Prbh funkce Jaroslav Reichl, 2006
|
|
- Helena Staňková
- před 9 lety
- Počet zobrazení:
Transkript
1 rbh funkce Jaroslav Reichl, 6 Vyšetování prbhu funkce V tomto tetu je vzorov vyešeno nkolik úloh na vyšetení prbhu funkce. i ešení úlohy jsou využity základní vlastnosti diferenciálního potu.. ešený píklad s komentáem Je dána funkce f : y 6 9. Vyšetete její prbh a nakreslete pkn její graf. i ešení zadané úlohy budeme postupovat podle doporueného postupu a pitom využívat poznatky diferenciálního potu. Je vhodné postupovat v uvedeném poadí a postupn urit:. defininí obor funkce. sudost, lichost, periodinost funkce - má-li totiž funkce jednu z uvedených vlastností, zjednoduší to vyšetování jejího prbhu. prseíky s osami kartézského systému souadnic. limity v krajních bodech defininího oboru 5. první derivaci funkce, stacionární body a body, v nichž není první derivace definována 6. intervaly monotónnosti a lokální etrémy 7. druhou derivaci funkce, nulové body druhé derivace a body, v nichž není druhá derivace funkce definována. intervaly konvenosti a konkávnosti a inflení body 9. asymptoty funkce.obor hodnot.graf funkce.. Defininí obor Zadaná funkce je polynomická, a proto je jejím defininím oborem množina všech reálných ísel, tj. D f... Sudost nebo lichost funkce Defininí obor je symetrický vzhledem k nule, a proto zadaná funkce mže být jak lichá, tak i sudá (a nebo nemusí mít žádnou z uvedených vlastností). Je nutné ješt ovit, jaká je funkní hodnota funkce f v bod pitom patí do defininího oboru zadané funkce. ro funkní hodnotu v bod f ve srovnání s funkní hodnotou v bod. Bod i dostáváme:. Tento výraz pitom není shodný ani se zadaným pedpisem funkce f, ani k nmu není opaný. ro zadaná funkce f není ani sudá ani lichá. okud by nastala jedna z možností, další ešení úlohy by se zjednodušilo. Bylo by možné vyšetit prbh funkce nap. na podmnožin kladných ísel a potom získané výsledky zobrazit i na podmnožinu záporných ísel:. u sudé funkce pomocí osové soumrnosti, jejíž osa soumrnosti je osa y. u liché funkce pomocí stedové soumrnosti, jejíž sted soumrnosti je bod ;.. rseíky s osami kartézského systému souadnic Znalost prseík s osami kartézského systému je jednou z pomcek pro snadnjší sestrojení grafu zadané funkce. Nicmén jejich znalost není nezbytná. V pípad, že rovnice, jejíž sestavení je nutné pro hledání prseík s osou, není jednoduše ešitelná (tj. jedná-li se nap. o polynomickou funkci stupn vyššího než ti, složitou logaritmickou rovnici, ), prseíky s osou neurujeme. Na správné vyešení úlohy nebude mít absence prseík významný vliv.
2 rbh funkce Jaroslav Reichl, 6 -ovou souadnici prseík s osou získáme ešením rovnice ; f, což v pípad zadané funkce vede na kubickou rovnici 6 9. ešení této rovnice není možné snadno urit, proto prseíky s osou urovat nebudeme. ; y s osou y je výrazn jednodušší. latí: y Urit y-ovou souadnici prseíku y f. V pípad zadané funkce dostáváme y f Limity v krajních bodech defininího oboru Limity v krajních bodech defininího oboru pomáhají urit chování funkce v blízkosti bod, v nichž není možné zjistit funkní hodnotu pímým dosazením. itom je pro správné vykreslení grafu funkce dležité vdt, jak v okolí tchto bod vyšetovaná funkce vypadá. V pípad zadané funkce jsou krajními body defininího oboru dva body: a. 6 9 lim 6 9 lim 6 9 lim 6 9 lim.5. rvní derivace funkce rvní derivace f zadané funkce f je mocným nástrojem pro urení:. stacionárních bod - body podezelé z etrému ; stacionární body jsou koeny rovnice f, z nichž lze urit ty, které jsou lokálními etrémy, pomocí druhé derivace funkce (viz odstavec.7) nebo pomocí interval monotónnosti (viz odstavec.6). bod, v nichž není derivace definovaná - tyto body uríme na základ defininího oboru funkce f (tj. funkce, která je první derivací zadané funkce f) Stacionární body hledáme tak, že ešíme rovnici f, tj. hledáme body, v nichž je tena ke grafu funkce rovnobžná s osou. Derivace funkce totiž udává smrnici teny v