Editace genomů. Genome editing, or genome editing with engineered nucleases (GEEN)
|
|
- Jozef Němeček
- před 6 lety
- Počet zobrazení:
Transkript
1 Editace genomů Genome editing, or genome editing with engineered nucleases (GEEN) Postupy genového inženýrství, při nichž se do vybraného místa v cílové DNA pomocí uměle připravených nukleáz (tzv. molekulárních nůžek) vnáší inzerce, delece a nebo se stávající sekvence nahrazuje za jiné (náhrada alel). Tyto nukleázy vytvářejí na určených místech genomu dvouřetězcové zlomy (DSBs: double-stranded breaks), čímž vyvolávají přirozené endogenní buněčné procesy vedoucí k reparaci zlomů: a) Homologní rekombinací (HR) HDR = homology directed recombination (rekombinace řízená homologií) b) Nehomologní spojování volných konců (NHEJ: nonhomologous end-joining) 1
2 - editace probíhá s přesností až 1 nt - používají se uměle připravené nukleázy modifikace přirozeně se vyskytujících - podstatou je tvorba zlomu v řetězci DNA (1 ale i 2 zlomy) - v místě štěpení - vznik mutace - vyštěpení celého úseku DNA (genu) - náhrada úseku DNA - lze připravit mutace jakéhokoli typu (včetně náhrady alel gene replacement ) - důležitá je funkce reparačních systémů buněk endogenní procesy - nezávisle na vnesené DNA/RNA 2
3 Historické etapy v CRISPR biologii a editování genomů 3
4 - poměrně vysoká frekvence HDR u kvasinek - přenos His3 genu (do His3 - kmene) - pozitivní selekce na His - využití neg. selekčního markeru (Ura) - vně sekvence - vytvořeny buňky His3 + a URA - 4
5 (RGENs) = RNA-guided engineered nucleases - programované nukleázy (jejich cíl je řízen molekulou RNA) 5
6 Procesy probíhající po vytvoření DSB umělými nukleázami - snaha o vývoj systému pro sekvenčně specifickou tvorbu dsdna zlomů Lidský genom 3,2 Gbp cílem musí být jedinečné sekvence (specificita) - sekvence delší než 20 bp
7 klasická NHEJ - rychlý proces (10-30 minut) - výsledkem jsou malé inzerce/delece - existují i alternativní NHEJ př. microhomology-mediated end joining (MMEJ) - rozsáhlé inzerce, delece, fůze, 7
8 HDR - složitější (pomalejší) proces - zapojeno více proteinů - nutná přítomnost homologní sekvence - výsledkem přesně opravená DNA 8
9 Procesy probíhající po vytvoření DSB umělými nukleázami 9
10 Overview of possible genome editing outcomes using site-specific nucleases. Nucleaseinduced DNA double-strand breaks (DSBs) can be repaired by homology-directed repair (HDR) or error-prone nonhomologous end joining (NHEJ). (A) In the presence of donor plasmid with extended homology arms, HDR can lead to the introduction of single or multiple transgenes to correct or replace existing genes. (B) In the absence of donor plasmid, NHEJ-mediated repair yields small insertion or deletion mutations at the target that cause gene disruption. In the presence of double-stranded oligonucleotides or in vivo linearized donor plasmid, DNA fragments up to 14 kb have been inserted via NHEJmediated ligation. Simultaneous induction of two DSBs can lead to deletions, inversions and translocations of the intervening segment. 10
11 Typy nukleáz používané pro editaci genomů Rozpoznání sekvence Interakce protein x DNA Rozpoznání sekvence Interakce protein x DNA Rozpoznání sekvence Interakce protein x DNA 11
12 MEGANUKLEÁZY Meganukleázy se vyskytují u různých druhů mikroorganismů, mají velmi dlouhé rozpoznávací sekvence (>14bp vs. RE 4-6 bp) a jsou tak přirozeně sekvenčně velmi specifické. Nevýhodou je, že je jich známo relativně málo, a tudíž počet cílových sekvencí je omezen. Mutagenezí byly uměle připraveny varianty meganukleáz, které rozpoznávají další jedinečné sekvence. Byly připraveny rovněž hybridní varianty meganukleáz fúzí dvou domén s odlišnými cílovými místy. Byl použit též postup záměn aminokyselin v doménách interagujících s DNA a docíleno vysoké specifity rozpoznání (method named rationally designed meganuclease (US Patent 8,021,867 B2). Meganukleázy jsou méně toxické pro buňky než ZNF díky tomu, že mají vyšší specificitu/stringenci rozpoznání cílových sekvencí DNA. Jejich navrhování je však časově náročné. 12
13 i meganukleázy nebakteriálního původu - LAGLIDADG family of homing endonucleases (kódovány introny nebo inteiny), často v mitochondriích a chloroplastech I-SceI 18-bp z mitochondrií Saccharomyces cerevisiae I-CreI chloroplasty Chlamydomonas reinhardtii I-DmoI archea: Desulfurococcus mobilis. oproti RE: - delší rozpoznávací sekvence (nemusí být palindrom, často asymetrické) - vyšší tolerance k malým substitucím v rozpoznávací sekvenci - obvykle vyžadují součinnost dalších proteinů 13
