Metoda konjugovaných gradientů

Rozměr: px
Začít zobrazení ze stránky:

Download "Metoda konjugovaných gradientů"

Transkript

1 0 Metoda onjugovaných gradientů Ludě Kučera MFF UK 11. ledna 2017 V tomto textu je popsáno, ja metodou onjugovaných gradientů řešit soustavu lineárních rovnic Ax = b, de b je daný vetor a A je symetricá a pozitivně definitní reálná matice. Jedná se o metodu iterativní: vycházejíce z libovolného bodu x 0 v příslušném Eulidovsém prostoru, budeme postupně procházet (opaováním stále stejného výpočtu) body x 1, x 2,..., až se naonec dostaneme do bodu, terý je řešením soustavy, nebo alespoň ta blízo němu, že nám daná hodnota bude vyhovovat jao přibližné řešení soustavy. 1 Řešení soustavy lineárních rovnic minimalizací vadraticého funcionálu Definujme funcionál f tato: f(x) = 1 2 xt Ax x T b pro aždé x E n. Lemma 1 Řešení x sol soustavy Ax = b je jediné minimum funcionálu f. Důaz: Uvažujme vetor x E n a řešení x sol soustavy Ax = b (sol jao solution, anglicy řešení ). Položme e = x x sol. Pa f(x) = f(x sol + e) = 1 2 (x sol + e) T A(x sol + e) (x sol + e) T b = = 1 2 (xt solax sol + x T solae + e T Ax sol + e T Ae) x T solb e T b = = ( 1 2 xt solax sol x T solb) + e T Ae + e T (Ax sol b) = f(x sol ) + e T Ae, protože x T sol Ae = et Ax sol a proto 1 2 (xt sol Ae + et Ax sol ) = e T Ax sol. Jeliož je A pozitivně definitní, je hodnota výrazu e T Ae vždy nezáporná a je rovna nule (své nejmenší možné hodnotě) právě dyž e = 0, neboli dyž x = x sol. 1

2 2 Minimalizace funcionálu v daném směru Předpoládejme nyní, že se nacházíme v bodě x a vydáme se z něj ve směru vetoru p (vpřed nebo i vzad). Navštívíme tedy body x + αp, de α je reálné číslo. Naším cílem je určit, de na této dráze má funcionál f nejmenší hodnotu. Hodnota funcionálu f na této dráze je f(x + αp) = 1 2 (x + αp)t A(x + αp) (x + αp) T b = = 1 2 xt Ax + αp T Ax α2 p T Ap x T b αp T b = U + αv + α 2 W, de U = 1 2 xt Ax x T b, V = p T Ax p T b, W = 1 2 pt Ap. Pro pevné x a p jsou U, V a W onstanty a výraz pro f(x + αp) je vadraticou funcí α. Je známo, že tato funce má minimum, dyž se její derivace podle α rovná 0. Ta derivace je obecně rovna 2W α+v a tedy minimum nabývá pro α = V 2W, neboli pro α = pt (b Ax) p T. Ap Mimimum na dráze tvořené body x + αp je v bodě 3 Směr největšího spádu x + pt (b Ax) p T p (1) Ap Dále si představme, že jsme v bodě x a chceme se pustit směrem nejprudšího lesání funcionálu f. Který to je směr? Vezměme vetor e dély 1 a vydejme se v jeho směru z bodu x. Položme ϕ(α) = f(x + αe). Pro pevné e je rychlost změny funcionálu f v bodě x při pohybu ve směru e rovna hodnotě derivace funce ϕ podle α v bodě α = 0. Propočítejme to: ϕ(α) = f(x + αe) = 1 2 xt Ax + αe T Ax + α 2 e T Ae x T b αe T b ϕ(α) α = et Ax + 2αe T Ae e T b a tedy hodnota této derivace pro α = 0 je ϕ(α) α = e T Ax e T b = e T (b Ax). α=0 Nyní se zamysleme nad tím, v jaém směru je ta derivace nejmenší, tedy salární součin e T (b Ax) největší. Jasně, je to dyž e jde ve směru b Ax. 2

