Termodynamika ideálního plynu

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Termodynamika ideálního plynu"

Transkript

1 Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu ideální lyn. Mezi vlastnostmi ideálního lynu, které se uvádějí v kinetické teorii je, že molekuly ideálního lynu na sebe navzájem silově neůsobí, kromě nekonečně krátkých okamžiků vzájemných srážek. Je li silové ůsobení mezi molekulami ideálního lynu ři libovolné vzdálenosti molekul nulové (kromě srážek), ak také celková otenciální energie molekul lynu bude nulová, bez ohledu na to v jakém objemu je lyn uzavřen. nitřní energie ideálního lynu tedy nebude záviset na jeho objemu, ale ouze na telotě, která jak uvidíme ozději souvisí s kinetickou energií molekul lynu. Protože k tomuto záveru nelze dojít čistě termodynamickými úvahami, zavádí se v termodynamice následující definice ideálního lynu: Definice 17 (Termodynamická definice ideálního lynu) nitřní energie ideálního lynu je ouze funkcí teloty U=U(T) a nezávisí na objemu lynu. Důležitý důsledek této definice, který budeme dále často oužívat lze shrnout do následující věty: 5 1

2 Michal arady Přednáška 5: Termodynamika ideálního lynu ěta 5 Při libovolném termodynamickém ději lze ro změnu vnitřní energie ideálního lynu v souladu s rovnicí (4.6) a definicí molární teelné kaacity sát: U = c vm n dt = c vm n T = c vm n(t 2 T 1 ) [J], (5.1) kde c vm je molární teelná kaacita lynu ři konstantním tlaku, n je látkové množství lynu a T 1, T 2 jsou teloty na začátku a konci uvažovaného termodynamického děje. Poznámka: Hodnota hodnota vnitřní energie soustavy U v daném stavu nemá velký raktický význam, rotože ři raktických alikacích je důležitý ouze řírůstek nebo úbytek vnitřní energie soustavy U Stavová rovnice ideálního lynu Protože termodynamika neumí určit stavovou rovnici ideálního lynu, uvedeme ji zde zatím bez odvození, které necháme do kaitoly věnované kinetické teorii. Bez kinetické teorie bychom museli stavou rovnici ideálního lynu určit exerimentálně. Stavovou rovnicí ideálního lynu nazýváme následující důležitý vztah: = nrt 1 1 T 1 = 2 2 T 2 =... K K T K = Rn, (5.2) kde je tlak, objem, T telota a n látkové množství lynu. R je molární lynová konstanta, která je ro všechny lyny stejná a je R =8, 314Jmol 1 K 1. ztah na ravé straně (5.2) vyjadřuje, že během libovolného vratného termodynamického děje musí být v každém okamžiku součin jeho tlaku a objemu vydělený telotou lynu konstantní Mayerův vzorec S oužitím stavové rovnice ideálního lynu a vztahu ro C C v (4.8) [( ) ]( ) U d C C v = + [JK 1 ], dt T 5 2

3 Základní vztahy ro ideální lyn Michal arady odvod me nyní rozdíl teelných kaacit ideálního lynu ři stálém tlaku a objemu, tedy takzvaný Mayerův vzorec. První člen obecného vztahu ro rozdíl teelných kaacit je ( ) U =0, T rotože vnitřní energie ideálního lynu nezávisí na objemu. Druhý člen na ravé straně je tlak ideálního lynu a oslední derivaci získáme takto ( ) [ ( )] d d nrt = = nr, dt dt kde za jsme dosadili ze stavové rovnice = RnT/ a ři derivování jsme využili skutečnosti, že n, R a 1 jsou konstantní. Dosadíme li nyní jednotlivé výsledky ro ideální lyn do rovnice (4.8) dostaneme: C C v =(0+) nr = nr [JK 1 ], a tedy ro rozdíl molárních teelných kaacit ideálního lynu dostaneme důležitý výsledek, který budeme často oužívat v dalším textu takzvaný Mayerův vzorec. c m c vm = R [Jmol 1 K 1 ], (5.3) Znaménková konvence Dříve než si ukážeme výočet ráce a tela ro několik základních dějů s ideálním lynem, řiomeneme si zvolenou znaménkovou konvenci ro ráci: W>0 otom zkoumaný systém koná ráci na okolních tělesech W<0 otom vnější síly konají ráci na zkoumaném systému, tedy systém ráci řijímá a ro telo: 1 Derivujeme ři konstaním tlaku. 5 3

