Prbh funkce Jaroslav Reichl, 2006

Rozměr: px
Začít zobrazení ze stránky:

Download "Prbh funkce Jaroslav Reichl, 2006"

Transkript

1 rbh funkce Jaroslav Reichl, 6 Vyšetování prbhu funkce V tomto tetu je vzorov vyešeno nkolik úloh na vyšetení prbhu funkce. i ešení úlohy jsou využity základní vlastnosti diferenciálního potu.. ešený píklad s komentáem Je dána funkce f : y 6 9. Vyšetete její prbh a nakreslete pkn její graf. i ešení zadané úlohy budeme postupovat podle doporueného postupu a pitom využívat poznatky diferenciálního potu. Je vhodné postupovat v uvedeném poadí a postupn urit:. defininí obor funkce. sudost, lichost, periodinost funkce - má-li totiž funkce jednu z uvedených vlastností, zjednoduší to vyšetování jejího prbhu. prseíky s osami kartézského systému souadnic. limity v krajních bodech defininího oboru 5. první derivaci funkce, stacionární body a body, v nichž není první derivace definována 6. intervaly monotónnosti a lokální etrémy 7. druhou derivaci funkce, nulové body druhé derivace a body, v nichž není druhá derivace funkce definována. intervaly konvenosti a konkávnosti a inflení body 9. asymptoty funkce.obor hodnot.graf funkce.. Defininí obor Zadaná funkce je polynomická, a proto je jejím defininím oborem množina všech reálných ísel, tj. D f... Sudost nebo lichost funkce Defininí obor je symetrický vzhledem k nule, a proto zadaná funkce mže být jak lichá, tak i sudá (a nebo nemusí mít žádnou z uvedených vlastností). Je nutné ješt ovit, jaká je funkní hodnota funkce f v bod pitom patí do defininího oboru zadané funkce. ro funkní hodnotu v bod f ve srovnání s funkní hodnotou v bod. Bod i dostáváme:. Tento výraz pitom není shodný ani se zadaným pedpisem funkce f, ani k nmu není opaný. ro zadaná funkce f není ani sudá ani lichá. okud by nastala jedna z možností, další ešení úlohy by se zjednodušilo. Bylo by možné vyšetit prbh funkce nap. na podmnožin kladných ísel a potom získané výsledky zobrazit i na podmnožinu záporných ísel:. u sudé funkce pomocí osové soumrnosti, jejíž osa soumrnosti je osa y. u liché funkce pomocí stedové soumrnosti, jejíž sted soumrnosti je bod ;.. rseíky s osami kartézského systému souadnic Znalost prseík s osami kartézského systému je jednou z pomcek pro snadnjší sestrojení grafu zadané funkce. Nicmén jejich znalost není nezbytná. V pípad, že rovnice, jejíž sestavení je nutné pro hledání prseík s osou, není jednoduše ešitelná (tj. jedná-li se nap. o polynomickou funkci stupn vyššího než ti, složitou logaritmickou rovnici, ), prseíky s osou neurujeme. Na správné vyešení úlohy nebude mít absence prseík významný vliv.

2 rbh funkce Jaroslav Reichl, 6 -ovou souadnici prseík s osou získáme ešením rovnice ; f, což v pípad zadané funkce vede na kubickou rovnici 6 9. ešení této rovnice není možné snadno urit, proto prseíky s osou urovat nebudeme. ; y s osou y je výrazn jednodušší. latí: y Urit y-ovou souadnici prseíku y f. V pípad zadané funkce dostáváme y f Limity v krajních bodech defininího oboru Limity v krajních bodech defininího oboru pomáhají urit chování funkce v blízkosti bod, v nichž není možné zjistit funkní hodnotu pímým dosazením. itom je pro správné vykreslení grafu funkce dležité vdt, jak v okolí tchto bod vyšetovaná funkce vypadá. V pípad zadané funkce jsou krajními body defininího oboru dva body: a. 6 9 lim 6 9 lim 6 9 lim 6 9 lim.5. rvní derivace funkce rvní derivace f zadané funkce f je mocným nástrojem pro urení:. stacionárních bod - body podezelé z etrému ; stacionární body jsou koeny rovnice f, z nichž lze urit ty, které jsou lokálními etrémy, pomocí druhé derivace funkce (viz odstavec.7) nebo pomocí interval monotónnosti (viz odstavec.6). bod, v nichž není derivace definovaná - tyto body uríme na základ defininího oboru funkce f (tj. funkce, která je první derivací zadané funkce f) Stacionární body hledáme tak, že ešíme rovnici f, tj. hledáme body, v nichž je tena ke grafu funkce rovnobžná s osou. Derivace funkce totiž udává smrnici teny v daném bod. Je-li tena sestrojená v daném bod rovnobžná s osou, má nulovou smrnici. V T A K O V É M B O D A L E N E M U S Í B Ý T E X T R É M!!! (Viz graf funkce y v bod : první derivace je v nm nulová, ale pitom v nm není etrém!!!) Urit ale platí, že smrnice teny sestrojená v bod etrému je nulová! ro zadanou funkci je: f 9 Stacionární body uríme ešením rovnice: f 9, Body, v nichž by mohl být etrém jsou tedy body,. Vzhledem k tomu, že defininí obor derivace je množina všech reálných ísel, je derivace funkce definovaná ve všech bodech defininího oboru funkce..6. Intervaly monotónnosti a lokální etrémy Urení interval, na nichž je funkce rostoucí nebo klesající, lze provést na základ první derivace funkce. latí totiž:. je-li f pro všechna z uritého intervalu, je funkce f na tomto intervalu rostoucí. je-li f pro všechna z uritého intervalu, je funkce f na tomto intervalu klesající