14 NUKLEÁZA FokI Enzym FokI přirozeně se vyskytující u Flavobacterium okeanokoites je restrikční endonukleáza typu IIS (štěpí blízko rozpoznávací sekvence). Je tvořena N-terminální vazebnou doménou a nespecificky štěpící doménou na C-konci. Výhody FokI pro její využití v GI: - Rozpoznávaná sekvence je oddělena od sekvence, která je štěpena to umožňuje izolovat doménu enzymu, která štěpí sekvenčně nespecificky. Tato doména pak může být spojena s doménou zodpovědnou za rozpoznání cílové sekvence. - FokI vyžaduje pro svou nukleázovou činnost dimerizaci zvýší se tím specifita rozpoznání cílového místa. - Byly připraveny modifikované FokI, které fungují jen jako heterodimery, což zvyšuje specificitu rozpoznání cílových sekvencí a eliminuje možnost vytváření nespecifického štěpení v případě homodimerů. - využívá se pro konstrukci ZFN a TALEN nukleáz 14
15 Typy nukleáz používané pro editaci genomů 15
16 Struktura proteinu obsahujícího zinkové prsty (zinc finger) Každý zinkový prst sestává asi ze 30 AA v konformaci ββα. Každý prst kontaktuje 3 nebo 4 bp ve velkém žlábku DNA. Protein TALE v komplexu s cílovou DNA. Jednotlivé repetice proteinu TALE obsahují AA, které rozpoznávají jednotlivé páry bází prostřednictvím dvou hypervariabilních zbytků (repeat-variable diresidues RVDs) Dimer Zinc-finger nukleázy (ZFN) navázaný na DNA. Cílová místa pro vazbu ZFN sestávají ze dvou vazebných míst pro zinkové prsty, která jsou oddělena 5-7 bp dlouhou sekvencí, která je štěpena štěpící doménou FokI. Dimer TALEN navázaný na DNA. Cílová místa pro TALEN jsou tvořena dvěma vazebnými oblastmi pro TALE oddělenými mezerníkovou sekvencí různé délky (12-20 bp). TALE lze upravit tak, aby rozpoznávala jedinečné sekvence vlevo a vpravo. 16
17 Editace genomů pomocí ZFN - produkovány již otestované firmami: Sigma-Aldrich Sangamo BioSciences 17
18 (a) Schematic diagram of a ZFN heterodimer bound to the mutated mtdna target. Each of the monomeric ZFN consists of the FokI nuclease domain (FokI CD) linked to a zinc-finger peptide. One of the ZFNs (NARPd, red) was designed to bind to the mutated mtdna site, whereas its companion ZFN binds a native sequence on the opposite DNA strand (COMPa, blue)19. (b) Schematic structure of mtzfn used in the cleavage assay in c. 'mitochondrial targeting sequence (MTS) F' denotes the mitochondrial targeting sequence of F1β-subunit of the human mitochondrial ATP synthase (see ANTICIPATED RESULTS for details). (c) In vitro assay testing the specificity of the F NARPd Fok NES and F COMPa Fok NES constructs (see ANTICIPATED RESULTS for details). 18
19 TAL effectory (Transcription Activator-like effectors) Gram negativní bakterie r. Xanthomonas infikují řadu rostlinných druhů, u nichž mohou způsobovat onemocnění. Injikují svými sekrečními systémy do rostlinných buněk řadu efektorových proteinů včetně TAL efektorů. TAL effectors (Transcription Activator-like effectors) mají několik motivů včetně NLS, proto mohou vstupovat do jádra, kde se vážou na promotorové sekvence a aktivují transkripci rostlinných genů, které napomáhají bakteriální infekci (snížení hladiny Cu, zvýšení hladiny glukózy, ) TAL obsahují v centrální části opakující se sekvence aminokyselin v počtu až 33, které jsou dlouhé obvykle 34 AA. Typická repetice: LTPEQVVAIASHDGGKQALETVQRLLPVLCQAHG, avšak v pozicích 12 a 13 se vyskytují různé aminokyseliny (místo označované jako repeat variable diresidue n. RVD) tyto klíčové pro specificitu vazby na sekvenci DNA Byly navrženy TALE (Engineered TAL effectors) schopné se vázat na jakékoliv sekvence DNA díky záměnám aminokyselin.takové umělé TALE lze využít pro aktivaci nebo represi endogenů u rostlin i živočichů. Engineered TAL effectors lze fúzovat se štěpícími doménami nukleáz (FokI) a vytvářet tak TAL Effector Nucleases (TALENs). 19
20 Struktura TALEN 20
21 Struktura proteinu obsahujícího zinkové prsty (zinc finger) Každý zinkový prst sestává asi ze 30 AA v konformaci ββα. Každý prst kontaktuje 3 nebo 4 bp ve velkém žlábku DNA. Protein TALE v komplexu s cílovou DNA. Jednotlivé repetice proteinu TALE obsahují AA, které rozpoznávají jednotlivé páry bází prostřednictvím dvou hypervariabilních zbytků aa (repeat-variable diresidues RVDs) Dimer Zinc-finger nukleázy (ZNF) navázaný na DNA. Cílová místa pro vazbu ZNF sestávají ze dvou vazebných míst pro zinkové prsty, která jsou oddělena 5-7 bp dlouhou sekvencí, která je rozpoznávána štěpící doménou FokI. Dimer TALEN navázaný na DNA. Cílová místa pro TALEN jsou tvořena dvěma vazebnými oblastmi pro TALE oddělenými mezerníkovou sekvencí různé délky (12-20 bp). TALE lze upravit tak, aby rozpoznával jedinečné sekvence vlevo a vpravo. 21
