílem této ráce lo vtvořit eletronicou omůcu orývjící osh cvičení ředmětu "eorie utomticého říení II".

Více

Technická kybernetika. Regulační obvod. Obsah

Technická kybernetika. Regulační obvod. Obsah Akdemický rok 6/7 Připrvil: Rdim Frn echnická kybernetik Anlogové číslicové regulátory Stbilit spojitých lineárních systémů Obsh Zákldní přenosy regulčního obvodu. Anlogové regulátory. Číslicové regulátory.

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 10. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

( s) ( ) ( ) ( ) Stabilizace systému pomocí PID regulátoru. Řešený příklad: Zadání: Uvažujme řízený systém daný přenosovou funkcí

( s) ( ) ( ) ( ) Stabilizace systému pomocí PID regulátoru. Řešený příklad: Zadání: Uvažujme řízený systém daný přenosovou funkcí tbilizce ytému pomocí regulátoru Řešený příld: Zdání: Uvžujme řízený ytém dný přenoovou funcí ) ožte, že je ytém netbilní. ) Nvrhněte dnému ytému regulátor, terý bude ytém tbilizovt. ) Úpěšnot vého nárhu

Více

zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, napájen do kotvy, indukčnost zanedbáme.

zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, napájen do kotvy, indukčnost zanedbáme. Teorie řízení 004 str. / 30 PŘÍKLAD zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, naájen do kotvy, indukčnost zanedbáme. E ce ω a) Odvoďte řenosovou funkci F(): F( ) ω( )/ u( ) b)

Více

ž š ř ú ž ř ž š ř ř ř ř ů š ř ž ř ó ň ó ř š š ž š ř ú ž ú ž ň ř š ř ů ž ž ř ň ř ú ř ř ů ú ú ů ř ú ň ř ž ó ř š ž ž ř ň ř ř ž Ť ó ř ž ú š Á ž ž ř ž ž ž š ž ř š š Á ž ž ž ž ú š ú š ť š ú š ž Š ž ř ž ř š š

Více

Nejistoty v mìøení II: nejistoty pøímých mìøení

Nejistoty v mìøení II: nejistoty pøímých mìøení V úvodí èásti [] volého cylu èláù yl uvede struèý pøehled proletiy ejistot v ìøeí, pøilíže historicý vývoj v této olsti zèey dùvody výhody používáí souèsé odifice v širších souvislostech eziárodí etrologie

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE

Více

ě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě

Více

Regulace f v propojených soustavách

Regulace f v propojených soustavách Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny

Více

ňď Ó Ó Š ť ř ř ř Č ř ť ř Ř Š Ě Č Č ř Č Ý Ě ť Ě ť ř ý ř Ř ť ň Ě Ý ř Ě ř ř ň ť Š Š Š ň ť Ó ť Á ť ř Ů Ú Ě Č ť ň Š ř Ď Č Š ň Ř Ě ň ý řň ř ř ř Č Š ť Š Š Š Ú Š Á Ý Ú Š Š Š Š Š ť Á ť ť Ě ť ť ť ř Ú Ú Ú Š Ů Š ý

Více

ř š ú š Č š ž ř š Š Š Í ú š ď ř š ú Š ů ú ř ř ř ř ů ř Ž š ů ú ů ř Š Š Š ř ů řň ň řň řň ů ř ř š Í ř ř ř ř ř ř ř ř Ž Ž ř ú ů ú ú š Ú ú ú Í Ž Ž ů Ž Ž Č ň Ú řš ř řš ú Ž ú ť ň Í ř ř ů ť š š ř Í řš ú Ý Í ť ú

Více

Multimediální podpora výuky předmětu TAŘ II

Multimediální podpora výuky předmětu TAŘ II Multimediální odo výuy ředmětu AŘ II Rde Kunde Blářsá áce 6 Univeit omáše Bti ve Zlíně Fult liovné infomtiy Vložit oficiální dání lářsé áce Poděování: Chci oděovt vedoucímu mé lářsé áce of. Ing. Vldimíu

Více

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými 1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte

Více

VYUŽITÍ CITLIVOSTNÍ ANALÝZY V ELEKTROTECHNICE A ŘÍDÍCÍ TECHNICE - II

VYUŽITÍ CITLIVOSTNÍ ANALÝZY V ELEKTROTECHNICE A ŘÍDÍCÍ TECHNICE - II 8 Informčné utomtizčné technológie v ridení kvlity produkcie Vernár,.-4. 9. 5 VYUŽIÍ CILIVONÍ ANALÝZY V ELEKROECHNICE A ŘÍDÍCÍ ECHNICE - II KÜNZEL Gunnr Abstrkt Příspěvek nvzuje n předchozí utorův článek

Více

VLIV TUHOSTI ZLOMU NA NAPJATOST A DEFORMACI RÁMU

VLIV TUHOSTI ZLOMU NA NAPJATOST A DEFORMACI RÁMU VYSOKÉ UČENÍ TEHNIKÉ V BRNĚ BRNO UNIVERSITY O TEHNOLOGY AKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MEHANIKY TĚLES, MEHATRONIKY A BIOMEHANIKY AULTY O MEHANIAL ENGINEERING INSTITUTE O SOLID MEHANIS, MEHATRONIS AND

Více

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství Česé vsoé učení technicé v Pre ult iomedicínsého inženýrství Úloh K0/č. 6: Určování oloh těžiště stilometricou lošinou Ing. Ptri Kutíle Ph.D. Ing. dm Žiž (utile@fmi.cvut.c i@fmi.cvut.c) Poděování: Tto