daném bod. Je-li tena sestrojená v daném bod rovnobžná s osou, má nulovou smrnici. V T A K O V É M B O D A L E N E M U S Í B Ý T E X T R É M!!! (Viz graf funkce y v bod : první derivace je v nm nulová, ale pitom v nm není etrém!!!) Urit ale platí, že smrnice teny sestrojená v bod etrému je nulová! ro zadanou funkci je: f 9 Stacionární body uríme ešením rovnice: f 9, Body, v nichž by mohl být etrém jsou tedy body,. Vzhledem k tomu, že defininí obor derivace je množina všech reálných ísel, je derivace funkce definovaná ve všech bodech defininího oboru funkce..6. Intervaly monotónnosti a lokální etrémy Urení interval, na nichž je funkce rostoucí nebo klesající, lze provést na základ první derivace funkce. latí totiž:. je-li f pro všechna z uritého intervalu, je funkce f na tomto intervalu rostoucí. je-li f pro všechna z uritého intervalu, je funkce f na tomto intervalu klesající
3 rbh funkce Jaroslav Reichl, 6 Je-li zadaná funkce spojitá, lze urit pouze interval, na kterém je funkce rostoucí. Interval, na kterém je funkce klesající, je doplkem vypoteného intervalu v defininím oboru funkce. oznámka: edchozí vta není formulována zcela pesn, protože z interval jsou vynechány jejich krajní body, v nichž funkce pechází z klesající na rostoucí i naopak. Interval, na kterém je zadaná funkce rostoucí uríme (s využitím výpot v odstavci.5) takto: f Nejrychleji lze tuto nerovnici vyešit graficky s využitím obr.. Z nj je patrné, že funkce f je rostoucí na intervalu ; a na intervalu ;. Vzhledem k tomu, že funkce f je spojitá ve svém defininím oboru, plyne z pedchozího, že:. f je klesající na intervalu ;. f má v bod ; 6 lokální maimum a v bod ; lokální minimum obr..7. Druhá derivace funkce omocí druhé derivace f funkce f lze urit:. body, v nichž je druhá derivace nulová - body, které by mohly být infleními, tj. body, které by mohly vymezovat intervaly, na kterých je funkce konvení resp. konkávní (viz odstavec.). body, v nichž není druhá derivace funkce definovaná - tyto body uríme na základ defininího oboru funkce f, tj. funkce, která je druhou derivací zadané funkce f Body, které by mohly být infleními body, najdeme ešením rovnice f. I zde (stejn jako v odstavci.5) je nutné postupovat opatrn. B O D, V NM Ž J E D R U H Á D E R I V A C E F U N K C E N U L O V Á, N E M U S Í B Ý T I N F L E X N Í M B O D E M!!! (Viz nap. funkce y v bod : druhá derivace je v tomto bod nulová, ale tento bod není rozhodn inflením - jedná se pouze o lokální minimum!) Urit ale platí, že druhá derivace v inflením bod je nulová! Druhá derivace zadané funkce (tj. první derivace první derivace funkce) je: f 6. Defininím oborem druhé derivace jsou všechna reálná ísla, a proto druhá derivace zadané funkce eistuje ve všech bodech svého defininího oboru. Nulové body druhé derivace uríme ešením rovnice: f 6 V bod by tedy mohl být inflení bod. Jestli tam skuten je nebo není, zjistíme v odstavci.... Konvenost a konkávnost funkce, inflení body Urit intervaly, na kterých je funkce konkávní resp. konvení, lze pomocí druhé derivace funkce. latí totiž:
4 rbh funkce Jaroslav Reichl, 6. je-li f pro všechna z uritého intervalu, je funkce f na tomto intervalu konvení. je-li f pro všechna z uritého intervalu, je funkce f na tomto intervalu konkávní Je-li funkce f spojitá ve svém defininím oboru, lze urit pouze interval, na nmž je funkce konvení. Interval, na nmž je funkce konkávní, tvoí doplnk vypoteného intervalu v množin reálných ísel. oznámka: edchozí vta není formulována zcela pesn, protože z interval jsou vynechány jejich krajní body, v nichž funkce pechází z konvení na konkávní i naopak. Interval, na kterém je zadaná funkce konvení, lze urit (s využitím výpotu z odstavce.7) takto: f 6 Funkce f je tedy konvení na intervalu ;. Vzhledem k tomu, že funkce f je spojitá na svém defininím oboru, je na intervalu ; konkávní. roto je v bod inflení bod a funkce v nm pechází z konkávní na konvení..9. Asymptoty grafu funkce Asymptoty