3 4 Metoda největšího spádu Máme-li tedy nyní řešit rovnici Ax = b, stačí nalézt minimum funcionálu f(x) = 1 2 xt Ax x T b, teré můžeme hledat iterativně tato: postavme se do libovolného bodu, terý označíme x 0. Často se volí x 0 = 0, nemáme-li nějaý dobrý důvod zvolit jiný bod. Vydejme se z tohoto bodu směrem největšího lesání funcionálu f, tedy ve směru daném vetorem r 0 = b Ax 0. V tomto směru se posuneme ta hluboo (vzhledem f), ja to jen jde. O olianásobe vetoru r se posuneme, je popsáno výše. Postupem z předchozího odstavce se dostaneme do bodu, terý označíme x 1 a postup stále opaujeme. Jsme-li tedy obecně v bodě x i, položíme r i = b Ax i (povšimněte si, že r i nám taé udává, ja jsme daleo s výpočtem, ja je Ax i daleo od vetoru b, terému by se naonec mělo rovnat), vydáme se ve směru r i, dojdeme v tom směru do místa, ve terém je funcionál f nejnižší a to označíme jao x i+1, atd. Poračujeme ta dlouho, doud není r i (terému se říává i-té residuum, odtud označení r i ) rovno nule (nalezeno řešení) nebo alespoň dostatečně malé (nalezeno dostatečně valitní přibližné řešení). Této metodě říáme metoda nejprudšího spádu (anglicy steepest descent ). 5 Metoda onjugovaných gradientů V roce 1952 si Magnus Hestenes a Eduard Stiefel povšimli, že v elipsoidové geometrii pozitivně definitních matic je být výhodnější postupovat trochu jina a lépe, než metodou nejprudšího spádu: způsobem, terému se nyní říá metoda onjugovaných gradientů (anglicy conjugate gradients, odtud i zrata CG). Je dobře známo, že je-li A pozitivně definitní a symetricá reálná matice, pa vzorec x, y = x T Ay má vlastnosti salárního součinu, tedy x, x 0 s rovností pouze pro x = 0, operace je symetricá a αx, y = α x, y. Řeneme, že dva vetory x a y jsou onjugované, poud platí x, y = 0 (tedy jsou na sebe olmé vzhledem e salárnímu součinu, určenému maticí A). Metoda onjugovaných gradientů postupuje velmi podobně jao metoda nejprudšího spádu, ale budeme se snažit, aby směry, ve terých se v jednotlivých iteracích pohybujeme (gradienty), byly navzájem onjugované. Postup začíná v libovolně zvoleném vetoru x 0 a vytváří posloupnost x 0, r 0, p, x 1, r 1, p 1,... následujícím způsobem: 3

4 Metoda onjugovaných gradientů (neupravená) Vstupní data: celé číslo n (dimenze) symetricá pozitivně definitní matice A veliosti n n, vetor b dimenze n (pravá strana soustavy), počáteční vetor x 0. pro = 0, 1, 2,... { } r = b Ax ; poud r = 0, uonči výpočet; (2) 1 r T p = r Ap j p T j Ap p j ; (3) j j=0 x +1 = x + pt r p T Ap p ; (4) První ro se udělá stejně jao v metodě nejprudšího spádu; vyrazíme směrem p 0, terý bude roven směru r 0 = b Ax 0. Když se ale dostaneme po iteracích do bodu x, nebudeme dál postupovat nejprudším spádem přesně ve směru residua r = b Ax, ale ve směru p, terý vznine ta, že si směr r upravíme ta, aby byl onjugovaný e všem směrům p 0,..., p 1, ve terých jsme se pohybovali dříve. Tento pozměněný směr p (p od anglicého progress ) dostaneme z r podobně jao při Gramm-Schmidtově ortogonalizaci ta, že od residua r odečteme jeho složy v předchozích směrech p 0 = r 0, p 1,..., p 1, ale místo obvylé olmosti používáme olmost ve smyslu salárního součinu definovaného maticí A, tedy onjugovanost. Pro aždé j < tedy chceme od vetoru r odečíst taový násobe α j vetoru p j, aby výslede odečítání byl onjugovaný s p j. Pro hodnotu násobu α j tedy máme následující rovnici: (r α j p j ) T Ap j = 0, neboli r T Ap j = α j p T j Ap j, z čehož dostáváme α j = rt Ap j p T j Ap. j To nám tedy dává vzorec (3) pro p, uvedený výše. Jestliže je tato vznilé p nenulový vetor, přejdeme z x ve směru daném vetorem p do bodu x +1, terý minimalizuje funcionál f na této přímce. Na záladě (1) tedy se dostaneme e vzorci (4) pro x +1, uvedenému výše. Poud by nastal případ, že r je nulový vetor, výpočet se přeruší, protože v taovém případě x je řešení soustavy Ax = b a není nutno dále poračovat. 4