Více

3.4.7 Konstrukce trojúhelníků III (doplňování)

3.4.7 Konstrukce trojúhelníků III (doplňování) 3.4.7 Konstrue trojúhelníů III (dolňování) Předoldy: 3406 Shrnutí dvou ředešlýh hodin: oážeme sestrojit trojúhelníy, u terýh známe tři strny, dvě strny úhel neo strnu dv úhly. Poud zdání neumožňuje tímto

Více

Lomová houževnatost. plastická deformace. R e = K C

Lomová houževnatost. plastická deformace. R e = K C Loová houžvntost UM - 5 Loová houžvntost Jéno: St. suin: Dtu cviční: ) Stručně oišt, co vyjdřují ojy ) nětí - z luzu b) součinitl intnzity nětí - loová houžvntost. Disutujt oužití vzthu ro výočt součinitl

Více

Ť Í ě ě š ř ě ě ě Č Č ě ě š š ú Č Č ě ě ř ú ř ě ě ř ě ř ě ť ř ě š ě ř ř ě š ň ě Ť ď ř ř ř ě ř ě ě ě ř ř ě ř ě š ř š ř ě ř Í ř ě ř Ť ě ě ě ě ě ě Ť ě ň ř ě ú ě ě ě ň ř ř Ť ř ě ě ě ě ě ř Í ř ň š ř ě ě š ř

Více

JAN VÁLEK, PETR SLÁDEK Katedra fyziky, chemie a odborného vzdělávání, Pedagogická fakulta, Masarykova univerzita, Poříčí 7, Brno

JAN VÁLEK, PETR SLÁDEK Katedra fyziky, chemie a odborného vzdělávání, Pedagogická fakulta, Masarykova univerzita, Poříčí 7, Brno Veletrh nápdů učitelů fyziky 18 Fyzik cyklist JAN VÁLEK, PETR SLÁDEK Ktedr fyziky, chemie odorného vzdělávání, Pedgogická fkult, Msrykov univerzit, Poříčí 7, 603 00 Brno Astrkt Jízdní kolo spojuje mnoho

Více

Regulace v ES na výroby

Regulace v ES na výroby Regulce v ES n výroy Regulce v ES n strně výroy Regulce v ES n strně výroy Sttická chrkteristik Regulce v ES n strně výroy regulce více G Regulce v ES n strně výroy korektor frekvence rimární Regulce Úkol

Více

GEOMETRIC PROGRAMMING IN EVALUATING OF EXPERIMENTAL DATA GEOMETRICKÉ PROGRAMOVÁNÍ PŘI VYHODNOCOVÁNÍ EXPERIMENTÁLNĚ STANOVENÝCH DAT

GEOMETRIC PROGRAMMING IN EVALUATING OF EXPERIMENTAL DATA GEOMETRICKÉ PROGRAMOVÁNÍ PŘI VYHODNOCOVÁNÍ EXPERIMENTÁLNĚ STANOVENÝCH DAT 40. MEZINÁRODNÍ KONFERENCE EXPERIMENTÁLNÍ ANALÝZY NAPĚTÍ 40 th INTERNATIONAL CONFERENCE EXPERIMENTAL STRESS ANALYSIS 3. 6. VI. 2002, PRAHA/PRAGUE, CZECH REPUBLIC GEOMETRIC PROGRAMMING IN EVALUATING OF

Více

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308 731 Vzdálenost odu od římky I Předokldy: 7308 Pedgogiká oznámk: Pokud máte málo čsu, můžete odvodit vzore ez smosttné ráe studentů oužít některý z říkldů z dlší hodiny Tím jednu ze dvou hodin ro vzdálenost

Více

Pájený výměník tepla, XB

Pájený výměník tepla, XB Popis / plikce Deskové výměníky tepl pájené mědí řdy XB jsou určené pro použití v soustvách centrálního zásoování teplem (tzn. v klimtizčních soustvách, v soustvách určených pro vytápění neo ohřev teplé

Více

1 stupeň volnosti vynucené kmitání. Iva Petríková

1 stupeň volnosti vynucené kmitání. Iva Petríková Kmitání mechnicých soustv 1 stueň volnosti vynucené mitání Iv Petríová Ktedr mechniy, ružnosti evnosti Obsh Soustv s jedním stuněm volnosti vynucené mitání Vynucené mitání netlumené Vynucené mitání tlumené

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt relizovný n PŠ Nové Město nd Metují s finnční podporou v Operční proru Vzdělávání pro konkurencescopnost Královérdeckéo krje Modul 03 - Tecnické předěty In. Jn Jeelík - nuk o rovnováze kplin jejic

Více

Elektronická opora pro výuku předmětu TAŘ II

Elektronická opora pro výuku předmětu TAŘ II Elektronická oor ro výuku ředmětu TAŘ II Electronic suort for teching of suject TARII Dniel Kšný Bklářská ráce 7 UTB ve Zlíně, Fkult likovné informtik, 7 ABSTRAKT Tto ráce se věnuje rolemtice teorie

Více

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány

Více

Systémové struktury - základní formy spojování systémů

Systémové struktury - základní formy spojování systémů Systémové struktury - základní formy sojování systémů Základní informace Při řešení ať již analytických nebo syntetických úloh se zravidla setkáváme s komlikovanými systémovými strukturami. Tato lekce