3 rbh funkce Jaroslav Reichl, 6 Je-li zadaná funkce spojitá, lze urit pouze interval, na kterém je funkce rostoucí. Interval, na kterém je funkce klesající, je doplkem vypoteného intervalu v defininím oboru funkce. oznámka: edchozí vta není formulována zcela pesn, protože z interval jsou vynechány jejich krajní body, v nichž funkce pechází z klesající na rostoucí i naopak. Interval, na kterém je zadaná funkce rostoucí uríme (s využitím výpot v odstavci.5) takto: f Nejrychleji lze tuto nerovnici vyešit graficky s využitím obr.. Z nj je patrné, že funkce f je rostoucí na intervalu ; a na intervalu ;. Vzhledem k tomu, že funkce f je spojitá ve svém defininím oboru, plyne z pedchozího, že:. f je klesající na intervalu ;. f má v bod ; 6 lokální maimum a v bod ; lokální minimum obr..7. Druhá derivace funkce omocí druhé derivace f funkce f lze urit:. body, v nichž je druhá derivace nulová - body, které by mohly být infleními, tj. body, které by mohly vymezovat intervaly, na kterých je funkce konvení resp. konkávní (viz odstavec.). body, v nichž není druhá derivace funkce definovaná - tyto body uríme na základ defininího oboru funkce f, tj. funkce, která je druhou derivací zadané funkce f Body, které by mohly být infleními body, najdeme ešením rovnice f. I zde (stejn jako v odstavci.5) je nutné postupovat opatrn. B O D, V NM Ž J E D R U H Á D E R I V A C E F U N K C E N U L O V Á, N E M U S Í B Ý T I N F L E X N Í M B O D E M!!! (Viz nap. funkce y v bod : druhá derivace je v tomto bod nulová, ale tento bod není rozhodn inflením - jedná se pouze o lokální minimum!) Urit ale platí, že druhá derivace v inflením bod je nulová! Druhá derivace zadané funkce (tj. první derivace první derivace funkce) je: f 6. Defininím oborem druhé derivace jsou všechna reálná ísla, a proto druhá derivace zadané funkce eistuje ve všech bodech svého defininího oboru. Nulové body druhé derivace uríme ešením rovnice: f 6 V bod by tedy mohl být inflení bod. Jestli tam skuten je nebo není, zjistíme v odstavci.... Konvenost a konkávnost funkce, inflení body Urit intervaly, na kterých je funkce konkávní resp. konvení, lze pomocí druhé derivace funkce. latí totiž:

4 rbh funkce Jaroslav Reichl, 6. je-li f pro všechna z uritého intervalu, je funkce f na tomto intervalu konvení. je-li f pro všechna z uritého intervalu, je funkce f na tomto intervalu konkávní Je-li funkce f spojitá ve svém defininím oboru, lze urit pouze interval, na nmž je funkce konvení. Interval, na nmž je funkce konkávní, tvoí doplnk vypoteného intervalu v množin reálných ísel. oznámka: edchozí vta není formulována zcela pesn, protože z interval jsou vynechány jejich krajní body, v nichž funkce pechází z konvení na konkávní i naopak. Interval, na kterém je zadaná funkce konvení, lze urit (s využitím výpotu z odstavce.7) takto: f 6 Funkce f je tedy konvení na intervalu ;. Vzhledem k tomu, že funkce f je spojitá na svém defininím oboru, je na intervalu ; konkávní. roto je v bod inflení bod a funkce v nm pechází z konkávní na konvení..9. Asymptoty grafu funkce Asymptoty funkce jsou pímky, k nimž se funkce pimyká nebo které ji v okolí daného bodu nejlépe nahrazují. Eistují dva typy asymptot:. asymptoty se smrnicí - jsou pímky, které mají rovnici y a b ( a \, b ); jedná se o asymptoty funkce v nevlastních bodech (tj. pro a ). asymptoty bez smrnice - jsou pímky ve tvaru c ( c ); jde o asymptoty funkce v takových vlastních bodech c, v nichž není funkce definována (nap. body, v nichž je jmenovatel zlomku z definice funkce nulový, ); pi hledání rovnic tchto asymptot je nutné vyšetit jednostranné limity v bodech, v nichž není daná funkce definována A S Y M T O T Y S E S MRN I C Í N E S U L U J Í V Ý OET L I M I T V K R A J N Í C H B O D E C H D E F I N I N Í H O O B O R U!!! Limita v krajních bodech defininího oboru urí, K J A K É hodnot se blíží funkní hodnoty v tchto bodech, zatímco asymptota uruje J A K se k této hodnot funkce blíží. Koeficienty a a b v rovnici asymptoty se smrnicí se urí pomocí vlastních limit takto: f a lim a b lim f a. Náznak odvození lze provést pomocí intuitivní pedstavy, že asymptota má nahradit v blízkosti nevlastních bod graf funkce f. roto musí platit limf a b. okud platí tento vztah, tím spíše pak platí f a b lim. Tento vztah lze dále upravit: f a b f b f lim lim a lim a a odtud