5 Potíž při výpočtech by mohla nastat, poud by se stalo, že p = 0, protože hned v následujícím výpočtu x +1 ve vzorci (4) by došlo dělení nulou. Za chvíli ale bude doázáno, že tomu nidy nemůže dojít. Nyní doážeme tři jednoduchá lemmata, terá budou mít řadu velmi důležitých důsledů. Lemma 2 Poud je p definováno, pa je lineární ombinací vetorů r 0,..., r. Důaz: Lemma doážeme inducí podle. Pro = 0 tvrzení platí, protože p 0 = r 0. A jestliže platí pro 1, pa z (3) oamžitě plyne, že platí taé pro. Lemma 3 Poud je r +1 definováno, pa Důaz: Na záladě (4) je taže r +1 = r α Ap, de α = pt r p T Ap. pt r x +1 x = p T Ap p, r +1 r = (b Ax +1 ) (b Ax ) = (Ax +1 Ax ) = pt r p T Ap Ap. Lemma 4 (Rezidua jsou na sebe olmá) Necht pro nějaé celé nezáporné číslo platí, že x j a r j jsou definována a r j 0 pro všechna j = 0, 1,..., a navíc r T i r j = 0 pro všechna celá i a j taová, že 0 i < j. Potom p 0, taé x +1 a r +1 jsou řádně definovány a r T +1 r j = 0 pro j = 0, 1,...,. Důaz: Jeliož jsou rezidua r 0,..., r nenulová a navzájem olmá, jsou taé lineárně nezávislá. Suma v rovnici (3) je lineární ombinací vetorů p 0,..., p 1 a tedy na záladě předchozího lemmatu taé lineární ombinací vetorů r 0,..., r 1. Podle (3) je tedy p netriviální lineární ombinací vetorů r 0,..., r. Proto p nemůže být nulový vetor. A je-li p 0, pa jsou taé definovány vetory x +1 a r +1. Naonec spočítejme hodnotu r T +1 r j pro zvolené celé j v rozmezí 0 j : ( j 1 r T +1r j = (r α Ap ) T r j = r T r j α p T r T j A p j + Ap ) i p T i Ap p i = r T r j α p T Ap j, i i=0 5

6 de pt r α = p T Ap, protože p bylo zvoleno ta, aby platilo p T Ap i = 0 pro i <. Víme nyní, že pro j < a j 1 p T j r = r j i=0 r T j Ap i p T i Ap p i = r j r, i 1 p T r T r = (r Ap j p T j Ap p j ) T r = r T r. j j=0 Jestliže nyní j <, pa z předpoladů věty plyne, že r T r j = 0 a p T Ap j = 0, taže i r T +1 r j = 0. Poud naopa j =, pa r T r j α p T Ap j = r T r p T r = r T r r T r = 0. Lemma říá, že residua jsou na sebe olmá v lasicém smyslu (obvylý salární součin), nioli onjugovaná (salární součin induovaný maticí A). Jední z velmi významných důsledů lemmatu je následující věta (je třeba poznamenat, že platí za předpoladu, že všechny výpočty se provádějí absolutně přesně, bez zaorouhlovacích chyb): Věta 1 Metoda onjugovaných gradientů nalezne přesné řešení soustavy rovnic Ax = b po nejvýše n rocích. Důaz: Kdyby se metoda onjungovaných gradientů nezastavila po n rocích, vytvořila by nenulové vetory r 0, r 1,..., r n, teré by ale podle předchozího lemmatu byly na sebe olmé, tedy lineárně nezávislé, což vša v prostoru dimenze n není možné. Další velmi užitečné lemma říá, že ve vzorci (3) pro výpočet p jsou všechny sčítance v sumě s výjimou sčítance pro j = 1 rovny nule, taže je tento vzorec možno velice zjednodušit: Lemma 5 r T Ap j = 0 pro j = 0,..., 2 r T +1 Ap p T Ap Důaz: Na záladě lemmatu 30 platí, že = rt +1 r +1 r T r r T Ap j = r T ( 1 α j 1 (r j r j 1 ) = 0 pro j = 0, 1,..., 2 r T +1 Ap p T Ap r T +1 = Ap 1 α 1 p T 1 Ap 1 = rt r r T 1 r 1 6