4 Michal arady Přednáška 5: Termodynamika ideálního lynu Q>0 otom zkoumaný systém (lyn) řijímá telo z okolí Q<0 otom zkoumaný systém telo do okolí odevzdává Počáteční stav systému budeme značit a konečný stav. Budeme li systém sledovat ve více než dvou stavech budeme je značit dalšími čísly v závorkách, v ořadí ve kterém systém jednotlivými sledovanými stavy rochází. 5.2 Děje s ideálními lyny Izochorický děj Izochorický děj robíhá s konstantním množstvím lynu (n = konst) ři konstantním objemu, tedy = konst, d = 0. Uravíme li stavovou rovnici ideálního lynu tak, že všechny konstanty řevedeme na ravou stranu rovnice dostaneme Charlesův zákon ( T = konst = nr ) 1 T 1 = 2 T 2 = = K T K, (5.4) tedy ři izochorickém ději je ve všech stavech kterými lyn rochází oměr tlaku a teloty konstantní. Zobrazíme li izochorický děj v diagramu dostaneme izochoru. Z diagramu je atrné, že ráce vykonaná ři tomto ději je nulová, tedy W = d =0. S ohledem na tuto skutečnost můžeme I. termodynamický zákon ro izochorický děj zasat ve tvaru d Q = du o integraci Q = U = c vm n(t 2 T 1 ), (5.5) tedy telo řijaté či odevzdané lynem ři izochorickém ději je rovno řírůstku či úbytku vnitřní energie lynu. 5 4

5 Děje s ideálními lyny Michal arady Izochora Izobara 2 0 W Obrázek 5.1: Zobrazení izochorického a izobarického děje v diagramu Izobarický děj Izobarický děj robíhá s konstantním množstvím lynu (n = konst) ři konstantním tlaku, tedy = konst, d = 0. Uravíme li stavovou rovnici ideálního lynu odobně jako v ředchozím říadě dostaneme Gay Lussacův zákon T = konst ( = nr ) 1 T 1 = 2 T 2 = = K T K. (5.6) Zobrazíme li izobarický děj v diagramu dostaneme izobaru. Práce vykonaná ři tomto ději je nenulová a je dána vztahem W = d = = ( 2 1 ). Integrací I. termodynamického zákona ro izochorický děj dostaneme vztah ro výočet tela, které lyn řijme nebo odevzdá během děje Q = U + = c vm n(t 2 T 1 )+( 2 1 ). S ohledem na stavovou rovnici ideálního lynu latí ( 2 1 )=Rn(T 2 T 1 ), a tedy vztah ro telo ři izobarickém ději můžeme řesat jako Q = U + =(c vm + R)n(T 2 T 1 )=c m n(t 2 T 1 ), (5.7) 5 5

6 Michal arady Přednáška 5: Termodynamika ideálního lynu 1 Izoterma 1 Adiabata 2 W W Obrázek 5.2: Zobrazení izotermického a adiabatického děje v diagramu. kde jsme využili Mayerův vzorec c m c vm = R. Samozřejmě telo ři izobarickém ději můžeme očítat římočařeji ze vztahu Q = c m n dt = c m n(t 2 T 1 ). (5.8) Je zřejmé, že ohříváme li izobaricky lyn, část dodaného tela se sotřebuje na zvýšení teloty lynu, tedy na nárůst vnitřní energie a část na konání ráce Izotermický děj Izotermický děj robíhá s konstantním množstvím lynu (n = konst) ři konstantní telotě, tedy T = konst, dt = 0. Ze stavové rovnice ideálního lynu ihned dostaneme Boyle Marriotteův zákon = konst (= nrt ) 1 1 = 2 2 = = K K. (5.9) Zobrazíme li izotermický dějv diagramu dostaneme izotermu. Matematicky se jedná o rovnoosou hyerbolu. Práce vykonaná ři tomto ději je nenulová a je dána vztahem W = d = RnT d = RnT ln