22 Model for DNA-target specificity of TAL effectors. (A) TAL effectors contain central tandem repeats, NLSs, and an AD. Shown is the amino acid sequence of the first repeat of AvrBs3. Hypervariable amino acids 12 and 13 are shaded in gray. (B) Hypervariable amino acids at position 12 and 13 of the 17.5 AvrBs3 repeats are aligned to the UPA box consensus (14). (C) Repeats of TAL effectors and predicted target sequences in promoters of induced genes were aligned manually. Nucleotides in the upper DNA strand that correspond to the hypervariable amino acids 22 in each repeat were counted on the basis of the following combinations of eight effectors and
23 DNA binding code for TALENs 23
24 Schéma strategie pro přípravu genetických konstruktů exprimujících chimerické proteiny TALEN postupná ligace klonovaných monomerů RE1 RE2 výsledkem je skládačka cílená proti libovolné sekvenci DNA - každý si může sám vytvořit ( K dispozici jsou knihovny monomerů, dimerů, trimerů a tetramerů 24
25 Umělé nukleázy - odvozené od aktivátoru transkripce + nukleáz - vazba na specifické místo v genomu - do buněk se obvykle dopravují na expresních vektorech - lze je využít pro tvorbu bodových mutací - delecí - inzercí - inverzí - duplikací - translokací ale také pro značení mrna - podstatou je tvorba dsdna zlomu a jeho oprava - sekvenční specifita je dána DNA-protein interakcí 25
26 Systém CRISPR/Cas - přirozený obraný systém bakterií a archeí proti cizorodé DNA 26
27 Fungování CRISPR-Cas9 komplexu systém pravidelně uspořádaných mezerníků mezi repeticemi CRISPR lokusu cizorodé DNA rozpoznány proteiny Cas (CRISPR associated proteins) a začleněny do CRISPR lokusu lokus má až několik stovek mezerníků, nový mezerník, který je převzat z infikující molekuly, je začleněn jako první (fáze akvizice/adaptace) následně je lokus přepisován za vzniku CRISPRové RNA (pre-crrna), ta je dále upravována do krátkých molekul CRISPRové RNA (crrna) Asociace crrna s transaktivační (transaktivující) tracrrna a následně s některým z CAS proteinů tento komplex rozpozná a štěpí cizorodou DNA 27
28 3 hlavní složky systému crrna, tracrrna, Cas proteiny (1-2) - Úseky cizorodé DNA jsou začleněny do bakteriálního genomu do lokusů CRISPR - Lokusy CRISPR jsou přepsány a upraveny do crrna (crrna biogenese) - Během interference vytváří endonukleáza Cas9 komplex s crrna a tracrrna, který pak štěpí cizorodou DNA obsahující sekvenci 20-ti nukleotidů komplementárních k crrna poblíž sekvence PAM. 28
29 29
30 sgrna vytvořená fúzí crrna a tracrrna Spojení linkerem 30
31 Struktura chimerické sgrna a kompexu sgrna s Cas9 pro vytváření DSB v cílových místech. sgrna je vytvořena spojením crrna a tracrrna. NGG 31
32 PAM sekvence photospacer adjacent motif - sekvence v těsném sousedství s cílovou DNA sekvencí - nutná pro účinné štěpení Cas9 nukleázou - původní systém NGG (rozpoznán Cas9 ze Streptococcus pyogenes) - dle systému cílová sekvence musí být ve formátu N 20 -GG - systémy jiných bakterií nebo upravené systémy NAG, YG, TTTN, YTN, 32
33 Srovnání struktury crrna:tracrrna a sgrna - systém lze exprimovat z jediného vektoru 33
34 Příprava konstruktu exprimujícího CRISPR/Cas element Sekvence sgrna je navržena tak, aby byla komplementární k cílové genomové sekvenci hcas9 = sekvence proteinu Cas9 optimalizovaná pro expresi v eukaryotických buňkách. sgrna = chimerická RNA obsahující úseky crrna a tracrrna, která je nezbytná pro dosažení aktivity. PAM není součástí klonované sekvence - pro design lze využít dostupný software
35 Možnosti editace genomů pomocí systému CRISPR/Cas9 TSS = transcription start site dcas9 deficientní na nukleázovou aktivitu Metylázy, acetylázy EGFP = fluorescenční proteiny 35
36 Působení modifikovaného systému CRISPR/Cas9 Specificita dána pouze 20 nt sgrna - úplná podobnost na 3 konci (seed) a částečná na 5 konci (distal) riziko vzniku off-target štěpení x výšší specifita (n do 20 bp) ještě vyšší specifita
37 Analogie ZFN a TALEN A. Wt Cas9 nukleáza štěpí specificky dsdna, vytváří DSB a tím navozuje reparaci. Za nepřítomnosti homologní sekvence může dojít k nehomolognímu spojování konců (NHEJ) a vzniku ins/del mutací, přerušujících zasažený gen. Za přítomnosti homologní sekvence může dojít k reparaci s využitím této sekvence a jejími vložení do místa zlomu. B. Mutantní Cas9 nukleáza vytváří místně specifické jednořetězcové zlomy. Dvojice takových sgrna může vést k tvorbě ds DNA zlomů, které mohou být reparovány s využitím homologní rekombinace či NHEJ (jednořetězcové zlomy zvyšují účinnost HDR). Tento sytém zvyšuje specifitu tvorby ds zlomů. C. Mutantní Cas 9 nukleáza může být připojena k různým efektorovým doménám, které umisťuje na 37 specifické sekvence. Mohou to být TF, represory, fluorescenční značky aj.