Více

Větvené mazací systémy a jejich proudové poměry tribologicko-hydraulické aspekty

Větvené mazací systémy a jejich proudové poměry tribologicko-hydraulické aspekty OBHAJOBA DISETAČNÍ PÁCE Větvené mzcí systémy jejich proudové poměry triologicko-hydrulické spekty PhD student: Ing. Antonín Dvořák Školitel: Doc. NDr. Ing. Josef Nevrlý, CSc. Ústv konstruování VUT- BNO

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ. Katedra elektromechaniky a výkonové elektroniky BAKALÁŘSKÁ PRÁCE

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ. Katedra elektromechaniky a výkonové elektroniky BAKALÁŘSKÁ PRÁCE ZÁPADOČESKÁ UNIVERZITA V PLZNI AKULTA ELEKTROTECHNICKÁ Katedra eletromechaniy a výonové eletroniy BAKALÁŘSKÁ PRÁCE Vývoj aliace ro výuu regulační techniy Václav Šeta 06 Vývoj aliace ro výuu regulační

Více

2.3.6 Práce plynu. Předpoklady: 2305

2.3.6 Práce plynu. Předpoklady: 2305 .3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram

Více

Ulice Agentura sociální práce, o. s. Účetní závěrka za rok 2012

Ulice Agentura sociální práce, o. s. Účetní závěrka za rok 2012 Ulice Agentur sociální práce, o. s. Účetní závěrk z rok 2012 Osh: I. OBECNÉ INFORMACE... 2 1. POPIS ÚČETNÍ JEDNOTKY... 2 2. ZAMĚSTNANCI A OSOBNÍ NÁKLADY... 2 3. POSKYTNUTÉ PŮJČKY, ZÁRUKY ČI JINÁ PLNĚNÍ...

Více

Hodnocení tepelné bilance a evapotranspirace travního porostu metodou Bowenova poměru návod do praktika z produkční ekologie PřF JU

Hodnocení tepelné bilance a evapotranspirace travního porostu metodou Bowenova poměru návod do praktika z produkční ekologie PřF JU Hodnocní tlné bilanc a vaotransirac travního orostu mtodou Bownova oměru návod do raktika z rodukční kologi PřF JU Na základě starších i novějších matriálů uravil a řiravil Jakub Brom V Čských Budějovicích,

Více

NÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL

NÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL NÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL 1. ZADÁNÍ Navrhněte růměr a výztuž vrtané iloty délky L neosuvně ořené o skalní odloží zatížené v hlavě zadanými vnitřními silami (viz

Více

Stabilita prutu, desky a válce vzpěr (osová síla)

Stabilita prutu, desky a válce vzpěr (osová síla) Stabilita rutu, deky a válce vzěr (oová íla) Průběh ro ideálně římý rut (teoretický tav) F δ F KRIT Průběh ro reálně římý rut (reálný tav) 1 - menší očáteční zakřivení - větší očáteční zakřivení F Obr.1

Více

Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného plynu - statistické zpracování dat

Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného plynu - statistické zpracování dat Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného lynu - statistické zracování dat Teorie Tam, kde se racuje se stlačenými lyny, je možné ozorovat zajímavý jev. Jestliže se do nádoby, kde je

Více

Bytové družstvo Žerotínova Vsetín se sídlem Vsetín, nám. Svobody 1321, PSČ , IČ Účetní závěrka 2015

Bytové družstvo Žerotínova Vsetín se sídlem Vsetín, nám. Svobody 1321, PSČ , IČ Účetní závěrka 2015 Bytové družstvo Žerotínov Vsetín se sídlem Vsetín, nám. Svoody 1321, PSČ 755 01, IČ 65138562 zpsné v OR vedeném KS v Ostrvě, oddíl Dr., vložk č. 375 Účetní závěrk 2015 Zprcováno v souldu s vyhláškou č.

Více

ř ě é é ě ř ž ě é Ž Ý Ú ž é ě ů é ř é Ý é ů ÁŠ ú é é é ž ž é ě ů ž ř ž ů ě ň ú ě š ě é ú ú š ť š ě é ř é ú š ú š ě é ř ť é ž š ě ě ů ě ě ž ř ě ž ř ž ú ú š š ě ř é é ř š ě ř é ě ř ě ů š Ů é ž ů š ě ě ě

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon

Více

Ý š ě ů ĺ ě ř Š ř ř ĺ Č Č ř ě Ú ř ě Č Č Č Ú ř ř ě ě š ěž ř Ö ý ě Ú Ú š ě Š ě ě ý ý ů ě ř ĺ ě Ž ĺ Ž ý ř řĺ ý ý ě š ě ý ů ĺ ě ě ĺ ý š ě Š ě ů Í ě ě ŕ ě ý ů řĺ ř š ě ý ů řě ě ř ĺ ĺ ř ě ě ĺ ř ŕ Ž ř ě ĺ ř ě

Více

Á Á Ě ĺ ć É Í řč Áľ Á Á ř č ě ě ě š ř ů ä č š ě ě ĺ ě ě š ř ů č č ý ě ř ý ě ě š ř ů ě š ř ž Ú š ě š ě ř Ú š ě Š ě Č ĺ č úč ě ĺ ž ě ĺ ě řč ä š ě ě ř Úř Č Í Í Č ě ří ě č úě ď Š ě ý Ú ľĺ ě ř ř ř ř š ě ř ä

Více

Slovní úlohy na sjednocení dvou množin s neprázdným průnikem. II b III

Slovní úlohy na sjednocení dvou množin s neprázdným průnikem. II b III Slovní úlohy n sjenoení vou množin s neprázným průnikem Vennův igrm ( John Venn 1834 (Hull, Anglie) 1923 (Cmrige, Anglie) ) A V Životopis John Venn: http://www-groups.s.st-n..uk/ history/mthemtiins/venn.html