7 Děje s ideálními lyny Michal arady Protože dt =0 T =0, je odle vztahu (5.1) také U =0a I. termodynamický zákon můžeme sát ve tvaru d Q = d W o integraci Q = W, (5.10) tedy veškeré telo dodané či odevzdané lynem se řemění na ráci vykonanou lynem nebo vnějšími silami Adiabatický děj Adiabatický děj je děj který robíhá s konstantním množstvím lynu (n = konst) ři němž zároveň nedochází k teelné výměně, tedy dq =0, Q =0. ztahy mezi jednotlivými stavovými veličinami jsou dány Poissonovým zákonem κ = konst 1 κ 1 = 2 κ 2 = = K κ K, (5.11) kde Poissonova konstanta κ je rovna odílu teelných kaacit lynu ři stálém tlaku a objemu κ = C C v = c m c vm, κ > 1 (5.12) a je tedy vždy větší než jedna. Odvození Poissonova zákona není tak triviální jako v ředchozích říadech, roto ho necháme do studia termodynamiky. Abychom dostali Poissonův zákon ve stavových roměnných T a P T oužijeme stavovou rovnici ideálního lynu (říadně stavovou rovnici umocněnou na κ) a vydělíme jí Poissonův zákon ve stavových roměnných.tím dostaneme κ 1 T = konst 1 κ T κ = konst. (5.13) Zobrazíme li adiabatický děj v diagramu dostaneme adiabatu. Adiabata je odobná izotermě, ale díky tomu, že objem je umocněn na κ klesá rychleji. Práce vykonaná či řijatá lynem ři tomto ději lze určit bud římou integrací Poissonova zákona nebo jednodušeji z I. termodynamického zákona. zhledem k tomu, že Q =0latí W = U = c vm n(t 2 T 1 ). (5.14) Při adiabatickém ději se tedy ráce koná výhradně na úkor vnitřní energie. 5 7

8 Michal arady Přednáška 5: Termodynamika ideálního lynu 0 Obrázek 5.3: Množina olytro leží v diagramu v rostoru mezi izotermou a adiabatou. Adiabata klesá rychleji než izoterma Polytroický děj Zatímco ři adiabatickém ději ředokládáme dokonalou teelnou izolaci lynu od okolí aby nedocházelo k teelné výměně, ři izotermickém naoak ředokládáme dokonalý styk lynu s ohřívačem nebo chladičem. U reálných dějů, je rakticky nemožné obě tyto krajní alternativy realizovat a ulatňují se takzvané děje olytroické, ři nichž dochází k omezené teelné výměně s okolím lynu. Tuto teelnou výměnu lze charakterizovat teelnou kaacitou C o níž ři olytroických dějích ředokládáme že je konstantní, tedy C = konst (také množství lynu je během děje konstantní n = konst). Relace mezi jednotlivými stavovými veličinami jsou dány vztahem odobným Poissonovu zákonu γ = konst 1 γ 1 = 2 γ 2 = = K γ K, (5.15) kde konstanta γ je rovna γ = C C C v C, kde γ (1,κ). (5.16) 5 8

9 Děje s ideálními lyny Michal arady Odvození výše uvedených vztahů oět necháme do studia termodynamiky. Souvislost mezi stavovými roměnnými T a P T dostaneme obdobně jako ři ději adiabatickém γ 1 T = konst 1 γ T γ = konst. (5.17) e shodě s ředešlým výkladem je vidět, že ro C 0 řechází děj olytroický v adiabatický, rotože s nulovou teelnou kaacitou systému je i telo ři teelné výměně nulové, kdežto ro C, tedy ři dokonalé teelné výměně, je γ = 1 a dostáváme Boyle Marriotteův zákon a tedy izotermický děj. Zobrazíme li olytroický děj v diagramu dostaneme olytrou. zhledem ke vztahům (5.15), (5.16) množina olytro leží mezi izotermou a adiabatou ro daný lyn. Práci vykonanou či řijatou lynem ři tomto ději určíme římou integrací rovnice (5.15) W = d = konst γ d, (5.18) kde konstantou je součin tlaku a objemu umocněného na γ v libovolném okamžiku v růběhu olytroického děje. Telo řijaté nebo odevzdané lynem ři olytroickém ději dostaneme z I. termodynamického zákona Q = U + W = c vm n(t 2 T 1 )+W. (5.19) 5 9

10 Michal arady Přednáška 5: Termodynamika ideálního lynu 5 10

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více

HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR

HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR HYDROPNEUMATICKÝ AKOÝ AKUMULÁTOR OSP 050 ŠEOBECNÉ INFORMACE ýočet hydroneumatického akumulátoru ZÁKLADNÍ INFORMACE Při výočtu hydroneumatického akumulátoru se vychází ze stavové změny lynu v akumulátoru.