38 Obecná strategie genomového inženýrování 1. Selection of a target nucleotide sequence in the genome; 2. Generation of a nuclease construct directed at the selected target; 3. Delivery of this construct to the cell nucleus; and 4. Analysis of produced mutations. 38
39 Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN 39
40 40
41 41
42 Příklady typů buněk a organismů, které byly geneticky modifikovány pomocí Cas9 42
43 43
44 Izolace T lymfocytů z pacientů s různými typy nádorových onemocnění Editace genomu těchto T lymfocytů editace 3 genů Otestování terapeutického potenciálu takto editovaných buněk Pacient s agresivním nádorem plic Editace genu PD-1 T lymfocytů Otestování terapeutického potenciálu takto editovaných buněk 44
Editace genomů. Genome editing, or genome editing with engineered nucleases (GEEN)
Editace genomů Genome editing, or genome editing with engineered nucleases (GEEN) Postupy genového inženýrství, při nichž se do vybraného místa v cílové DNA pomocí uměle připravených nukleáz (tzv. molekulárních
Terapeutické klonování, náhrada tkání a orgánů
Transfekce, elektroporace, retrovirová infekce Vnesení genů Vrstva fibroblastů, LIF Terapeutické klonování, náhrada tkání a orgánů Selekce ES buněk, v nichž došlo k začlenění vneseného genu homologní rekombinací
Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor)
RNAi Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor) Místo silné pigmentace se objevily rostliny variegované a dokonce bílé Jorgensen pojmenoval tento fenomén
Nové přístupy v modifikaci funkce genů: CRISPR/Cas9 systém
Nové přístupy v modifikaci funkce genů: CRISPR/Cas9 systém Lesk a bída GM plodin Lesk a bída GM plodin Problémy konstrukce GM plodin: 1) nízká efektivita 2) náhodnost integrace transgenu 3) legislativa
Klonování DNA a fyzikální mapování genomu
Klonování DNA a fyzikální mapování genomu. Terminologie Klonování je proces tvorby klonů Klon je soubor identických buněk (příp. organismů) odvozených ze společného předka dělením (např. jedna bakteriální
Modifikace dědičné informace rostlin II
Modifikace dědičné informace rostlin II Lukáš Fischer, KFR PřF UK Obsah přednášky Jak zlepšit vlastnosti rostlin Principy přípravy GMR Příprava genových konstruktů Genový přenos do jaderného a plastidového
Bakteriální transpozony
Bakteriální transpozony Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza (transpozáza) = enzym
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a
REKOMBINACE Přestavby DNA
REKOMBINACE Přestavby DNA variace v kombinacích genů v genomu adaptace evoluce 1. Obecná rekombinace ( General recombination ) Genetická výměna mezi jakýmkoli párem homologních DNA sekvencí - často lokalizovaných
Rekombinantní protilátky, bakteriofágy, aptamery a peptidové scaffoldy pro analytické a terapeutické účely Luděk Eyer
Rekombinantní protilátky, bakteriofágy, aptamery a peptidové scaffoldy pro analytické a terapeutické účely Luděk Eyer Virologie a diagnostika Výzkumný ústav veterinárního lékařství, v.v.i., Brno Alternativní
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Programovatelné nukleázy: nejefektivnější nástroje pro editaci genomu ve službách biomedicíny
Programovatelné nukleázy: nejefektivnější nástroje pro editaci genomu ve službách biomedicíny Radislav Sedláček Ústav molekulární genetiky České Centrum Fenogenomiky BIOCEV Programovatelné nukleázy: nejefektivnější
Využití DNA markerů ve studiu fylogeneze rostlin
Mendelova genetika v příkladech Využití DNA markerů ve studiu fylogeneze rostlin Ing. Petra VESELÁ Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován
Introduction to gene targeting and genome editing
Introduction to gene targeting and genome editing Slavomír Kinský, PhD Institute of Molecular Genetics of the ASCR, v.v.i. The presentation is supported from the project OP EC CZ.1.07/2.3.00/30.0027 Founding
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
Detekce Leidenské mutace