funkce jsou pímky, k nimž se funkce pimyká nebo které ji v okolí daného bodu nejlépe nahrazují. Eistují dva typy asymptot:. asymptoty se smrnicí - jsou pímky, které mají rovnici y a b ( a \, b ); jedná se o asymptoty funkce v nevlastních bodech (tj. pro a ). asymptoty bez smrnice - jsou pímky ve tvaru c ( c ); jde o asymptoty funkce v takových vlastních bodech c, v nichž není funkce definována (nap. body, v nichž je jmenovatel zlomku z definice funkce nulový, ); pi hledání rovnic tchto asymptot je nutné vyšetit jednostranné limity v bodech, v nichž není daná funkce definována A S Y M T O T Y S E S MRN I C Í N E S U L U J Í V Ý OET L I M I T V K R A J N Í C H B O D E C H D E F I N I N Í H O O B O R U!!! Limita v krajních bodech defininího oboru urí, K J A K É hodnot se blíží funkní hodnoty v tchto bodech, zatímco asymptota uruje J A K se k této hodnot funkce blíží. Koeficienty a a b v rovnici asymptoty se smrnicí se urí pomocí vlastních limit takto: f a lim a b lim f a. Náznak odvození lze provést pomocí intuitivní pedstavy, že asymptota má nahradit v blízkosti nevlastních bod graf funkce f. roto musí platit limf a b. okud platí tento vztah, tím spíše pak platí f a b lim. Tento vztah lze dále upravit: f a b f b f lim lim a lim a a odtud
5 rbh funkce Jaroslav Reichl, 6 f a lim. odobnými úpravami lze získat ze vztahu limf a b vztah pro výpoet koeficientu b: b f a. lim Analogicky lze postupovat v pípad asymptoty pro. ro koeficient a asymptoty zadané funkce f v bod lze tedy psát: a lim lim lim. Asymptota funkce f pro neeistuje. Stejný výsledek získáme pro druhý nevlastní bod, tj. pro... Obor hodnot Obor hodnot získáme na základ znalostí:. limit v krajních bodech defininího oboru. lokálních etrém funkce. asymptot funkce ro zadanou funkci je H f... Graf funkce Na základ postupných výpot v odstavcích. až. lze nakreslit graf funkce. i jeho sestrojování je nutné vzít v úvahu tyto vlastnosti funkce:. intervaly, na nichž je funkce rostoucí resp. klesající. intervaly, na nichž je funkce konvení resp. konkávní. prseíky grafu funkce s osami kartézského systému souadnic. body, v nichž má funkce lokální etrémy a jejich funkní hodnoty 5. asymptoty grafu funkce Graf zadané funkce je na obr.. obr. 5
6 rbh funkce Jaroslav Reichl, 6. ešené píklady bez komentáe.. g : y ln Je dána funkce g : y ln. Vyšetete její prbh a nakreslete pkn její graf. i ešení budeme vycházet z postupu uvedeného v odstavci., ale už omezíme komentá k jednotlivým krokm ešení. ed samotným ešením zadanou funkci upravíme na tvar, který bude pro následné výpoty pijatelnjší: Defininí obor a zárove D g; ; Sudost nebo lichost y ln ln ln ; výsledná podmínka proto je., z níž vyplývá g ln ln ln ln ln g - funkce g je tedy lichá (defininí obor je symetrický podle bodu ); staí tedy vyšetovat funkci jen na intervalu ; rseíky s osami s osou : ln rseík s osou tedy není. s osou y: neeistuje, protože za nelze dosadit - nepatí do defininího oboru funkce g Limity v krajních bodech defininího oboru lim ln lim ln lim ln ln rvní derivace a stacionární body g derivace není definovaná v bodech - a, které ale stejn nepatí do defininího oboru stacionární body neeistují ( g nemže být nikdy rovna nule) - neeistují tedy ani lokální etrémy funkce Intervaly monotónnosti 6
7 rbh funkce Jaroslav Reichl, 6 g, tj. pro všechna z defininího obou je vždy záporná (jmenovatel zlomku je vždy kladný) - funkce g je tedy na celém svém defininím oboru klesající roto neeistují ani lokální etrémy funkce. Druhá derivace nejdíve si upravíme první derivaci: g g... g pro, ale tento bod nepatí do defininího oboru funkce; inflení body tedy neeistují Intervaly konvenosti a konkávnosti g pro ; vzhledem k defininímu oboru funkce g je funkce g konvení na intervalu ; Asymptoty funkce asymptota bez smrnice eistuje v bod - a : a ln ln a lim lim asymptota se smrnicí: b lim ln. lim ln pro získáme tutéž asymptotu Obor hodnot H g \ Graf funkce Vyšetení vlastností funkce bylo provedeno pouze na intervalu ;, na celý defininí obor rozšííme vlastnosti funkce tak, že ást grafu z intervalu ; zobrazíme soumrn podle poátku kartézské soustavy souadnic (funkce g je lichá). Graf je zobrazen na obr.. y obr. 7