Více

KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Přemysl Šedivý. 1 Základní pojmy 2

KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Přemysl Šedivý. 1 Základní pojmy 2 Obsah KRUHOÝ DĚJ S IDEÁLNÍM PLYNEM Studijní text ro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý Základní ojmy ztahy užívané ři oisu kruhových dějů s ideálním lynem Přehled základních dějů v ideálním

Více

STRUKTURA A VLASTNOSTI PLYNŮ

STRUKTURA A VLASTNOSTI PLYNŮ I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 2 TERMODYNAMIKA

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 2 TERMODYNAMIKA YSOKÉ UČENÍ ECHNICKÉ BRNĚ FAKULA SAEBNÍ PAEL SCHAUER APLIKOANÁ FYZIKA MODUL ERMODYNAMIKA SUDIJNÍ OPORY PRO SUDIJNÍ PROGRAMY S KOMBINOANOU FORMOU SUDIA Recenzoval: Prof. RNDr. omáš Ficker, CSc. Pavel Schauer,

Více

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu.

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu. 7. Měření dutých objemů omocí komrese lynu a určení Poissonovy konstanty vzduchu Úkol : Určete objem skleněné láhve s kohoutem komresí lynu. Pomůcky Měřený objem (láhev s kohoutem), seciální lynová byreta

Více

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený

Více

Teplota a její měření

Teplota a její měření Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

VLHKÝ VZDUCH STAVOVÉ VELIČINY

VLHKÝ VZDUCH STAVOVÉ VELIČINY VLHKÝ VZDUCH STAVOVÉ VELIČINY Vlhký vzduch - vlhký vzduch je směsí suchého vzduchu a vodní áry okuující solečný objem - homogenní směs nastává okud je voda ve směsi v lynném stavu - heterogenní směs ve

Více

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1 Joule-Thomsonův jev Fyzikální raktikum z molekulové fyziky a termodynamiky Teoretický rozbor Entalie lynu Při Joule-Thomsonově jevu dochází k nevratné exanzi lynů do rostředí s nižším tlakem. Pro ilustraci

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Kinetick teorie plyn

Kinetick teorie plyn 0 Kinetick teorie lyn P edstavte si, ûe jste se r vï vr tili z lyûa skè t ry do romrzlè chaty; co udïl te nejd Ìv? NejsÌö zatoìte v kamnech ó a roë? ÿeklo by se, ûe kamna zv öì obsah vnit nì (ÑteelnÈì)

Více

Základy elektrických pohonů, oteplování,ochlazování motorů

Základy elektrických pohonů, oteplování,ochlazování motorů Základy elektrických ohonů, otelování,ochlazování motorů Určeno ro studenty kombinované formy FS, ředmětu Elektrotechnika II an Dudek únor 2007 Elektrický ohon Definice (dle ČSN 34 5170): Elektrický ohon

Více

VUT, FAST, Brno ústav Technických zařízení budov

VUT, FAST, Brno ústav Technických zařízení budov Termo realizaci inovovaných technicko-ekonomických VUT, FAST, Brno ústav Technických zařízen zení budov Vodní ára - VP Vaříme a dodáváme vodní áru VP: mokrou, suchou, sytou, řehřátou nízkotlakou, středotlakou

Více

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter.

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter. CHEMICKÁ ENERGETIKA Energetickou stránkou soustav a změnami v těchto soustavách se zabývá fyzikální disciplína termodynamika. Z široké oblasti obecné termodynamiky se chemická termodynamika zajímá o chemické

Více

1.5.2 Mechanická práce II

1.5.2 Mechanická práce II .5. Mechanická ráce II Předoklady: 50 Př. : Jakou minimální ráci vykonáš ři řemístění bedny o hmotnosti 50 k o odlaze o vzdálenost 5 m. Příklad sočítej dvakrát, jednou zanedbej třecí sílu mezi bednou a

Více

Teplovzdušné motory motory budoucnosti

Teplovzdušné motory motory budoucnosti Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní Katedra energetiky Telovzdušné motory motory budoucnosti Text byl vyracován s odorou rojektu CZ.1.07/1.1.00/08.0010 Inovace odborného vzdělávání