Detekce Leidenské mutace MOLEKULÁRNÍ BIOLOGIE 3. Restrikční štěpení, elektroforéza + interpretace výsledků Restrikční endonukleasy(restriktasy) bakteriální enzymy štěpící cizorodou dsdna na kratší úseky
Transpozony - mobilní genetické elementy
Transpozony - mobilní genetické elementy Tvoří pravidelnou součást genomu prokaryot i eukaryot (až 50% genomu) Navozují mutace genů (inzerční inaktivace, polární mutace, změny exprese genů) Jsou zodpovědné
Interakce proteinu p53 s genomovou DNA v kontextu chromatinu glioblastoma buněk
MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fakulta Ústav experimentální biologie Oddělení genetiky a molekulární biologie Interakce proteinu p53 s genomovou DNA v kontextu chromatinu glioblastoma buněk
RESTRIKCE A MODIFIKACE FÁGOVÉ DNA
RESTRIKCE A MODIFIKACE FÁGOVÉ DNA po jednom cyklu Kmeny E. coli K a K(P1) + mají vzájemně odlišnou hostitelskou specifitu (K a P1) = obsahují odlišné RM-systémy Experimentální důkaz přítomnosti a působení
Využití restriktáz ke studiu genomu mikroorganismů
Využití restriktáz ke studiu genomu mikroorganismů doc. RNDr. Milan Bartoš, Ph.D. bartos.milan@atlas.cz Přírodovědecká fakulta MU, 2017 Obsah přednášky 1) Definice restrikčních endonukleáz, jejich přirozená
ZÁKLADY BAKTERIÁLNÍ GENETIKY
Zdroj rozmanitosti mikrorganismů ZÁKLADY BAKTERIÁLNÍ GENETIKY Různé sekvence nukleotidů v DNA kódují různé proteiny Různé proteiny vedou k různým organismům s různými vlastnostmi Exprese genetické informace
IMUNOGENETIKA I. Imunologie. nauka o obraných schopnostech organismu. imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány
IMUNOGENETIKA I Imunologie nauka o obraných schopnostech organismu imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány lymfatická tkáň thymus Imunita reakce organismu proti cizorodým
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
Molekulární biotechnologie č.8. Produkce heterologního proteinu v eukaryontních buňkách
Molekulární biotechnologie č.8 Produkce heterologního proteinu v eukaryontních buňkách Eukaryontní buňky se využívají v případě, když Eukaryontní proteiny syntetizované v baktériích postrádají biologickou
7. Regulace genové exprese, diferenciace buněk a epigenetika
7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom
Molekulární biotechnologie č.12. Využití poznatků molekulární biotechnologie. Transgenní rostliny.
Molekulární biotechnologie č.12 Využití poznatků molekulární biotechnologie. Transgenní rostliny. Transgenní organismy Transgenní organismus: Organismus, jehož genom byl geneticky modifikován cizorodou
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Nové metody molekulární biologie
Podzim 2015, Kurz pro středoškolské učitele Nové metody molekulární biologie Petr Beneš Ústav experimentální biologie Přírodovědecká fakulta MU High-throughput methods zvýšení rychlosti zvýšení počtu analyzovaných
BAKTERIÁLNÍ TRANSPOZONY (mobilní elementy)
BAKTERIÁLNÍ TRANSPOZONY (mobilní elementy) Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza
Genové knihovny a analýza genomu
Genové knihovny a analýza genomu Klonování genů Problém: genom organismů je komplexní a je proto obtížné v něm najít a klonovat specifický gen Klonování genů Po restrikčním štěpení genomové DNA pocházející
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
Modifikace dědičné informace rostlin
Modifikace dědičné informace rostlin Lukáš Fischer, KFR PřF UK Jak zlepšit vlastnosti rostlin Principy a klasické způsoby přípravy geneticky modifikovaných rostlinných buněk a celých rostlin Genový přenos
Molekulární biotechnologie č.9. Cílená mutageneze a proteinové inženýrství
Molekulární biotechnologie č.9 Cílená mutageneze a proteinové inženýrství Gen kódující jakýkoliv protein lze izolovat z přírody, klonovat, exprimovat v hostitelském organismu. rekombinantní protein purifikovat
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Výskyt MHC molekul. RNDr. Ivana Fellnerová, Ph.D. ajor istocompatibility omplex. Funkce MHC glykoproteinů