7 Důslede 1 p +1 = r +1 + β p, de β = rt +1 r +1 r T r Důaz: Metoda onjugovaných gradientů (s indexy) Vstupní data: celé číslo n (dimenze) symetricá pozitivně definitní matice A veliosti n n, vetor b dimenze n (pravá strana soustavy), počáteční vetor x 0. r 0 = b Ax 0 ; p 0 = r 0 ; pro = 0, 1, 2,... { } z = Ap ; α = rt r p T z ; x +1 = x + α p ; r +1 = r α z ; poud r = 0, uonči výpočet; β = rt +1 r +1 r T r ; p +1 = r +1 + β p ; 7

8 Metoda onjugovaných gradientů (onečný tvar) Vstupní data: celé číslo n (dimenze) symetricá pozitivně definitní matice A veliosti n n, vetor b dimenze n (pravá strana soustavy), počáteční vetor x 0. r = b Ax 0 ; lrr = r T r; p = r ; pro = 0, 1, 2,... { } z = Ap ; α = lrr p T z ; x = x + αp ; r = r αz; poud r = 0, uonči výpočet; rr = r T r ; β = rr lrr ; lrr = rr p = r + βp ; 8

4. Přednáška: Kvazi-Newtonovské metody:

4. Přednáška: Kvazi-Newtonovské metody: 4 Přednáša: Kvazi-Newtonovsé metody: Metody s proměnnou metriou, modifiace Newtonovy metody Efetivní pro menší úlohy s hustou Hessovou maticí Newtonova metoda (opaování): f aproximujeme loálně vadraticou

Více

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Bucinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Formalizace rozměrové analýzy ( výsledné jednoty na obou stranách musí souhlasit ). Rozměr fyziální veličiny Mějme nějaou třídu jednote, napřílad [(g,

Více

1 Gaussova kvadratura

1 Gaussova kvadratura Cvičení - zadání a řešení úloh Zálady numericé matematiy - NMNM0 Verze z 7. prosince 08 Gaussova vadratura Fat, že pro něterá rovnoměrná rozložení uzlů dostáváme přesnost o stupeň vyšší napovídá, že pro

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:

Více

Geometrická zobrazení

Geometrická zobrazení Pomocný text Geometricá zobrazení hodná zobrazení hodná zobrazení patří nejjednodušším zobrazením na rovině. Je jich vša hrozně málo a často se stává, že musíme sáhnout i po jiných, nědy výrazně složitějších

Více

1 Seznamová barevnost úplných bipartitních

1 Seznamová barevnost úplných bipartitních Barvení grafů pravděpodobnotní důazy Zdeně Dvořá 7. proince 208 Seznamová barevnot úplných bipartitních grafů Hypergraf je (labě) -obarvitelný, jetliže exituje jeho obarvení barvami neobahující monochromaticou

Více

V této sekci zobecníme vnější kalkulus z kapitoly 4 operaci vnějšího. se sice na zde zavedené operace budeme odvolávat, vždy ale jen jako

V této sekci zobecníme vnější kalkulus z kapitoly 4 operaci vnějšího. se sice na zde zavedené operace budeme odvolávat, vždy ale jen jako [2.03,1.12,1.14,2.04,2.02,2.02,2.03,2.03,2.02,0,1.03] Kapitola 8 Kovariantní vnější derivace V této seci zobecníme vnější alulus z apitoly 4 operaci vnějšího součinu a vnější derivace na obecnější tenzorové

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

PRVOČÍSLA 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Obsah

PRVOČÍSLA 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Obsah PRVOČÍSLA Jan Malý UK v Praze a UJEP v Ústí n. L. Obsah. Elementární úlohy o prvočíslech 2. Kongruence 2 3. Algebraicé rovnice a polynomy 3 4. Binomicá a trinomicá věta 5 5. Malá Fermatova věta 7 6. Diferenční

Více

11. Skalární součin a ortogonalita p. 1/16

11. Skalární součin a ortogonalita p. 1/16 11. Skalární součin a ortogonalita 11. Skalární součin a ortogonalita p. 1/16 11. Skalární součin a ortogonalita p. 2/16 Skalární součin a ortogonalita 1. Definice skalárního součinu 2. Norma vektoru 3.