Více

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A ibbsova a Helmholtzova energie Def. ibbsovy energie H Def. Helmholtzovy energie U, jsou efinovány omocí stavových funkcí jená se o stavové funkce. ibbsova energie charakterizuje rovnovážný stav (erzibilní

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

FYZIKÁLNÍ CHEMIE chemická termodynamika

FYZIKÁLNÍ CHEMIE chemická termodynamika FYZIKÁLNÍ CHEMIE chemická termodynamika ermodynamika jako vědní disciplína Základní zákony termodynamiky Práce, teplo a energie Vnitřní energie a entalpie Chemická termodynamika Definice termodynamiky

Více

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE Obsa Energie... 1 Kinetická energie... 1 Potenciální energie... Konzervativní síla... Konzervativníu silovéu oli odovídá dru otenciální

Více

ZÁKLADNÍ POZNATKY Hydrostatika Kapaliny málo stlačitelné, za rovnovážného stavu nemohou vznikat tečná napětí, jsou dokonale pružné.

ZÁKLADNÍ POZNATKY Hydrostatika Kapaliny málo stlačitelné, za rovnovážného stavu nemohou vznikat tečná napětí, jsou dokonale pružné. ZÁKLDNÍ POZNTKY Hydrostatika Kaaliny málo stlačitelné, za rovnovážného stavu nemohou vznikat tečná naětí, jsou dokonale ružné. Tlak v kaalině F, F. S S tlaková síla Pascalův zákon : Tlak je na všech místech

Více

Zpracování teorie 2010/11 2011/12

Zpracování teorie 2010/11 2011/12 Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit

Více

Jméno: _ podpis: ročník: č. studenta. Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď)

Jméno: _ podpis: ročník: č. studenta. Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď) Jméno: _ podpis: ročník: č. studenta Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď) 1. JEDNOTKA PASCAL JE DEFINOVÁNÁ JAKO a. N.m.s b. kg.m-1.s-2 c. kg.m-2 d. kg.m.s 2. KALORIMETRICKÁ

Více

PRŮTOK PLYNU OTVOREM

PRŮTOK PLYNU OTVOREM PRŮTOK PLYNU OTVOREM P. Škrabánek, F. Dušek Univerzita Pardubice, Fakulta chemicko technologická Katedra řízení rocesů a výočetní techniky Abstrakt Článek se zabývá ověřením oužitelnosti Saint Vénantovavy

Více

MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA

MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 3.. 04 Název zpracovaného celku: MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Studuje tělesa na základě jejich částicové struktury.

Více

SROVNÁNÍ VYBRANÝCH DĚJŮ V REÁLNÉM PLYNU MODELY, ANIMACE

SROVNÁNÍ VYBRANÝCH DĚJŮ V REÁLNÉM PLYNU MODELY, ANIMACE Záadočeská univerzita v Plzni Fakulta edagogická Dilomová ráce SROVNÁNÍ VYBRANÝCH DĚJŮ V REÁLNÉM PLYNU MODELY, ANIMACE COMPARISON OF SELECTED EFFECTS IN REAL GAS - MODELS, ANIMATIONS Jiří Prušák Plzeň

Více

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013 Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno

Více

21.1 VRATNÉ A NEVRATNÉ DĚJE 21.2 ENTROPIE. Probíhá-li v uzavřeném systému nevratný děj, entropie S systému vždy roste a nikdy neklesá.

21.1 VRATNÉ A NEVRATNÉ DĚJE 21.2 ENTROPIE. Probíhá-li v uzavřeném systému nevratný děj, entropie S systému vždy roste a nikdy neklesá. 21 Entroie AnonymnÌ n is na zdi v jednè kav rniëce na Pecan Street v Austinu v Texasu n m sdïluje: Ñ»as je z sob, jak B h zajistil, aby se vöechno nestalo najednouì.»as m takè smïr: nïkterè dïje se odehr

Více

MECHANIKA KAPALIN A PLYNŮ

MECHANIKA KAPALIN A PLYNŮ MECHANIKA KAPALIN A PLYNŮ Věda, která oisuje kaaliny v klidu se nazývá Věda, která oisuje kaaliny v ohybu se nazývá Věda, která oisuje lyny v klidu se nazývá Věda, která oisuje lyny v ohybu se nazývá VLATNOTI