8 rbh funkce Jaroslav Reichl, 6.. h : y Je dána funkce h : y. Vyšetete její prbh a nakreslete pkn její graf. i ešení budeme vycházet z postupu uvedeného v odstavci., ale už omezíme komentá k jednotlivým krokm ešení. Defininí obor Dh \ Sudost nebo lichost h rseíky s osami s osou : - funkce h není ani sudá ani lichá s osou y: neeistuje, protože za nelze dosadit - nepatí do defininího oboru funkce h Limity v krajních bodech defininího oboru lim lim lim lim lim lim rvní derivace a stacionární body.. 6 h derivace není definovaná v bod, který nepatí do defininího oboru funkce h stacionární body: V bod Intervaly monotónnosti funkce je rostoucí: h by tedy mohl být lokální etrém. h! " # "
9 rbh funkce Jaroslav Reichl, 6 Funkce h je tedy rostoucí pro všechna z intervalu ; a pro všechna z intervalu ;. Klesající je na intervalu ; (protože je na svém defininím oboru spojitá). V bod Druhá derivace je podle výše uvedeného lokální minimum; ;.. 6 h Druhá derivace funkce je definovaná pro všechna z defininího oboru funkce h a je pro n kladná. Inflení body proto neeistují. Intervaly konvenosti a konkávnosti Vzhledem k tomu, že je pro všechna z defininího oboru, je funkce h na h celém defininím oboru konvení. Asymptoty funkce asymptota bez smrnice eistuje v bod : asymptota se smrnicí: pro získáme tutéž asymptotu Obor hodnot Hh Graf funkce Graf funkce je zobrazen na obr.. lim a lim lim b lim. lim lim y obr. 9
c ÚM FSI VUT v Brně 20. srpna 2007
20. srpna 2007 1. f = 3 12 2. f = 2 e 3. f = ln Příklad 1. Nakreslete graf funkce f() = 3 12 Příklad 1. f = 3 12 Nejprve je třeba určit definiční obor. Výraz je vždy definován. Příklad 1. f = 3 12 f =
VíceMonotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné
66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak
VíceDigitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/4.080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím
VícePRŮBĚH FUNKCE - CVIČENÍ
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA PRŮBĚH FUNKCE - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny
VíceSeminární práce z matematiky
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Seminární práce z matematiky Vyšetřování průběhu funkcí Autor: Vyučující: Ondřej Vejpustek RNDr Eva Davidová Ostrava, 0 Taylorův polynom pro
VíceAplikace derivace ( )
Aplikace derivace Mezi aplikace počítáme:. LHospitalovo pravidlo. Etrémy funkce (růst a pokles funkce) 3. Inflee (konávnost a konvenost). Asymptoty funkce (se i bez směrnice) 5. Průběh funkce 6. Ekonomické
VíceUniverzita Karlova v Praze Pedagogická fakulta
Univerzita Karlova v Praze Pedagogická akulta DRUHÁ SEMINÁRNÍ PRÁCE Z DIFERENCIÁLNÍHO POČTU PRŮBĚH FUNKCE 000/001 Cirik, M-ZT Zadání: Vyšetřete průběh unkce ( ) : y Vypracování: ( ) : y Předně určíme deiniční
VícePRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ
Dierenciální počet unkcí jedné reálné proměnné - 5 - PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Cílem vyšetřování průběhu unkce je umět nakreslit její gra Obvykle postupujeme tak že nalezneme její maimální deiniční
VíceZlín, 23. října 2011
(. -. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 3. října 0 Postup při vyšetřování průběhu funkce. Definiční obor funkce,
Více{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou
Konvenost, konkávnost, inflee 4.. Konvenost, konkávnost, inflee Definice 4... Nechť eistuje f ( ), D f. Řekneme, že funkce f ( ) je v bodě konkávní, jestliže eistuje { } O ( ) tak, že platí D : O( )\ f(
VíceDefinice derivace v bodě
Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +
VíceOznačení derivace čárkami, resp. římskými číslicemi, volíme při nižším řádu derivace, jinak užíváme horní index v závorce f (5), f (6),... x c g (x).