5 rbh funkce Jaroslav Reichl, 6 f a lim. odobnými úpravami lze získat ze vztahu limf a b vztah pro výpoet koeficientu b: b f a. lim Analogicky lze postupovat v pípad asymptoty pro. ro koeficient a asymptoty zadané funkce f v bod lze tedy psát: a lim lim lim. Asymptota funkce f pro neeistuje. Stejný výsledek získáme pro druhý nevlastní bod, tj. pro... Obor hodnot Obor hodnot získáme na základ znalostí:. limit v krajních bodech defininího oboru. lokálních etrém funkce. asymptot funkce ro zadanou funkci je H f... Graf funkce Na základ postupných výpot v odstavcích. až. lze nakreslit graf funkce. i jeho sestrojování je nutné vzít v úvahu tyto vlastnosti funkce:. intervaly, na nichž je funkce rostoucí resp. klesající. intervaly, na nichž je funkce konvení resp. konkávní. prseíky grafu funkce s osami kartézského systému souadnic. body, v nichž má funkce lokální etrémy a jejich funkní hodnoty 5. asymptoty grafu funkce Graf zadané funkce je na obr.. obr. 5

6 rbh funkce Jaroslav Reichl, 6. ešené píklady bez komentáe.. g : y ln Je dána funkce g : y ln. Vyšetete její prbh a nakreslete pkn její graf. i ešení budeme vycházet z postupu uvedeného v odstavci., ale už omezíme komentá k jednotlivým krokm ešení. ed samotným ešením zadanou funkci upravíme na tvar, který bude pro následné výpoty pijatelnjší: Defininí obor a zárove D g; ; Sudost nebo lichost y ln ln ln ; výsledná podmínka proto je., z níž vyplývá g ln ln ln ln ln g - funkce g je tedy lichá (defininí obor je symetrický podle bodu ); staí tedy vyšetovat funkci jen na intervalu ; rseíky s osami s osou : ln rseík s osou tedy není. s osou y: neeistuje, protože za nelze dosadit - nepatí do defininího oboru funkce g Limity v krajních bodech defininího oboru lim ln lim ln lim ln ln rvní derivace a stacionární body g derivace není definovaná v bodech - a, které ale stejn nepatí do defininího oboru stacionární body neeistují ( g nemže být nikdy rovna nule) - neeistují tedy ani lokální etrémy funkce Intervaly monotónnosti 6

7 rbh funkce Jaroslav Reichl, 6 g, tj. pro všechna z defininího obou je vždy záporná (jmenovatel zlomku je vždy kladný) - funkce g je tedy na celém svém defininím oboru klesající roto neeistují ani lokální etrémy funkce. Druhá derivace nejdíve si upravíme první derivaci: g g... g pro, ale tento bod nepatí do defininího oboru funkce; inflení body tedy neeistují Intervaly konvenosti a konkávnosti g pro ; vzhledem k defininímu oboru funkce g je funkce g konvení na intervalu ; Asymptoty funkce asymptota bez smrnice eistuje v bod - a : a ln ln a lim lim asymptota se smrnicí: b lim ln. lim ln pro získáme tutéž asymptotu Obor hodnot H g \ Graf funkce Vyšetení vlastností funkce bylo provedeno pouze na intervalu ;, na celý defininí obor rozšííme vlastnosti funkce tak, že ást grafu z intervalu ; zobrazíme soumrn podle poátku kartézské soustavy souadnic (funkce g je lichá). Graf je zobrazen na obr.. y obr. 7