Více

8. Termodynamika a molekulová fyzika

8. Termodynamika a molekulová fyzika 8. erodynaika a olekulová fyzika Princi energie je záležitost zkušenosti. Pokud by tedy jednoho dne ěla být jeho všeobecná latnost zochybněna, což v atoové fyzice není vyloučeno, stal by se náhle aktuální

Více

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova 1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota

Více

Elektroenergetika 1. Termodynamika

Elektroenergetika 1. Termodynamika Elektroenergetika 1 Termodynamika Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

7. VÝROBNÍ ČINNOST PODNIKU

7. VÝROBNÍ ČINNOST PODNIKU 7. Výrobní činnost odniku Ekonomika odniku - 2009 7. VÝROBNÍ ČINNOST PODNIKU 7.1. Produkční funkce teoretický základ ekonomiky výroby 7.2. Výrobní kaacita Výrobní činnost je tou činností odniku, která

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

Přehled otázek z fyziky pro 2.ročník

Přehled otázek z fyziky pro 2.ročník Přehled otázek z fyziky pro 2.ročník 1. Z jakých základních poznatků vychází teorie látek + důkazy. a) Látka kteréhokoli skupenství se skládá z částic molekul, atomů, iontů. b) Částice se v látce pohybují,

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

7.5.13 Rovnice paraboly

7.5.13 Rovnice paraboly 7.5.1 Rovnice arabol Předoklad: 751 Př. 1: Seiš všechn rovnice ro arabol a nakresli k nim odovídající obrázk. Na každém obrázku vznač vzdálenost. = = = = Pedagogická oznámka: Sesání arabol je důležité,

Více

Vnitřní energie, práce a teplo

Vnitřní energie, práce a teplo Přednáška 3 Vnitřní energie, práce a teplo Thermodynamics is a funny subject. The first time you go through it, you don t understand it at all. The second time you go through it, you think you understand

Více

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými 1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte

Více

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa].

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. Příklad 1 Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. m 20[kg], t 15 [ C] 288.15 [K], p 10 [MPa] 10.10 6 [Pa], R 8314 [J. kmol 1. K 1 ] 8,314

Více

FYZIKÁLNÍ CHEMIE I: 2. ČÁST

FYZIKÁLNÍ CHEMIE I: 2. ČÁST Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 2. ČÁST KCH/P401 Ivo Nezbeda Ústí nad Labem 2013 1 Obor: Klíčová slova: Anotace: Toxikologie a analýza škodlivin, Chemie

Více

F4 SÍLA, PRÁCE, ENERGIE A HYBNOST

F4 SÍLA, PRÁCE, ENERGIE A HYBNOST F4 SÍLA, PRÁCE, ENERGIE A HYBNOST Evroský sociální fond Praha & EU: Investujeme do vaší budoucnosti F4 SÍLA, PRÁCE, ENERGIE A HYBNOST Prvními velmi důležitými ojmy jsou mechanická ráce a otenciální energie

Více

Ing. Stanislav Jakoubek

Ing. Stanislav Jakoubek Ing. Stanislav Jakoubek Číslo DUMu III/2-2-3-14 III/2-2-3-15 III/2-2-3-16 III/2-2-3-17 III/2-2-3-18 III/2-2-3-19 III/2-2-3-20 Název DUMu Ideální plyn Rychlost molekul plynu Základní rovnice pro tlak ideálního

Více

CHEMICKÁ ROVNOVÁHA PRINCIP MOBILNÍ (DYNAMICKÉ) ROVNOVÁHY

CHEMICKÁ ROVNOVÁHA PRINCIP MOBILNÍ (DYNAMICKÉ) ROVNOVÁHY CHEMICKÁ ROVNOVÁHA PRINCIP MOBILNÍ (DYNAMICKÉ) ROVNOVÁHY V reakční kinetice jsme si ukázali, že zvratné reakce jsou charakterizovány tím, že probíhají současně oběma směry, tj. od výchozích látek k produktům

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 1 STAVOVÉ VELIČINY TERMODYNAMICKÝCH SOUSTAV

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 1 STAVOVÉ VELIČINY TERMODYNAMICKÝCH SOUSTAV VYSOKÉ UČEÍ ECHICKÉ V BRĚ FAKULA SAVEBÍ PAVEL SCHAUER APLIKOVAÁ FYZIKA MODUL SAVOVÉ VELIČIY ERMODYAMICKÝCH SOUSAV SUDIJÍ OPORY PRO SUDIJÍ PROGRAMY S KOMBIOVAOU FORMOU SUDIA Recenzoval: Prof. RDr. omáš