9 Využití derivace 9.1 Derivace vyšších řádů Definice 1. Nechť funkce má derivaci v nějakém okolí bodu c D(f). Nechť funkce ϕ() =f () máderivacivboděc. Pak hodnotu ϕ (c) nazýváme derivací 2. řádu (2. derivací)
VíceMATEMATIKA I - vybrané úlohy ze zkoušek v letech
MATEMATIKA I - vybrané úlohy ze zkoušek v letech 008 0 doplněné o další úlohy. část DIFERENCIÁLNÍ POČET funkcí jedné proměnné Další část ( integrální počet) bude vydána na konci listopadu 9. 9. 0 Případné
Více2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost
.7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,
VíceVypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
Průběh funkce Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Průběhem funkce rozumíme určení vlastností funkce
VícePříklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )
Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x
VíceDiferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
Vícef( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů
3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)
VíceVýsledky Př.1. Určete intervaly monotónnosti a lokální extrémy funkce a) ( ) ( ) ( ) Stacionární body:
Výsledky Př.. Určete intervaly monotónnosti a lokální extrémy funkce a) y < y > y < y > -2 0 3 Funkce je rostoucí v intervalech. Funkce je klesající v intervalech b) y < y > y < - Funkce je rostoucí v
VíceRolleova věta. Mějme funkci f, která má tyto vlastnosti : má derivaci c) f (a) = f (b). a) je spojitá v a, b b) v každém bodě a,b
Průběh unkce Rolleova věta Mějme unkci, která má tto vlastnosti : a) je spojitá v a, b b) v každém bodě a,b má derivaci c) (a) = (b). b Potom eistuje v a, alespoň jeden bod c, v němž ( c) : 1, 3 0 1 1
VíceNMAF 051, ZS Zkoušková písemná práce 4. února 2009
Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 4 Celkem bodů Bodů 4 4
VíceMocninná funkce: Příklad 1
Mocninná funkce: Příklad 1 Zadání: Vyšetřete průběh mocninné funkce. Řešení: 1. Jako první si určíme definiční obor: D(f)=R. 2. Nyní si spočítáme zda je daná funkce sudá nebo lichá: Daná funkce je lichá.
VíceMASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii
MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008 Prohlášení: Prohlašuji, že jsem svou bakalářskou
VíceGYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE
GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE Relace Cheb, 006 Radek HÁJEK Prohlášení Prohlašuji, že jsem seminární práci na téma: Relace vypracoval zcela sám za použití pramen uvedených v piložené bibliograii na poítai
VíceDiferenciální počet funkcí jedné proměnné
Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =
VícePříklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6
Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly
VícePavlína Matysová. 5. listopadu 2018
Soubor řešených úloh Vyšetřování průběhu funkce Pavlína Matysová 5. listopadu 018 1 Soubor řešených úloh Tento text obsahuje 7 úloh na téma vyšetřování průběhu funkce. Každé úloha je řešena dvěma způsoby
Více2. Ur íme sudost/lichost funkce a pr se íky s osami. 6. Na záv r na rtneme graf vy²et ované funkce. 8x. x 2 +4
Pr b h funkce V této jednotce si ukáºeme jak postupovat p i vy²et ování pr b hu funkce. P edpokládáme znalost po ítání derivací a limit, které jsou dob e popsány v p edchozích letácích tohoto bloku. P
VíceKonvexnost, konkávnost
20. srpna 2007 1. f = x 3 12x 2. f = x 2 e x 3. f = x ln x Příklad 1. Určete intervaly, na kterých je funkce konvexní a konkávní a určete inflexní body f = x 3 12x Příklad 1. f = x 3 12x Řešení: Df = R
VíceLOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)
Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce
VíceKapitola 4: Průběh funkce 1/11
Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající
Více[ 5;4 ]. V intervalu 1;5 je funkce rostoucí (její první derivace je v tomto intervalu
1..1 Průběh funkce III (prohnutí Předpoklad: 111 Pedagogická poznámka: Při poctivém probírání b tato látka zabrala dvě celé vučovací hodin. Studenti z toho nebudou příliš nadšení, je zde příliš mnoho definic
VícePrůběh funkce pomocí systému MAPLE.
Průběh funkce pomocí systému MAPLE. Vyšetřování průběhu funkce je komplení a někdy velmi obtížná úloha. V konkrétních aplikacích nás většinou zajímají jen některé otázky týkající se průběhu dané funkce.
VíceVyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat?
Vyšetřování průběhu funkce pomocí programu MatLab K práci budeme potřebovat následující příkazy pro 1. Co budeme potřebovat? (a) zadání jednotlivých výrazů symbolicky (obecně) (b) řešení rovnice f()=0,
VícePrůběh funkce pomocí systému MAPLE.