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ ECHNCKÁ UNVERZA OSRAVA FAKULA SROJNÍ ZÁKLAY AUOMACKÉHO ŘÍZENÍ. týden doc. ng. Renata WAGNEROVÁ, Ph.. Ostrava 03 doc. ng. Renata WAGNEROVÁ, Ph.. Vysoá šola báňsá echnicá niverzita Ostrava

Více

NÁVRH PREDIKTIVNÍCH REGULÁTORŮ POMOCÍ MINIMALIZACE l p NORMY V PROSTŘEDÍ MATLAB. Jaroslav Pekař *, Jan Štecha *, Vladimír Havlena *, **

NÁVRH PREDIKTIVNÍCH REGULÁTORŮ POMOCÍ MINIMALIZACE l p NORMY V PROSTŘEDÍ MATLAB. Jaroslav Pekař *, Jan Štecha *, Vladimír Havlena *, ** NÁVRH PREDIKIVNÍCH REGULÁORŮ POMOCÍ MINIMALIZACE l NORMY V PROSŘEDÍ MALAB Jaroslav Pekař *, Jan Štecha *, Vladimír Havlena *, ** * Katedra řídicí techniky, Fakulta elektrotechnická, České vysoké učení

Více

ý ú Ú Ú ý ý ý Ž ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý Ž ř Á ý ý ý ů Ž ř ý ý ý ý ý ý ý ý ý ý ý ý Ž ý ř ý ý Ž Ů ž Ů ý ř ý ý ó ó Ú Ú Ž ý ý Ů ý ý Ů Á ý ý ý Ú Ý Ý ý Ů ý ů Ž ý ř Ů ý Ž ý ý ý ř ž Ž Ž ř š ň ř ů ř ň ř ř

Více

POŽADAVKY NA REGULACI

POŽADAVKY NA REGULACI ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V RAZE, FAKULTA ELEKTROTECHNICKÁ, KATEDRA ŘÍDICÍ TECHNIKY Základy řízení systémů cvičení 5 OŽADAVKY NA REGULACI etr Hušek (husek@control.felk.cvut.cz) Základními požadavky

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

Závislost indexů C p,c pk na způsobu výpočtu směrodatné odchylky

Závislost indexů C p,c pk na způsobu výpočtu směrodatné odchylky Závislost indexů C,C na zůsobu výočtu směrodatné odchyly Ing. Renata Przeczová atedra ontroly a řízení jaosti, VŠB-TU Ostrava, FMMI Podni, terý chce usět v dnešní onurenci, musí neustále reagovat na měnící

Více

Ý Ě Ú Ý Ů Ý Ů ě ě ú É Ř É Ý ú š ě Ú ť Ó Ó ó ď ů ď ů ů ů ě ů ú ů ů ů ů ě ů ú ě ů ď ů ů ů ě ů ú ů ů ů ů ě ů ú ů ž ěž ěž ú ů Ú ů ú Ř ů ď Ť Ó Ř ů ů ů ů ů ů ů ť ů Ú ú ú ě ů ů ů ó ů ó ď ó ó ů ů ú ó ó ů ů ú Ř

Více

Výstupní tlak Outlet pressure. bar 12,0 1,5. Kapacitní křivka - acetylen Capacity curve - acetylene 1,4 1,2 1,0 0,8. Outlet pressure p 0,6 0,4 0,2

Výstupní tlak Outlet pressure. bar 12,0 1,5. Kapacitní křivka - acetylen Capacity curve - acetylene 1,4 1,2 1,0 0,8. Outlet pressure p 0,6 0,4 0,2 line line Rozvodový redukční ventil JC+ 7 Manifold ressure regulator of JC+ 7 7 7 Ty Tye JC+ 7 - kyslík JC+ 7 - oxygen JC+ 7 - acetylen JC+ 7 - acetylene Vstuní ressure,, Výstuní ressure,, růtok Q flow

Více

Zkoušky povlaků řezných nástrojů ze slinutého karbidu při frézování ocelí

Zkoušky povlaků řezných nástrojů ze slinutého karbidu při frézování ocelí Zkoušky povlků řezných nástrojů ze slinutého kridu při frézování ocelí Ing. Pvel Zemn Ph.D. 1), Ing. Ondřej Zindulk 2) 1) VCSVTT, ČVUT v Prze, Horská 3, 12800 Prh 2, tel: 605205923, p.zemn@rcmt.cvut.cz

Více

ń ď ł đ Á Đ ł đ ł Í ľ ľäę ř č ě ř č ů č Š ř č Í č č ě řĺ ĺ Č č ř ř ů č ř ě č úč Č č ř ů ž ĺ Č Úč č ř ř Č č ě Ż č Í ĺ Ć Č É ě ř ř č ě ĺ ĺ ř ť č ů Č ř Ž ř ĺ ě ř Í ě Šĺ č ĺ ř ĺ ř ĺ ř Ž ř ř Úč ř Š Ú ů č ě

Více

Výpočet svislé únosnosti osamělé piloty

Výpočet svislé únosnosti osamělé piloty Inženýrský manuál č. 13 Aktualizace: 04/2016 Výočet svislé únosnosti osamělé iloty Program: Soubor: Pilota Demo_manual_13.gi Cílem tohoto inženýrského manuálu je vysvětlit oužití rogramu GEO 5 PILOTA ro