Více

1 Polynomiální interpolace

1 Polynomiální interpolace Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

9 Stupně vrcholů, Věta Havla-Hakimiho

9 Stupně vrcholů, Věta Havla-Hakimiho Typicé přílady pro zápočtové písemy DiM 470-301 (Kovář, Kovářová, Kubesa) (verze: November 5, 018) 1 9 Stupně vrcholů, Věta Havla-Haimiho 9.1. Doážete nareslit graf na 9 vrcholech, ve terém mají aždé dva

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 63. roční matematicé olympiády Úlohy rajsého ola ategorie A 1. Najděte všechna celá ladná čísla, terá nejsou mocninou čísla 2 a terá se rovnají součtu trojnásobu svého největšího lichého dělitele a pětinásobu

Více

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,

Více

Úlohy domácího kola kategorie B

Úlohy domácího kola kategorie B 54. roční Matematicé olympiády Úlohy domácího ola ategorie 1. Určete všechny dvojice (a, b) reálných čísel, pro teré má aždá rovnic x + ax + b 0, x + (a + 1)x + b + 1 0 dva růné reálné ořeny, přičemž ořeny

Více

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Necht L je lineární prostor nad R. Operaci : L L R nazýváme Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

6 5 = 0, = 0, = 0, = 0, 0032

6 5 = 0, = 0, = 0, = 0, 0032 III. Opaované pousy, Bernoulliho nerovnost. Házíme pětrát hrací ostou a sledujeme výsyt šesty. Spočtěte pravděpodobnosti možných výsledů a určete, terý má největší pravděpodobnost. Řešení: Jedná se o serii

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

Základní spádové metody

Základní spádové metody Základní spádové metody Petr Tichý 23. října 2013 1 Metody typu line search Problém Idea metod min f(x), f : x R Rn R. n Dána počáteční aproximace x 0. Iterační proces (krok k): (a) zvol směr d k, (b)

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOL BÁŇSKÁ TECHICKÁ UIVERZIT OSTRV FKULT STROJÍ MTEMTIK II V PŘÍKLDECH CVIČEÍ Č 0 Ing Petra Schreiberová, PhD Ostrava 0 Ing Petra Schreiberová, PhD Vysoá šola báňsá Technicá univerzita Ostrava

Více

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a) Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Lineární programování

Lineární programování Lineární programování Petr Tichý 19. prosince 2012 1 Outline 1 Lineární programování 2 Optimalita a dualita 3 Geometrie úlohy 4 Simplexová metoda 2 Lineární programování Lineární program (1) min f(x) za

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ).

III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ). III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce = f(x 0 + h 1, y 0 + h 2 ) f(x 0, y 0 ) f u (x 0, y 0 ), kde u = (h 1, h 2 ). ( ) = f(x 0 + h 1, y 0 ) f(x 0, y 0 ) x (x 0,

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

Těleso na nakloněné rovině Dvě tělesa spojená tyčí Kyvadlo

Těleso na nakloněné rovině Dvě tělesa spojená tyčí Kyvadlo TEORETICKÁ MECHANIKA INTEGRÁLNÍ PRINCIPY MECHANIKY Záladní pojmy z mechaniy Mechanicý systém: jaáoli soustava částic nebo těles teré se rozhodneme popisovat (eletron atom Zeměoule planetární systém ).