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc = ajor istocompatibility omplex Skupina genů na 6. chromozomu (u člověka) Kódují membránové glykoproteiny, tzv. MHC molekuly, MHC molekuly
MIKROBIOLOGIE V BIOTECHNOLOGII
Biotechnologie MIKROBIOLOGIE V BIOTECHNOLOGII Využití živých organismů pro uskutečňování definovaných chemických procesů pro průmyslové nebo komerční aplikace Organismus je geneticky upraven metodami genetického
Výuka genetiky na PřF OU K. MALACHOVÁ
Výuka genetiky na PřF OU K. MALACHOVÁ KATEDRA BIOLOGIE A EKOLOGIE BAKALÁŘSKÉ STUDIJNÍ PROGRAMY Experimentální Systematická Aplikovaná (prezenční, kombinovaná) Jednooborová Dvouoborová KATEDRA BIOLOGIE
MUTAGENEZE in vitro. postupy kterými se mění primární struktura DNA, především za účelem fenotypové změny
MUTAGENEZE in vitro postupy kterými se mění primární struktura DNA, především za účelem fenotypové změny Mutace gen transkripce translace mutace normalní protein normální fenotyp mutovaný gen abnormální
MUTAGENEZE INDUKOVANÁ TRANSPOZONY (TRANSPOZONOVÁ MUTAGENEZE)
MUTAGENEZE INDUKOVANÁ TRANSPOZONY (TRANSPOZONOVÁ MUTAGENEZE) Nejrozšířenější použití transpozonů je mutageneza za účelem lokalizace genů a jejich charakterizace. Výhody: 1. vyšší frekvence mutace než při
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
Determinanty lokalizace nukleosomů
METODY STUDIA CHROMATINU Topologie DNA a nukleosomů Struktura nukleosomu 1.65-1.8 otáčky Struktura nukleosomu 10.5 nt 1.8 otáčky 10n, 10n + 5 146 nt Determinanty lokalizace nukleosomů mechanické vlastnosti
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce
MIKROBIOLOGIE V BIOTECHNOLOGII
Biotechnologie MIKROBIOLOGIE V BIOTECHNOLOGII Termín biotechnologie byl poprvé použit v roce 1917 Procesy, při kterých se na tvorbě výsledného produktu podílejí živé organismy Širší definice: biotechnologie
Exprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
Transgeneze u ptáků: očekávání vs. realita
Transgeneze u ptáků: očekávání vs. realita Proč ptáci? Kuře - základní model v anatomii, embryologii, vývojové biologii množství získaného proteinu nižší riziko cross reaktivity s tím spojená možnost produkce
Globální pohled na průběh replikace dsdna
Globální pohled na průběh replikace dsdna 3' 5 3 vedoucí řetězec 5 3 prodlužování vedoucího řetězce (polymerace ) DNA-ligáza směr pohybu enzymů DNA-polymeráza I DNA-polymeráza III primozom 5' 3, 5, hotový
Bílkoviny a rostlinná buňka
Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Fyzické mapování Fyzické cytogenetické a fyzické molekulární mapy Ing. Hana Šimková, CSc. Cíl přednášky
Genetika zvířat - MENDELU
Genetika zvířat DNA - primární struktura Několik experimentů ve 40. a 50. letech 20. století poskytla důkaz, že genetický materiál je tvořen jedním ze dvou typů nukleových kyselin: DNA nebo RNA. DNA je
Kontrola genové exprese
Základy biochemie KBC/BC Kontrola genové exprese Inovace studia biochemie prostřednictvím e-learningu CZ.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
SYNTETICKÉ OLIGONUKLEOTIDY
Oddělení funkční genomiky a proteomiky Přírodovědecká fakulta Masarykovy university SYNTETICKÉ OLIGONUKLEOTIDY Hana Konečná CENTRÁLNÍ LABORATOŘ Masarykovy Univerzity v Brně ODDĚLENÍ FUNKČNÍ GENOMIKY A
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Crossing-over. over. synaptonemální komplex
Genetické mapy Crossing-over over v průběhu profáze I meiózy princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem synaptonemální komplex zlomy a nová spojení chromatinových
Enzymy v molekulární biologii, RFLP. Molekulární biologie v hygieně potravin 3, 2014/15, Ivo Papoušek
Enzymy v molekulární biologii, RFLP Molekulární biologie v hygieně potravin 3, 2014/15, Ivo Papoušek Enzymy v molekulární biologii umožňují nám provádět celou řadu přesně cílených manipulací Výhody enzymů:
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Ivo Frébort 4. Metody molekulární biologie I Izolace DNA a RNA Specifické postupy pro baktérie, kvasinky, rostlinné a živočišné tkáně U RNA nutno zabránit kontaminaci
Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.
Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace Centrální dogma Nukleové kyseliny Fosfátem spojené nukleotidy (cukr s navázanou bází a fosfátem) Nukleotidy Nukleotidy stavební kameny nukleových
REPLIKACE A REPARACE DNA
REPLIKACE A REPARACE DNA 1 VÝZNAM REPARACE DNA V MEDICÍNĚ Příklad: Reparace DNA: enzymy reparace nukleotidovou excizí Onemocnění: xeroderma pigmentosum 2 3 REPLIKACE A REPARACE DNA: Replikace DNA: 1. Podstata
Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled
Bioinformatika a výpočetní biologie KFC/BIN I. Přehled RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Definice bioinformatiky (Molecular) bio informatics: bioinformatics is conceptualising biology
NGS analýza dat. kroužek, Alena Musilová
NGS analýza dat kroužek, 16.12.2016 Alena Musilová Typy NGS experimentů Název Materiál Cílí na..? Cíl experimentu? amplikon DNA malý počet vybraných genů hledání variant exom DNA všechny geny hledání
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 Využití houbových organismů v genovém inženýrství MIKROORGANISMY - bakterie, kvasinky a houby využíval
Implementace laboratorní medicíny do systému vzdělávání na Univerzitě Palackého v Olomouci. reg. č.: CZ.1.07/2.2.00/
Implementace laboratorní medicíny do systému vzdělávání na Univerzitě Palackého v Olomouci reg. č.: CZ.1.07/2.2.00/28.0088 Hybridizační metody v diagnostice Mgr. Gabriela Kořínková, Ph.D. Laboratoř molekulární
Molekulární genetika II zimní semestr 4. výukový týden ( )
Ústav biologie a lékařské genetiky 1.LF UK a VFN, Praha Molekulární genetika II zimní semestr 4. výukový týden (27.10. 31.10.2008) prenatální DNA diagnostika presymptomatická Potvrzení diagnózy Diagnostika
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
(molekulární) biologie buňky
(molekulární) biologie buňky Buňka základní principy Molecules of life Centrální dogma membrány Metody GI a MB Interakce Struktura a funkce buňky - principy proteiny, nukleové kyseliny struktura, funkce
Molekulárně biologické metody princip, popis, výstupy
& Molekulárně biologické metody princip, popis, výstupy Klára Labská Evropský program pro mikrobiologii ve veřejném zdravotnictví (EUPHEM), ECDC, Stockholm NRL pro herpetické viry,centrum epidemiologie
Genetický polymorfismus
Genetický polymorfismus Za geneticky polymorfní je považován znak s nejméně dvěma geneticky podmíněnými variantami v jedné populaci, které se nachází v takových frekvencích, že i zřídkavá má frekvenci
ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv
Urbanová Anna ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv strukturní rysy mrna proces degradace každá mrna v
Mendelova genetika v příkladech. Transgenoze rostlin. Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno
Mendelova genetika v příkladech Transgenoze rostlin Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním fondem
Centrum aplikované genomiky, Ústav dědičných metabolických poruch, 1.LFUK
ové technologie v analýze D A, R A a proteinů Stanislav Kmoch Centrum aplikované genomiky, Ústav dědičných metabolických poruch, 1.LFUK Motto : "The optimal health results from ensuring that the right
Molekulární biotechnologie č.10c. Využití poznatků molekulární biotechnologie. Využití škrobu, cukrů a celulózy.
Molekulární biotechnologie č.10c Využití poznatků molekulární biotechnologie. Využití škrobu, cukrů a celulózy. Využití škrobu, cukrů a celulózy Zejména v potravinářském průmyslu Škrob je hydrolyzován
6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života?
6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života? Pamatujete na to, co se objevilo v pracích Charlese Darwina a Alfreda Wallace ohledně vývoje druhů? Aby mohl mechanismus přírodního
DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 11 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 30.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Princip genové exprese, intenzita překladu
Základy genomiky. I. Úvod do bioinformatiky. Jan Hejátko
Základy genomiky I. Úvod do bioinformatiky Jan Hejátko Masarykova univerzita, Oddělení funkční genomiky a proteomiky Laboratoř molekulární fyziologie rostlin Základy genomiky I. Zdrojová literatura ke
Exprese rekombinantních proteinů
Exprese rekombinantních proteinů Exprese rekombinantních proteinů je proces, při kterém můžeme pomocí různých expresních systémů vytvořit protein odvozený od konkrétního genu, nebo části genu. Tento protein
TRANSFORMACE = PŘÍJEM EXOGENNÍ DNA BAKTERIÁLNÍ BUŇKOU
TRANSFORMACE = PŘÍJEM EXOGENNÍ DNA BAKTERIÁLNÍ BUŇKOU 1928: Griffith - Streptococcus pneumoniae - změny virulence 1944: Avery, MacLeod, McCarty - důkaz transformující aktivity DNA Streptococcus pneumoniae
Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny
Obecná genetika Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU
Využití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
Univerzita Karlova v Praze Přírodovědecká fakulta
Univerzita Karlova v Praze Přírodovědecká fakulta Studijní program: Speciální chemicko-biologické obory Studijní obor: Molekulární biologie a biochemie organismů Mariana Brousková Nové šlechtitelské techniky
Specifická imunitní odpověd. Veřejné zdravotnictví
Specifická imunitní odpověd Veřejné zdravotnictví MHC molekuly glykoproteiny exprimovány na všech jaderných buňkách (MHC I) nebo jenom na antigen prezentujících buňkách (MHC II) u lidí označovány jako
PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU
PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU Podstata prezentace antigenu (MHC restrikce) byla objevena v roce 1974 V současnosti je zřejmé, že to je jeden z klíčových
MOBILNÍ GENETICKÉ ELEMENTY. Lekce 13 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.