Více

í á á ě č é úč í á á ě č é úč ý á č á íí Ž á Ž á í í í ú á č é ř í ě ě í č ý ří ů ů ů ý ří ů ý ů ě í í ě íč í č í ř ů á í í í úč ů á í ří ů ý ů ří ů ý

í á á ě č é úč í á á ě č é úč ý á č á íí Ž á Ž á í í í ú á č é ř í ě ě í č ý ří ů ů ů ý ří ů ý ů ě í í ě íč í č í ř ů á í í í úč ů á í ří ů ý ů ří ů ý ě ú ě ú Ž Ž ú ř ě ě ř ů ů ů ř ů ů ě ě ř ů ú ů ř ů ů ř ů ů ř ě ú ř ě ě úř ř ě ÚČ Č ě ě ř Ž Č ě ú ř ř ě Ř ř Ň É ŘÍ ň ř ň ů ř ú ř ě ř ú ů ř Ů ř ř ě Ý ř Ě É ě ř š ě ú š ě ě š ě ú ů š ě ů ň ř Ý ř ř ě Á Í ě

Více

Užitečné základní vzorce počítačové grafiky

Užitečné základní vzorce počítačové grafiky řenáš Vetorové oere Veliot vetoru Užitečné zální vzore očítčové rfi oučet vou vetorů lární oučin Vetorový oučin Litertur zroje: Žár, J., Beneš, B., Felel,.: Moerní očítčová rfi. Brno : Comuter re, 998.

Více

ř ě ě š ř ů ř ěž ú ěž ú ú Č ě Ú š ž ú ž ě ě ř ž ě ú ů ě ř š ž ú ě š ž ě ů š ě ř ě Ú ř ě ř ě ř ě ě ř š ž ž ř ě ť ř ě ů š ř š ě ě ř š ď ů ř ř ž Ž ř ě ž ř ě ř š ř ě ř ř ů ř ž ř ř ř ě ě š ž ř ě ě ž ž ř ž š

Více

š ů Á Ě Ž Í Ř Í ě ř ě ř Ž š š ě ě úť š Č ě Ř ÁŠ ě ž ř ě ě ř š úř ě ě ě ů ě ě š ř ů ě ř š úř ř ě ďě š ř ů ů úř ú ř ě ř ž ď ě Č ě ě š Č ě ě ě ú ě ě ě ě ú ě ě ú ě ě ú ě ě ú ě ě ě ě ú ě ě ú ě ě ě ě ě ě Í ú

Více

Á É É ě ě ů ě Č Ú Í ě Ž ě Í ě Í š ú ě ě Ú ě ě Í Ž ů Č Ž ě ě Ž Ž ě Í Ž Ž ě ú Í ě š Í Í Š ú ě ě Č Ž ě ě ú Š ě š Í Š ě ě ň ě ě Č ď ě Č ů ú ě ú ě Ž ě Č ě ě ů ě Ž ě ů ě ě ě ě ěž Ž Ž ě Ž ě ě ň ú Ž ů ě ě Ž Ž

Více

Lineární nerovnice a jejich soustavy

Lineární nerovnice a jejich soustavy teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice

Více

Téma 6 Spojitý nosník

Téma 6 Spojitý nosník Stvení mechnik.očník kářského studi AST Tém Sojitý nosník Zákdní vstnosti sojitého nosníku Řešení sojitého nosníku siovou metodou yužití symetie sojitého nosníku Kted stvení mechniky Fkut stvení ŠB - Technická

Více

Ř Ě ř ě á ř Ž é ě é ř š ý ý ě ý Ťř ě ě ý ý ě ý ě ř é ý á ý é ř é š ň Ť Ť é Ž ě šš Ť ř ř Ť š Ť Ž ř ě ří š š é ř ř ě Ťě ě ň é ě ě á š řšř ě ž á á ě á á ř Ř ář š Ř é ě á ž á á ř áš ř ž Ř ž Ř áž ě š š éř ě

Více

ř š ě ž ž ó đ ž ě ě ů ž ě ří ĺ Č ć ú Č ĺ š ř Ž Č ří ě Ž ř ĺ ą Č Č ď ž ě Ž ř ě ú š Ž Ú ě ř ř ĺ Š ř ř ĺ ĺ ĺ ž ĺ ě ĺ ě ĺ ž ř ř Ž ř ě ř Žš ě š ř Ú ú Š ě ě Ž ř Ž š ř ěž š š ů ř ř ů ż š ě ě ó š ĺ ě Ú ů ž ĺ ě

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Ústav kovových a dřevěných konstrukcí

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Ústav kovových a dřevěných konstrukcí VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Ústv ovových dřevěných onstrucí Ing. Miln Pilgr PROBLEMATIKA SKUTEČNÉHO PŮSOBENÍ STYČNÍKŮ S KRÁTKOU ČELNÍ DESKOU V OCELOVÝCH KONSTRUKCÍCH PROBLEMS OF ACTUAL

Více

Předpjatý beton Přednáška 12

Předpjatý beton Přednáška 12 Předjatý beton Přednáška 12 Obsah Mezní stavy oužitelnosti - omezení řetvoření Deformace ředjatých konstrukcí Předoklady, analýza, Stanovení řetvoření. Všeobecně - u ředjatých konstrukcí nejen růhyb od

Více

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení.