Více

Obsah MECHANIKA IDEÁLNÍCH PLYNŮ. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3

Obsah MECHANIKA IDEÁLNÍCH PLYNŮ. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3 MECHANIKA IDEÁLNÍCH PLYNŮ Studijní text ro řešitele FO a ostatní zájemce o fyziku Bohumil ybíral Obsah Předmluva 3 Základní veličiny a zákony ideálního lynu 4 Stavové veličiny lynu 4 eličiny oisující lyn

Více

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn Zěny skuenství látek Pevná látka Kaalina Plyn soustava velkého očtu částic Má-li soustava v rovnovážné stavu ve všech částech stejné fyzikální a cheické vlastnosti (stejnou hustotu, stejnou strukturu a

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

Teplota a nultý zákon termodynamiky

Teplota a nultý zákon termodynamiky Termodynamika Budeme se zabývat fyzikou oisující děje, ve kterých se telota nebo skuenství látky (obecně - stav systému) mění skrze řenos energie. Tato část fyziky se nazývá termodynamika. Jak záhy uvidíme,

Více

T0 Teplo a jeho měření

T0 Teplo a jeho měření Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná

Více

1.5.5 Potenciální energie

1.5.5 Potenciální energie .5.5 Potenciální energie Předoklady: 504 Pedagogická oznámka: Na dosazování do vzorce E = mg není nic obtížnéo. Problém nastává v situacíc, kdy není zcela jasné, jakou odnotu dosadit za. Hlavním smyslem

Více

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok.

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok. 8. Měření růtoků V následující tabulce jsou uvedeny jednotky ro objemový a hmotnostní růtok. Základní vztahy ro stacionární růtok Q M V t S w M V QV ρ ρ S w ρ t t kde V [ m 3 ] - objem t ( s ] - čas, S

Více

Kontrolní otázky k 1. přednášce z TM

Kontrolní otázky k 1. přednášce z TM Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Statistická analýza dat - Indexní analýza

Statistická analýza dat - Indexní analýza Statistiká analýza dat Indexní analýza Statistiká analýza dat - Indexní analýza Index mohou být:. Stejnorodýh ukazatelů. Nestejnorodýh ukazatelů Index se skládají ze dvou složek:... intenzita (úroveň znaku)...

Více

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má

Více

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů

Více

EKONOMETRIE 4. přednáška Modely chování spotřebitele

EKONOMETRIE 4. přednáška Modely chování spotřebitele EKONOMETRIE 4. řednáška Modely chování sotřebitele Rozočtové omezení Sotřebitel ři svém rozhodování resektuje tzv. rozočtové omezení x + x y, kde x i množství i-té sotřební komodity, i cena i-té sotřební

Více

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na

Více

IV. Fázové rovnováhy dokončení

IV. Fázové rovnováhy dokončení IV. Fázové rovnováhy dokončení 4. Fázové rovnováhy Ústav rocesní a zracovatelské techniky 1 4.3.2 Soustava tuhá složka kaalná složka Dvousložková soustava s 2 Křivka rozustnosti T nenasycený roztok nasycený

Více

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD F-1 Fyzika hravě ( k sadě 20 materiálů) Poř. 1. F-1_01 KLID a POHYB 2. F-1_02 ROVNOVÁŽNÁ POLOHA Prezentace obsahuje látku 1 vyučovací hodiny. materiál slouží k opakování látky na téma relativnost klidu

Více

Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu:

Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu: Elektroenergetika 1 (A1B15EN1) 3. cvičení Příklad 1: Rankin-Clausiův cyklus Vypočtěte tepelnou účinnost teoretického Clausius-Rankinova parního oběhu, jsou-li admisní parametry páry tlak p a = 80.10 5

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny.