MOBILNÍ GENETICKÉ ELEMENTY Lekce 13 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. Demerec (1937) popsal nestabilní mutace u D. melanogaster B. McClintocková (1902-1992, Nobelova cena 1983) ukázala ve
Chromatin. Struktura a modifikace chromatinu. Chromatinové domény
Chromatin Struktura a modifikace chromatinu Chromatinové domény 2 DNA konsensus 5 3 3 DNA DNA 4 RNA 5 ss RNA tvoří sekundární strukturu s ds vlásenkami ds forms 6 of nucleic acids Forma točivost bp/turn
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA 1. Genotyp a jeho variabilita, mutace a rekombinace Specifická imunitní odpověď Prevence a časná diagnostika vrozených vad 2. Genotyp a prostředí Regulace buněčného
Ivo Papoušek. Biologie 8, 2015/16
Ivo Papoušek Biologie 8, 2015/16 Doporučená literatura: Metody molekulární biologie (2005) Autoři: Jan Šmarda, Jiří Doškař, Roman Pantůček, Vladislava Růžičková, Jana Koptíková Izolace nukleových kyselin
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,
Mgr. et Mgr. Lenka Falková. Laboratoř agrogenomiky. Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita
Mgr. et Mgr. Lenka Falková Laboratoř agrogenomiky Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita 9. 9. 2015 Šlechtění Užitek hospodářská zvířata X zájmová zvířata Zemědělství X chovatelství
Příprava vektoru IZOLACE PLASMIDU ALKALICKÁ LYZE, KOLONKOVÁ IZOLACE DNA GELOVÁ ELEKTROFORÉZA RESTRIKČNÍ ŠTĚPENÍ. E. coli. lyze buňky.
Příprava vektoru IZOLCE PLSMIDU LKLICKÁ LYZE, KOLONKOVÁ IZOLCE DN E. coli plasmidová DN proteiny proteiny + + vysrážená plasmidová lyze buňky + snížení ph chromosomální DN centrifugace DN chromosomální
Metody studia historie populací. Metody studia historie populací
1) Metody studia genetické rozmanitosti komplexní fenotypové znaky, molekulární znaky. 2) Mechanizmy evoluce mutace, přírodní výběr, genový posun a genový tok 3) Anageneze x kladogeneze - co je vlastně
1. Definice a historie oboru molekulární medicína. 3. Základní laboratorní techniky v molekulární medicíně
Obsah Předmluvy 1. Definice a historie oboru molekulární medicína 1.1. Historie molekulární medicíny 2. Základní principy molekulární biologie 2.1. Historie molekulární biologie 2.2. DNA a chromozomy 2.3.
Hybridizace nukleových kyselin
Hybridizace nukleových kyselin Tvorba dvouřetězcových hybridů za dvou jednořetězcových a komplementárních molekul Založena na schopnosti denaturace a renaturace DNA. Denaturace DNA oddělení komplementárních
Centrální dogma molekulární biologie
řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových
Antigeny. Hlavní histokompatibilitní komplex a prezentace antigenu
Antigeny Hlavní histokompatibilitní komplex a prezentace antigenu Antigeny Antigeny: kompletní (imunogen) - imunogennost - specificita nekompletní (hapten) - specificita antigenní determinanty (epitopy)
Doprovodný materiál k práci s přípravným textem Biologické olympiády 2014/2015 pro soutěžící a organizátory kategorie B
Doprovodný materiál k práci s přípravným textem Biologické olympiády 2014/2015 pro soutěžící a organizátory kategorie B Níže uvedené komentáře by měly pomoci soutěžícím z kategorie B ke snazší orientaci
Zdrojem je mrna. mrna. zpětná transkriptáza. jednořetězcová DNA. DNA polymeráza. cdna
Obsah přednášky 1) Klonování složených eukaryotických genů 2) Úprava rekombinantních genů 3) Produkce rekombinantních proteinů v expresních systémech 4) Promotory 5) Vektory 6) Reportérové geny Zdrojem
Genetika bakterií. KBI/MIKP Mgr. Zbyněk Houdek
Genetika bakterií KBI/MIKP Mgr. Zbyněk Houdek Bakteriofágy jako extrachromozomální genomy Genom bakteriofága uvnitř bakterie profág. Byly objeveny v bakteriích už v r. 1915 Twortem. Parazitické org. nemají
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 6. Struktura nukleových kyselin Ivo Frébort Struktura nukleových kyselin Primární struktura: sekvence nukleotidů Sekundární struktura: vzájemná poloha nukleotidů
DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 3 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: chromatin - stavba, organizace a struktura