Průběh funkce pomocí systému MAPLE. Vyšetřování průběhu funkce je komplení a někdy velmi obtížná úloha. V konkrétních aplikacích nás většinou zajímají jen některé otázky týkající se průběhu dané funkce.
Více1.1 Příklad z ekonomického prostředí 1
1.1 Příklad z ekonomického prostředí 1 Smysl solidního zvládnutí matematiky v bakalářských oborech na Fakultě podnikatelské VUT v Brně je především v aplikační síle matematiky v odborných předmětech a
Více1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.
Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností
VíceKapitola 4: Průběh funkce 1/11
Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající
VíceNMAF 051, ZS Zkoušková písemná práce 17. února ( sin (π 2 arctann) lim + 3. n 2. π 2arctan n. = lim + 3.
Jednotlivé kroky při výpočtech stručně ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 3 Celkem bodů Bodů 5 7 0
Více( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce
MATA P1 Užití derivací Funkce rostoucí a klesající: Deinice rostoucí a klesající unkce Funkce je rostoucí v intervalu (a,b), právě když platí: ( ) ( ) ( ), a, b : 1 1 1 Funkce je klesající v intervalu
VíceFunkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární
VícePrůběh funkce 1. Průběh funkce. Při vyšetření grafu funkce budeme postupovat podle následujícího algoritmu:
Průběh funkce Průběh funkce Při vyšetření grafu funkce budeme postupovat podle následujícího algoritmu:. Určení definičního oboru. 2. Rozhodnutí, jestli je funkce sudá, lichá, periodická nebo nemá ani
VícePravdpodobnost výskytu náhodné veliiny na njakém intervalu urujeme na základ tchto vztah: f(x)
NÁHODNÁ VELIINA Náhodná veliina je veliina, jejíž hodnota je jednoznan urena výsledkem náhodného pokusu (je-li tento výsledek dán reálným íslem). Jde o reálnou funkci definovanou na základním prostoru
Vícef(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =
Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu
VíceAplikace derivace a průběh funkce
Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
VíceNMAF 051, ZS Zkoušková písemná práce 16. ledna 2009
Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 3 5 Celkem bodů Bodů 8
VíceDiferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy
Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)
VíceGYMNÁZIUM CHEB. SEMINÁRNÍ PRÁCE Grafy funkcí sbírka ešených úloh. Radek HÁJEK, 8.A Radka JIROUŠKOVÁ, 8.A Cheb, 2006 Petr NEJTEK, 8.
GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE Grafy funkcí sbírka ešených úloh Radek HÁJEK, 8.A Radka JIROUŠKOVÁ, 8.A Cheb, 006 Petr NEJTEK, 8.A Prohlášení Prohlašujeme, že jsme seminární práci na téma: Grafy funkcí
Více7.1 Extrémy a monotonie
KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 10. přednáška Blanka Šedivá KMA zimní semestr 016/017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 016/017 1 / 1 Použití derivace pro vyšetřování průběhu funkce
Více( ) ( ) 2 2 B A B A ( ) ( ) ( ) B A B A B A
Vzdálenost dvou bod, sted úseky Ž Vzdálenost dvou bod Pi vyšetování vzájemné polohy bod, pímek a rovin lze použít libovolnou vhodn zvolenou soustavu souadnic (afinní). však pi vyšetování metrických vlastností
VíceUkázka závěrečného testu
Okruhy otázek pro závěrečný test ) Vlastnosti funkce ) Graf funkce ) Definiční obor funkce ) imita funkce ) Derivace funkce 6) Užití derivace 7) Matice 8) Řešení soustavy lineárních rovnic 9) Určitý integrál
Více2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.
MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci
Více13. DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET
. DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET Dovednosti: Chápat pojem limita funkce v bodě a ovládat výpočet jednoduchých limit.. Na základě daného grafu funkce umět odhadnout limity v nevlastních bodech a nevlastní
VíceDiferenciální počet funkce jedné proměnné 1
Diferenciální počet funkce jedné proměnné Limita funkce Pojem limita můžeme česk vjádřit jako mez, případně hranice Zavedení pojmu limita si objasníme na příkladu Příklad : Funkce f ( ) Obr 6: Graf funkce
VícePrůběh funkce II (hledání extrémů)
.. Průběh funkce II (hledání etrémů) Předpoklad: Pedagogická poznámka: Poslední příklad v běžné vučovací hodině nestíháme. Rchlost postupu je možné značně ovlivnit tím, kolik času dáte studentům na výzkumné
VíceFunkce. Obsah. Stránka 799
Obsah 4. Funkce... 800 4.. Základní vlastnosti funkcí... 800 4.. Grafy funkcí... 8 4.. Eponenciální a logaritmické funkce... 8 4.4. Eponenciální a logaritmické rovnice... 8 4.5. Eponenciální a logaritmické
VíceDerivace úvod. Jak zjistit míru změny?