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny. 75 Paabola Předoklad: 750, 7507 Pedagogická oznámka: Na všechn říklad je otřeba asi jeden a ůl vučovací hodin Paabolu už známe: matematika: Gafem každé kvadatické funkce = a + b + c je aabola fzika: Předmět,

Více

Stanovení měrného tepla pevných látek

Stanovení měrného tepla pevných látek 61 Kapitola 10 Stanovení měrného tepla pevných látek 10.1 Úvod O teple se dá říci, že souvisí s energií neuspořádaného pohybu molekul. Úhrnná pohybová energie neuspořádaného pohybu molekul, pohybu postupného,

Více

7. Fázové přeměny Separace

7. Fázové přeměny Separace 7. Fázové řeměny Searace Fáze Fázové rovnováhy Searace látek Evroský sociální fond Praha & EU: Investujeme do vaší budoucnosti 7. Fázové řeměny Searace fáze - odlišitelný stav látky v systému; v určité

Více

Řešené úlohy ze statistické fyziky a termodynamiky

Řešené úlohy ze statistické fyziky a termodynamiky Řešené úlohy ze statistické fyziky a termodynamiky Statistická fyzika. Uvažujme dvouhladinový systém, např. atom s celkovým momentem hybnosti h v magnetickém ) ) poli. Bázové stavy označme = a =, první

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

5 Základy termodynamiky

5 Základy termodynamiky 5 Základy termodynamiky Teplo, teplota, tepelná kapacita, metody jejich měření. Termodynamická soustava a její rovnováha. Hlavní věty termodynamiky. Ideální plyn. Stavová rovnice, Carnotův cyklus. Reálné

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

ř é Ů é ř ž ř é é ř ž ř Ů ř ř ř Ú é Í ř ř ř é Ž é Í ř é Ý ř ř é é é é ř ř ř é é ř é é ř é Ž ř Ý é ří ř Ř é ř ř Ž Ů ř ř ř Š Í ří ř ř řň é ř Ú řň é ř řň é ř Š ř ž é ř Ž ř Ž ř ř ř Ž Á Ž Ž Š ř ř ř ř ř é é

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Fenomenologická termodynamika

Fenomenologická termodynamika Atkins 1 Fenomenologická termodynamika Popisuje makroskopický stav Neuvažuje vnitřní stavbu hmoty okolí termodynamická soustava (systém) okolí Vnitřní parametry teplota T vnitřní energie U tlak p látková

Více

TERMOMECHANIKA 12. Cykly tepelných motorů

TERMOMECHANIKA 12. Cykly tepelných motorů FSI U v Brně, Energetický útav Odbor termomechaniky a techniky rotředí rof. Ing. Milan Pavelek, Sc. ERMOMEHANIKA. ykly teelných motorů OSNOA. KAPIOLY Přehled cyklů teelných motorů ykly alovacích motorů

Více

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013 Učební osnova předmětu Fyzikální chemie Studijní obor: Aplikovaná chemie Zaměření: Forma vzdělávání: Celkový počet vyučovacích hodin za studium: Analytická chemie Chemická technologie Ochrana životního

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA TERMODYNAMICKÁ TEPLOTNÍ STUPNICE, TEPLOTA 1) Převeďte hodnoty v

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

ZAKLADY FYZIKALNI CHEMIE HORENí, VÝBUCHU A HAŠENí

ZAKLADY FYZIKALNI CHEMIE HORENí, VÝBUCHU A HAŠENí r SDRUŽENí POŽÁRNíHO A BEZPEČNOSTNíHO INžENÝRSTVí. JAROSLAV K,\LOUSEK,.,.,. ZAKLADY FYZIKALNI CHEMIE HORENí, VÝBUCHU A HAŠENí EDICESPBI SPEKTRUM OBSAH. strana 1. FyzikálnÍ chemie v požární ochranč a bezpečnosti

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 Entalická bilance výměníků tela Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 2 Termika 2.1Teplota, teplotní roztažnost látek 2.2 Teplo a práce, přeměny vnitřní energie tělesa 2.3 Tepelné motory 2.4 Struktura pevných

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

Výkon střídavého proudu, účiník

Výkon střídavého proudu, účiník ng. Jaromír Tyrbach Výkon střídavého proudu, účiník odle toho, kterého prvku obvodu se výkon týká, rozlišujeme u střídavých obvodů výkon činný, jalový a zdánlivý. Ve střídavých obvodech se neustále mění

Více

C5250 Chemie životního prostředí II definice pojmů

C5250 Chemie životního prostředí II definice pojmů C5250 Chemie životního prostředí II definice pojmů Na základě materiálů Ivana Holoubka a Josefa Zemana zpracoval Jiří Kalina. Ekotoxikologie věda studující vlivy chemických, fyzikálních a biologických

Více

S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat.

S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat. @08. Derivace funkce S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat. Definice: Součet funkce f a g je takový předpis, taková funkce h, která každému

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více