Více

3.3.4 Thaletova věta. Předpoklady:

3.3.4 Thaletova věta. Předpoklady: 3.3.4 Thaletova věta Předpolady: 030303 Př. : Narýsuj ružnici ( ;5cm) a její průměr. Na ružnici narýsuj libovolný bod různý od bodů, (bod zvol jina než soused v lavici). Narýsuj trojúhelní. Má nějaou speciální

Více

Mocnost bodu ke kružnici

Mocnost bodu ke kružnici 3..0 ocnost bodu e ružnici Předpolady: 309 Př. : Je dána ružnice a bod, ležící vně ružnice. Veď bodem dvě různé sečny ružnice p a p. Průsečíy sečny p,. Průsečíy sečny p,. Změř potřebné vzdálenosti a spočti

Více

Riemannův určitý integrál

Riemannův určitý integrál Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

Mocnost bodu ke kružnici

Mocnost bodu ke kružnici 3.. ocnost bodu e ružnici Předpolady: 03009 Př. : Je dána ružnice a bod, ležící vně ružnice. Veď bodem dvě různé sečny ružnice p a p. Průsečíy sečny p s ružnicí označ A, B. Průsečíy sečny p s ružnicí označ

Více

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Předmět: MA 4 Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Četba: Text o lineární algebře v Příručce přežití na webových

Více

EUKLIDOVSKÉ PROSTORY

EUKLIDOVSKÉ PROSTORY EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,

Více

Lingebraické kapitolky - Analytická geometrie

Lingebraické kapitolky - Analytická geometrie Lingebraické kapitolky - Analytická geometrie Jaroslav Horáček KAM MFF UK 2013 Co je to vektor? Šipička na tabuli? Ehm? Množina orientovaných úseček majících stejný směr. Prvek vektorového prostoru. V

Více

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6) 1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht

Více

3.2.9 Věta o středovém a obvodovém úhlu

3.2.9 Věta o středovém a obvodovém úhlu 3..9 ěta o středovém a obvodovém úhlu Předpolady: ody, rozdělují ružnici na dva oblouy. Polopřímy a pa rozdělují rovinu na dva úhly. rcholy obou úhlů leží ve středu ružnice říáme, že jde o středové úhly

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Aplikovaná numerická matematika - ANM

Aplikovaná numerická matematika - ANM Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových

Více

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální

Více

Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity)

Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity) 4 Lineární zobrazení Definice: Nechť V a W jsou vektorové prostory Zobrazení A : V W (zobrazení z V do W nazýváme lineárním zobrazením, pokud pro všechna x V, y V a α R platí 1 A(x y = A(x A(y (vlastnost

Více

stránkách přednášejícího.

stránkách přednášejícího. Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení

Více

Symetrické a kvadratické formy

Symetrické a kvadratické formy Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso

Více

Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,

Více

MATEMATIKA 1 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! MA1ACZMZ07DT. Pokyny pro vyplňování záznamového archu

MATEMATIKA 1 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! MA1ACZMZ07DT. Pokyny pro vyplňování záznamového archu MAACZMZ07DT MATURITA NANEČISTO 007 MATEMATIKA didaticý test Testový sešit obsahuje 0 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém sešitu. Odpovědi pište do záznamového archu. Používejte rýsovací

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních diferenciálních rovnic y = a (x)y + a (x)y + + a n (x)y n + f (x) y = a (x)y + a (x)y + + a n (x)y n + f (x). y n = a

Více

Základy maticového počtu Matice, determinant, definitnost

Základy maticového počtu Matice, determinant, definitnost Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n

Více

Matematika I 12a Euklidovská geometrie

Matematika I 12a Euklidovská geometrie Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

Numerické metody 6. května FJFI ČVUT v Praze

Numerické metody 6. května FJFI ČVUT v Praze Extrémy funkcí Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Více dimenzí Kombinatorika Lineární programování Programy 1 Úvod Úvod - Úloha Snažíme se najít extrém funkce, at už jedné

Více

Předpoklady: a, b spojité na intervalu I.

Předpoklady: a, b spojité na intervalu I. Diferenciální rovnice Obyčejná diferenciální rovnice řádu n: F t, x, x, x,, x n Řešení na intervalu I: funce x : I R taová, že pro aždé t I je F t, xt, x t,, x n t Maximální řešení: neexistuje řešení na

Více

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou 1 Vlastní (charakteristická) čísla a vlastní (charakteristické) vektory matice Pro zadanou čtvercovou matici A budeme řešit maticovou rovnici A x = λ x, kde x je neznámá matice o jednom sloupci (sloupcový