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení. 4. Booleov lger Booleov lger yl nvržen v polovině 9. století mtemtikem Georgem Boolem, tehdy nikoliv k návrhu digitálníh ovodů, nýrž jko mtemtikou disiplínu k formuli logikého myšlení. Jko příkld použijeme

Více

Dynamické programování

Dynamické programování ALG Dynamické rogramování Nejdelší rostoucí odoslounost Otimální ořadí násobení matic Nejdelší rostoucí odoslounost Z dané oslounosti vyberte co nejdelší rostoucí odoslounost. 5 4 9 5 8 6 7 Řešení: 4 5

Více

Kopie z www.dsagro.cz

Kopie z www.dsagro.cz ó š š ú š ó ú š Á ó ú ě Ť ú ě ó ěž ú ú ěž ú ó ď ú É úó ě ě ž ř ť ž ó š Ý š Á Ú š É óň ú ú ř ď š ó ď ď Ň ň Ťž ó ě ú ž ž ó Ů ó ř ž óú ú Á ž ž ž ó ť ž ě ě ž Ř ó ř ě š š ÉÚ š ě ě ž ř ž ž š ě ř ň ě ř ě ě ú

Více

Í ř ě ě ě ě ě ě ě ý ě ř Ž ů ý Ž ř ý é ů ě š Ů ý ě ř Ž ě ý ý ů ě é ř Ž ů ě ě Ž ě š ě ř Ů š ů ň Ž ě ě Ž ě ý ý ř ů ě ů Ž ů ř ě ě é ě Ž é š é ů ě Ž ýš ý ů

Í ř ě ě ě ě ě ě ě ý ě ř Ž ů ý Ž ř ý é ů ě š Ů ý ě ř Ž ě ý ý ů ě é ř Ž ů ě ě Ž ě š ě ř Ů š ů ň Ž ě ě Ž ě ý ý ř ů ě ů Ž ů ř ě ě é ě Ž é š é ů ě Ž ýš ý ů Í ř é é ě Ž é ř Í Š ů Ž ř é ž é Č é ě ě Ž é ý ř ě š ý Ž é ý ě ý ý ě š ě ř ě Ž Ž ý Í ř ě ě ě ě ě ě ě ý ě ř Ž ů ý Ž ř ý é ů ě š Ů ý ě ř Ž ě ý ý ů ě é ř Ž ů ě ě Ž ě š ě ř Ů š ů ň Ž ě ě Ž ě ý ý ř ů ě ů Ž ů

Více

ú ř ý é č č ě ůž ř č ř š é é é ý ý ž ě č ř ů ě ůž é ě ý ů žč š ř ěř é ý ž úč š ř ý č ř ř ě ě š é ý č ř ř ě ě ůž ř č ř ž č ž č ů ř ěš řš ř Ě č č š č č ž č č ě ř ý ž ž ě č č ě ě č č č š é ř ř ž č č ř ě ě

Více

Ú Š Ú é š Ú š Ú Í Ú š Ú ú š č ú š ů Ž ú ů é é č ú š Č Ý Š Ě Í Š Č š ú ú ú ú ů é č é č ú š č ú š ů é é č é Ů é é š Ž č š č é ú ů é é č ů č é ú Ž č ů é ů š é č š é Ž Ó Ž é č ú ú é č é Ú Ž Š ů Ů š Ů é Ž Ž

Více

ř ě ě ř ř ě ě ů š ž é ý Č é ř ř ž é ž ď é ř ě ě é š ů ú ž Ž Ž ř ř š ů ý Í Ž ř ě ě ď ý ě ý ř Ž ř ě ř ě ě ů ú ž ř ř ř é ě ě ě Č ř ř ě ě ř ě é ě ú ěš é ř

ř ě ě ř ř ě ě ů š ž é ý Č é ř ř ž é ž ď é ř ě ě é š ů ú ž Ž Ž ř ř š ů ý Í Ž ř ě ě ď ý ě ý ř Ž ř ě ř ě ě ů ú ž ř ř ř é ě ě ě Č ř ř ě ě ř ě é ě ú ěš é ř ě ž é ď ú š ďš Š ěř Š ž é Č ý ě é ě ú ř ě ě ř ř ě ě ů š ž é ý Č é ř ř ž é ž ď é ř ě ě é š ů ú ž Ž Ž ř ř š ů ý Í Ž ř ě ě ď ý ě ý ř Ž ř ě ř ě ě ů ú ž ř ř ř é ě ě ě Č ř ř ě ě ř ě é ě ú ěš é ř ř ě ů ě é ě

Více

Ý Ř Č Ě É Ř Ř ý ě ú ý ů ý ů Í ě ú ý Ž ě ě ě ý ú ú Š ó ý ó ó Ř É ě ý ý ý ú ý Í Ů Č Í ě Í ě ú Ž ý É ě ě ý ů š ý Č Š ý Č Í ú š ú Í ý ú Ó ě ý ů ý ě ý ě ý ý Í ě ý Č ě ý ě ý ú ý Č ú Í ů ú ě ýš Í ý Ů ě ě ý ý

Více

Ú ů Ú ů Č Ú Í Ú ú ů Š ů ř ů ž ř Ž Ě šť Ž ř ž ů ř ů Ž ů Ž ř š šť Ž ř š ř Ž ř šť ž ř ů ůž ů š š Ž ř š ůž ř š ůž š ó ů ú Ě š Ť šš Ž š ů ů ř úó Í Í ž Ž Ž š ž Ú ň ř š š Ž ř š ú ů ř ř š ů Ž ů ů ř Í ř š ů ř ů

Více

Směrová kalibrace pětiotvorové kuželové sondy

Směrová kalibrace pětiotvorové kuželové sondy Směrová kalibrace ětiotvorové kuželové sondy Matějka Milan Ing., Ústav mechaniky tekutin a energetiky, Fakulta strojní, ČVUT v Praze, Technická 4, 166 07 Praha 6, milan.matejka@fs.cvut.cz Abstrakt: The