Derivace úvod P ČEZ Jak zjistit míru změny? Derivace nám dá odpověď jestli je funkce: rostoucí/klesající konkávní/konvení jak moc je strmá jak moc roste kde má maimum/minimum 1000 700 P ČEZ P ČEZ 3% 4%
VíceD(f) =( 1, 1) [ ( 1, 1) [ (1, 1). 2( x)3 ( x) 2 1 = 2(x) 3. (x) 2 1 = f(x) Funkce je lichá, není periodická
Vyšetříme funkci f(x): f(x) = 2x3.. Stanovme definiční obor funkce D(f) a zjistíme,ve kterých bodech je funkce sojitá D(f) =(, ) [ (, ) [ (, ). 2. Počítáme f( x) = 2( x)3 ( x) 2 = 2(x) 3 (x) 2 = f(x) Funkce
VíceStručný přehled učiva
Stručný přehled učiva TU1M2 Matematika 2 pro LP17, LP18 4. Aplikace diferenciálního počtu 4.1 Rovnice tečny a normály Má-li funkce v bodě vlastní derivaci, pak je to směrnice tečny grafu funkce v tečném
VíceDIFERENCIÁLNÍ POČET SPOJITOST FUNKCE,
DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE, LIMITA FUNKCE, DERIVACE FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století
VíceUniverzita Karlova v Praze Pedagogická fakulta
Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z ÚVODU DO MATEMATICKÉ ANLÝZY FUNKCE 999/000 CIFRIK Funkce F a) Zadání: Vyšetřete bez užití limit a derivací funkci : y = { x } f Definice:
Více10. cvičení - LS 2017
10. cvičení - LS 2017 Michal Outrata Příklad 1 Spočtěte následující itu daných posloupností: (a) (b) (c) n 3 +5n 2 n 3 6n 2 +3 n ; n 4 3n 2 6 n 4 + 3n 2 + 6; n 2 15n+2(1 n). 2(n 2) 3 2n 3 Příklad 2 Pro
VíceDerivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff
Derivace funkce Derivace je základním pojmem v diferenciálním počtu. Má uplatnění tam, kde se zkoumá povaha funkčních závislostí určitých proměnných (veličin). V matematice, ekonomii, fyzice ale i v jiných
VíceMatematická analýza III.
1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )
VícePřijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy
Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky
Vícey = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R +
Funkce. Vlastnosti funkcí Funkce f proměnné R je zobrazení na množině reálných čísel (reálnému číslu je přiřazeno právě jedno reálné číslo). Z grafu poznáme, zda se jedná o funkci tak, že nenajdeme žádnou
VícePro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.)
Vybrané příklady ze skript J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I I. LINEÁRNÍ ALGEBRA I.. Vektory, vektorové prostory Jsou zadány vektory u, v, w a reálná čísla α, β, γ. Vypočítejte vektor
VíceLineární funkce, rovnice a nerovnice
Lineární funkce, rovnice a nerovnice 1. Lineární funkce 1.1 Základní pojmy Pojem lineární funkce Funkce je předpis, který každému číslu x z definičního oboru funkce přiřadí právě jedno číslo y Obecně je
VíceCvičení 1 Elementární funkce
Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte
VíceMATEMATIKA I. Diferenciální počet funkcí jedné proměnné
Evropský polytechnický institut, s.r.o.. soukromá vysoká škola na Moravě Kunovice MATEMATIKA I. Dierenciální počet unkcí jedné proměnné RNDr. Jitka Jablonická Doc. RNDr. Daniela Hricišáková, CSc. Evropský
Více. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu,
Příklad Najděte intervaly monotonie a lokální etrémy funkce f() = +. ( + ) ( rostoucí v intervalech (, ) a 7, + ) klesající v intervalu ( ), 7 5 5 v bodě = 7 5 je lokální minimum 4. Najděte intervaly monotonie
VíceFunkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li
VíceVypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,
Více10. Derivace, průběh funkce
Moderní technologie ve studiu aplikované yziky CZ..07/..00/07.008 0. Derivace, průběh unkce Před mnoha lety se matematici snažili o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici
VícePříklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3
Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme
Více4. Určete definiční obor elementární funkce g, jestliže g je definována předpisem
4 Určete definiční obor elementární funkce g jestliže g je definována předpisem a) g ( x) = x 16 + ln ( x) x 16 ( x + 4 )( x 4) Řešíme-li kvadratickou nerovnice pomocí grafu kvadratické funkce tj paraboly
Více! " # $ % # & ' ( ) * + ), -
! " # $ % # & ' ( ) * + ), - INDIVIDUÁLNÍ VÝUKA MATEMATIKA METODIKA Kuželosek Mgr. Petra Dunovská bezen 9 Obtížnost této kapitol matematik je dána tím, že se pi výkladu i ešení úloh komplexn vužívají vdomosti
VícePoznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.