Více

3. Mocninné a Taylorovy řady

3. Mocninné a Taylorovy řady 3. Mocninné a Taylorovy řady A. Záladní pojmy. Obor onvergence Mocninné řady jsou nejjednodušším speciálním případem funčních řad. Jsou to funční řady, jejichž členy jsou mocninné funce. V této apitole

Více

Binomická věta

Binomická věta 97 Binomicá věta Předpolady: 96 Kdysi dávno v prvním ročníu jsme se učili vzorce na umocňování dvojčlenu Př : V tabulce jsou vypsány vzorce pro umocňování dvojčlenu Najdi podobnost s jinou dosud probíranou

Více

Lineární algebra : Vlastní čísla, vektory a diagonalizace

Lineární algebra : Vlastní čísla, vektory a diagonalizace Lineární algebra : Vlastní čísla, vektory a diagonalizace (14. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 21. dubna 2014, 19:37 1 2 14.1 Vlastní čísla a vlastní vektory Nechť je

Více

Dijkstrův algoritmus

Dijkstrův algoritmus Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované

Více

3. Přednáška: Line search

3. Přednáška: Line search Úloha: 3. Přednáška: Line search min f(x), x R n kde x R n, n 1 a f : R n R je dvakrát spojitě diferencovatelná. Iterační algoritmy: Začínám v x 0 a vytvářím posloupnost iterací {x k } k=0, tak, aby minimum

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

Operace s maticemi. 19. února 2018

Operace s maticemi. 19. února 2018 Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b. 1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Vlastní čísla a vlastní vektory 1 Motivace Uvažujme lineární prostor všech vázaných vektorů v rovině, které procházejí počátkem, a lineární zobrazení tohoto prostoru do sebe(lineární transformaci, endomorfismus)

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

Lineární algebra : Lineární prostor

Lineární algebra : Lineární prostor Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární

Více

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti: Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární

Více

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

P. Rozhodni, zda bod P leží uvnitř, vně nebo na kružnici k. Pokud existují, najdi tečny kružnice procházející bodem P.

P. Rozhodni, zda bod P leží uvnitř, vně nebo na kružnici k. Pokud existují, najdi tečny kružnice procházející bodem P. 756 Tečny ružnic II Předpolady: 45, 454 Pedagogicá poznáma: Tato hodina patří na gymnázium mezi početně nejnáročnější Ačoliv jsou přílady optimalizované na co nejmenší početní obtížnost, všichni studenti

Více

Hodnocení přesnosti výsledků z metody FMECA

Hodnocení přesnosti výsledků z metody FMECA Hodnocení přesnosti výsledů z metody FMECA Josef Chudoba 1. Úvod Metoda FMECA je semivantitativní metoda, pomocí teré se identifiují poruchy s významnými důsledy ovlivňující funci systému. Závažnost následů

Více

6.1 Vektorový prostor

6.1 Vektorový prostor 6 Vektorový prostor, vektory Lineární závislost vektorů 6.1 Vektorový prostor Nechť je dán soubor nějakých prvků, v němž je dána jistá struktura vztahů mezi jednotlivými prvky nebo v němž jsou předepsána

Více

Nelineární optimalizace a numerické metody (MI NON)

Nelineární optimalizace a numerické metody (MI NON) Nelineární optimalizace a numerické metody (MI NON) Magisterský program: Informatika Obor: Teoretická informatika Katedra: 18101 Katedra teoretické informatiky Jaroslav Kruis Evropský sociální fond Praha

Více

MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE

MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 PŘEDNÁŠKA 5 MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 Multiriteriální rozhodování

Více

Lineární algebra : Polynomy

Lineární algebra : Polynomy Lineární algebra : Polynomy (2. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 15. dubna 2014, 11:21 1 2 2.1 Značení a těleso komplexních čísel Značení N := {1, 2, 3... }... množina

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

2 Diferenciální rovnice

2 Diferenciální rovnice 2 Diferenciální rovnice 2 Moely růstu V této apitole bueme zabývat jenouchými eterministicými moely růstu, napříla růstu populací, objemu nějaé omoity apo Funce y(t bue označovat veliost populace v čase

Více

Diferenciální rovnice 3

Diferenciální rovnice 3 Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty

Více

8 Matice a determinanty

8 Matice a determinanty M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou

Více

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m. Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n

Více