Více

ň ř ň ř é ň ř ň ř é ň ř ú ň ř ň ř ě Ž Ž ň ř é ě ž ě ě ě éů ů Ž ř é ě ř é ř ěž ř Š é ů ř é ř ů ěř é ŽÚ é ů ř é ů ěř é Ž ř ř Úř é ě ň ň é ř ě Ž Úř ě Ý ř

ň ř ň ř é ň ř ň ř é ň ř ú ň ř ň ř ě Ž Ž ň ř é ě ž ě ě ě éů ů Ž ř é ě ř é ř ěž ř Š é ů ř é ř ů ěř é ŽÚ é ů ř é ů ěř é Ž ř ř Úř é ě ň ň é ř ě Ž Úř ě Ý ř Ú ř Ý ř ř ě ě ě ř ú ř ě ř ě ř ě ě ň ř ň ř é ň ř ň ř é ň ř ú ň ř ň ř ě Ž Ž ň ř é ě ž ě ě ě éů ů Ž ř é ě ř é ř ěž ř Š é ů ř é ř ů ěř é ŽÚ é ů ř é ů ěř é Ž ř ř Úř é ě ň ň é ř ě Ž Úř ě Ý ř é š Á Ž ů ů Ž Ž

Více

Výpočet vnitřních sil přímého nosníku

Výpočet vnitřních sil přímého nosníku Stvení sttik, 1.ročník klářského studi ýpočet vnitřních sil přímého nosníku nitřní síly přímého vodorovného nosníku prostý nosník konzol nosník s převislým koncem Ktedr stvení mechniky Fkult stvení, ŠB

Více

MĚŘENÍ VÝKONU V SOUSTAVĚ MĚNIČ - MOTOR. Petr BERNAT VŠB - TU Ostrava, katedra elektrických strojů a přístrojů

MĚŘENÍ VÝKONU V SOUSTAVĚ MĚNIČ - MOTOR. Petr BERNAT VŠB - TU Ostrava, katedra elektrických strojů a přístrojů MĚŘENÍ VÝKONU V SOUSAVĚ MĚNIČ - MOOR Petr BERNA VŠB - U Ostrava, katedra elektrických strojů a řístrojů Nástu regulovaných ohonů s asynchronními motory naájenými z měničů frekvence řináší kromě nesorných

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvlity výuky technických oorů Klíčová ktivit IV. Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol Tém IV.. Algerické výrzy, výrzy s mocninmi odmocninmi Kpitol

Více

Technická kybernetika. Obsah. Realizace kombinačních logických obvodů.

Technická kybernetika. Obsah. Realizace kombinačních logických obvodů. 08.03.207 Akemiký rok 206/207 řiprvil: Rim Frn Tehniká kernetik Relize kominčníh logikýh ovoů 2 Osh Relize kominčníh logikýh ovoů. Kontktní shémt. Bloková shémt. rogrmovtelné logiké utomt. říkl sntéz kominčního

Více

ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š

Více

ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě

Více

ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů

Více

ň Š ý ě ý Ě Á ý ý ě ň Š ý ě ý ú ň ň ý ě ý ó ě ž ý ň ě ě Š ú Š ú Š ň Á ň Š ň ý ě ý Š ž ý ě ý ů ě ě ž ý ě Š ě ě ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ó ě ů ě ý Š ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ě Č Č ě Š Č ě

Více

Č Á ě Ě Á é é ě ďě ě ů ú é é é ě é é ď ď š ě Č Á ě ú é ů š š Ť ď é Ž ě é š ů Č ů ů é ů ů ě é ě é é é ě Č Á ě Ě Á é Ř ě é ú ó é š é Ž Ž é ě é ě ě é š éž é ě ě š ě ě ě š ě š ě ú é š ě ů Ěú Á ě Ž š é š ě

Více

ZÁKLADY AUTOMATIZACE TECHNOLOGICKÝCH PROCESŮ V TEORII

ZÁKLADY AUTOMATIZACE TECHNOLOGICKÝCH PROCESŮ V TEORII VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATIZACE TECHNOLOGICKÝCH PROCESŮ V TEORII Ing. Romn Grinová, Ph.D. Ing. Ondřej Zimný, Ph.D. prof. Ing. Zor Jnčíková, CSc. Ostrv

Více

Ý č í é é ř š í é č í é ľ ľá á í ě í č říč í á Ú ý č říčí č ľ ý ł ĺ á á łí ĺ ě ř ĺ í ě ĺ ř á í ĺł ĺĺ ďĺ í á á ĺ ľ ĺ ĺí é ł í ĺ ĺé ťł ť łĺĺ ľ á í ĺ ĺ ę

Ý č í é é ř š í é č í é ľ ľá á í ě í č říč í á Ú ý č říčí č ľ ý ł ĺ á á łí ĺ ě ř ĺ í ě ĺ ř á í ĺł ĺĺ ďĺ í á á ĺ ľ ĺ ĺí é ł í ĺ ĺé ťł ť łĺĺ ľ á í ĺ ĺ ę Ý č é é ř š é č é ľ ľá á ě č řč á Ú ý č řč č ľ ý á á ě ř ě ř á ď á á ľ é é ť ť ľ á ę ľ ř á é ý á ý č á é é ě é á ě é ú ě Ú ň é é ú á ž é ř Ż č Ż č ř č š ě ě š ů é č á ě ř š ě č ě á č úř ň é Ż ě č ř č ě