@083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x
VíceOtázku, kterými body prochází větev implicitní funkce řeší následující věta.
1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.
VíceAsymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze
Asymptoty funkce 1 Asymptota bez směrnice 6 Máme dvě funkce f 1 : y a 3 f : y 3 Člověk nemusí být matematický génius, aby pochopil, že do předpisu obou funkcí lze dosadit za libovolné reálné číslo kromě
Více22. & 23. & 24. Vlastnosti funkcí a jejich limita a derivace
22. & 23. & 24. Vlastnosti funkcí a jejich ita a derivace Základní vlastnosti Definiční obor Definiční obor je množina neznámých, pro něž je funkce definována. Obor hodnot Obor hodnot je množina všech
Více1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH
1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU
VíceÚloha určit průběh funkce znamená nakreslit graf funkce na zadaném intervalu, nejčastěji na celé množině reálných čísel R.
@034 3. Průběhy funkcí Úloha určit průběh funkce znamená nakreslit graf funkce na zadaném intervalu, nejčastěji na celé množině reálných čísel R. Abychom nakreslili dobře průběh funkce (její graf) musíme
VíceKVADRATICKÉ FUNKCE. + bx + c, největší hodnotu pro x = a platí,
KVADRATICKÉ FUNKCE Definice Kvadratická funkce je každá funkce na množině R (tj. o definičním ooru R), daná ve tvaru y = ax + x + c, kde a je reálné číslo různé od nuly,, c, jsou liovolná reálná čísla.
VíceLDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21
Průběh funkce Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VícePřijímací zkouška na navazující magisterské studium 2014
Přijímací zkouška na navazující magisterské studium 4 Studijní program: Studijní obory: Příklad (5 bodů) Spočtěte Matematika MA, MMIB, MMFT, MSTR, NVM, PMSE, MDU Varianta A M xy dxdy, kde M = {(x, y) R
VíceAlgebraické rovnice. Obsah. Aplikovaná matematika I. Ohraničenost kořenů a jejich. Aproximace kořenů metodou půlení intervalu.
Algebraické rovnice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Základní pojm 2 Metod řešení algebraických rovnic Algebraické řešení Grafické řešení Numerické řešení 3 Numerické řešení Ohraničenost
VíceNejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou
4 Cíle Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou funkce, jejichž ita v bodě 0 je rovna funkční hodnotě v tomto bodě Seznámíme se s vlastnostmi takových funkcí
VíceFunkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou
Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí
VíceDiferenciální počet funkcí jedné reálné proměnné LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY
Diferenciální počet funkcí jedné reálné proměnné - 4.1 - LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY Při hledání lokálních etrémů postupujeme podle následujícího programu Nalezneme
VíceCVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 36 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Určete iracionální číslo, které je vyjádřeno číselným výrazem (6 2 π 4
VíceMATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M06, GA01 M05 DERIVACE FUNKCE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA0 M06, GA0 M05 DIFERENCIÁLNÍ POČET I DERIVACE FUNKCE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 0 Typeset by L
VíceDefinice : Jsou li povrchové pímky kolmé k rovin, vzniká kolmá kruhová válcová plocha a pomocí roviny také kolmý kruhový válec.
3. EZY NA VÁLCÍCH 3.1. VÁLCOVÁ PLOCHA, VÁLEC Definice : Je dána kružnice k ležící v rovin a pímka a rznobžná s rovinou. Všechny pímky rovnobžné s pímkou a protínající kružnici k tvoí kruhovou válcovou
VíceŘešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +,
Příklad 1 Najděte body, v nichž má funkce (,) vázané extrémy, případně vázané lokální extrémy s podmínkou (,)=0, je-li: a) (,)= + 1, (,)=+ 1 lok.max.v 1 2,3 2 b) (,)=+, (,)= 1 +1 1 c) (,)=, (,)=+ 1 lok.max.v
VícePřijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A
Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 1, varianta A Příklad 1 (5 bodů) Koule o poloměru R1 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční
VíceLimita a spojitost funkce
Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném
VíceLimita a spojitost LDF MENDELU
Limita a spojitost Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
Více1. Definiční obor funkce dvou proměnných
Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou
VíceMatematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
Více