Více

Výpočet svislé únosnosti osamělé piloty

Výpočet svislé únosnosti osamělé piloty Inženýrský manuál č. 13 Aktualizace: 06/2018 Výočet svislé únosnosti osamělé iloty Program: Soubor: Pilota Demo_manual_13.gi Cílem tohoto inženýrského manuálu je vysvětlit oužití rogramu GEO 5 PILOTA ro

Více

É ú ž ž č ž ů ý ů ř ů ý ň ú ň č ůč Ž ř č ý ů Í ý č Ž ř č ř č ší ý ů ř š š ů ř Ž š ů č č ň Í ý ř š š č Ž š š ý č Ž č š ú Ž ř Š Ž Í ů ř č š č č ůč Ž ř Í č č ý Í ř ý č š Ž Š š Ž ř č Í ý úč ý ý ř š ý š ř Ž

Více

E = 1,1872 V ( = E Cu. (γ ± = 0, ,001 < I < 0,1 rozšířený D-H vztah)

E = 1,1872 V ( = E Cu. (γ ± = 0, ,001 < I < 0,1 rozšířený D-H vztah) GALVANICKÉ ČLÁNKY E = E red,rvý E red,levý E D = E red,rvý E ox,levý E D G = z E E E S = z = z T E T T Q= T S [] G = z E rg E E rs = = z, r rg T rs z = = T E T T T E E T T ν i E = E ln i z i mimo rovnováhu

Více

EXPERIMENTÁLNÍ URČENÍ TUHOSTI ZDVIHOVÉHO LANA A JEJI OVĚŘENÍ TAHOVOU ZKOUŠKOU DLE ČSN 420305

EXPERIMENTÁLNÍ URČENÍ TUHOSTI ZDVIHOVÉHO LANA A JEJI OVĚŘENÍ TAHOVOU ZKOUŠKOU DLE ČSN 420305 EXPERIMENTÁLNÍ URČENÍ TUHOSTI ZDVIHOVÉHO LANA A JEJI OVĚŘENÍ TAHOVOU ZKOUŠKOU DLE ČSN 420305 EXPERIMENTAL DETERMINATION OF STIFFNESS WINCH RUNNER AND HER ATTESTATION OF THE TENSION EXAMINATION ACCORDING

Více

6. Zobrazení δ: (a) δ(q 0, x) obsahuje x i, x i Z. (b) δ(x i, y) obsahuje y j, x i y j P 7. Množina F je množinou koncových stavů.

6. Zobrazení δ: (a) δ(q 0, x) obsahuje x i, x i Z. (b) δ(x i, y) obsahuje y j, x i y j P 7. Množina F je množinou koncových stavů. Vzth mezi reg. výrzy kon. utomty Automty grmtiky(bi-aag) 7. Převody mezi reg. grm., reg. výrzy kon. utomty Jn Holu Algoritmus (okrčování): 6. Zorzení δ: () δ(, x) oshuje x i, x i Z. () δ(x i, y) oshuje

Více

ý Á ľ Í äľä Š ý ž ř č ř ý ě ě š ř ů č č ý č ý č ě řč č š ě ě ř úř ě š ě č ř č ř ĺ Ú š ě č ĺ ř ř č ł ý Á Ę äľ Š č š ě Š ě č ř ř ž ě ý š ě ř Š č ř ý ý ž ě úč ž ě š ě ř šúč ž ě ý ě š ě ř ĺ ä ľľä ľ ľ ľľľ ĺľ

Více

14/03/2016. PROGRAM PŘEDNÁŠEK letní 2015/2016. Předpínací síla ČSN EN ZTRÁTY PŘEDPĚTÍ. Změny předpětí

14/03/2016. PROGRAM PŘEDNÁŠEK letní 2015/2016. Předpínací síla ČSN EN ZTRÁTY PŘEDPĚTÍ. Změny předpětí 14/3/216 133 K5 TONOVÉ KONSTRUK 5 Číslo atum ROGRM ŘNÁŠK letní 215/216 Téma přednášky 1 23.2. rincipy předpjatého betonu, historie, materiály oznámky 2 1.3. Technologie předem předpjatého betonu Výklad

Více

Oddělení technické elektrochemie, A037. LABORATORNÍ PRÁCE č.9 CYKLICKÁ VOLTAMETRIE

Oddělení technické elektrochemie, A037. LABORATORNÍ PRÁCE č.9 CYKLICKÁ VOLTAMETRIE ÚSTV NORGNIKÉ THNOLOGI Oddělení technické elektrochemie, 037 LBORTORNÍ PRÁ č.9 YKLIKÁ VOLTMTRI yklická voltametrie yklická voltametrie atří do skuiny otenciodynamických exerimentálních metod. Ty doznaly

Více

Nelineární model pneumatického pohonu

Nelineární model pneumatického pohonu XXVI. SR '1 Seminar, Instruments and Control, Ostrava, ril 6-7, 1 Paer 48 Nelineární model neumatického ohonu NOSKIEVIČ, Petr Doc.,Ing., CSc., Katedra TŘ-35, VŠ-TU Ostrava, 17. listoadu, Ostrava - Poruba,

Více

Robustnost regulátorů PI a PID

Robustnost regulátorů PI a PID Proceedings of International Scientific Conference of FME Session 4: Automation Control and Applied Informatics Paper 45 Robustnost regulátorů PI a PID VÍTEČKOVÁ, Miluše Doc. Ing., CSc., katedra ATŘ, FS

Více