8 rbh funkce Jaroslav Reichl, 6.. h : y Je dána funkce h : y. Vyšetete její prbh a nakreslete pkn její graf. i ešení budeme vycházet z postupu uvedeného v odstavci., ale už omezíme komentá k jednotlivým krokm ešení. Defininí obor Dh \ Sudost nebo lichost h rseíky s osami s osou : - funkce h není ani sudá ani lichá s osou y: neeistuje, protože za nelze dosadit - nepatí do defininího oboru funkce h Limity v krajních bodech defininího oboru lim lim lim lim lim lim rvní derivace a stacionární body.. 6 h derivace není definovaná v bod, který nepatí do defininího oboru funkce h stacionární body: V bod Intervaly monotónnosti funkce je rostoucí: h by tedy mohl být lokální etrém. h! " # "

9 rbh funkce Jaroslav Reichl, 6 Funkce h je tedy rostoucí pro všechna z intervalu ; a pro všechna z intervalu ;. Klesající je na intervalu ; (protože je na svém defininím oboru spojitá). V bod Druhá derivace je podle výše uvedeného lokální minimum; ;.. 6 h Druhá derivace funkce je definovaná pro všechna z defininího oboru funkce h a je pro n kladná. Inflení body proto neeistují. Intervaly konvenosti a konkávnosti Vzhledem k tomu, že je pro všechna z defininího oboru, je funkce h na h celém defininím oboru konvení. Asymptoty funkce asymptota bez smrnice eistuje v bod : asymptota se smrnicí: pro získáme tutéž asymptotu Obor hodnot Hh Graf funkce Graf funkce je zobrazen na obr.. lim a lim lim b lim. lim lim y obr. 9

c ÚM FSI VUT v Brně 20. srpna 2007

c ÚM FSI VUT v Brně 20. srpna 2007 20. srpna 2007 1. f = 3 12 2. f = 2 e 3. f = ln Příklad 1. Nakreslete graf funkce f() = 3 12 Příklad 1. f = 3 12 Nejprve je třeba určit definiční obor. Výraz je vždy definován. Příklad 1. f = 3 12 f =

Více

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné 66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak

Více

PRŮBĚH FUNKCE - CVIČENÍ

PRŮBĚH FUNKCE - CVIČENÍ MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA PRŮBĚH FUNKCE - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

Seminární práce z matematiky

Seminární práce z matematiky Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Seminární práce z matematiky Vyšetřování průběhu funkcí Autor: Vyučující: Ondřej Vejpustek RNDr Eva Davidová Ostrava, 0 Taylorův polynom pro

Více

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Dierenciální počet unkcí jedné reálné proměnné - 5 - PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Cílem vyšetřování průběhu unkce je umět nakreslit její gra Obvykle postupujeme tak že nalezneme její maimální deiniční

Více

Aplikace derivace ( )

Aplikace derivace ( ) Aplikace derivace Mezi aplikace počítáme:. LHospitalovo pravidlo. Etrémy funkce (růst a pokles funkce) 3. Inflee (konávnost a konvenost). Asymptoty funkce (se i bez směrnice) 5. Průběh funkce 6. Ekonomické

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická akulta DRUHÁ SEMINÁRNÍ PRÁCE Z DIFERENCIÁLNÍHO POČTU PRŮBĚH FUNKCE 000/001 Cirik, M-ZT Zadání: Vyšetřete průběh unkce ( ) : y Vypracování: ( ) : y Předně určíme deiniční

Více

Zlín, 23. října 2011

Zlín, 23. října 2011 (. -. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 3. října 0 Postup při vyšetřování průběhu funkce. Definiční obor funkce,

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost .7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,

Více

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, ) Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Průběhem funkce rozumíme určení vlastností funkce

Více

Výsledky Př.1. Určete intervaly monotónnosti a lokální extrémy funkce a) ( ) ( ) ( ) Stacionární body:

Výsledky Př.1. Určete intervaly monotónnosti a lokální extrémy funkce a) ( ) ( ) ( ) Stacionární body: Výsledky Př.. Určete intervaly monotónnosti a lokální extrémy funkce a) y < y > y < y > -2 0 3 Funkce je rostoucí v intervalech. Funkce je klesající v intervalech b) y < y > y < - Funkce je rostoucí v

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Rolleova věta. Mějme funkci f, která má tyto vlastnosti : má derivaci c) f (a) = f (b). a) je spojitá v a, b b) v každém bodě a,b

Rolleova věta. Mějme funkci f, která má tyto vlastnosti : má derivaci c) f (a) = f (b). a) je spojitá v a, b b) v každém bodě a,b Průběh unkce Rolleova věta Mějme unkci, která má tto vlastnosti : a) je spojitá v a, b b) v každém bodě a,b má derivaci c) (a) = (b). b Potom eistuje v a, alespoň jeden bod c, v němž ( c) : 1, 3 0 1 1

Více

Mocninná funkce: Příklad 1

Mocninná funkce: Příklad 1 Mocninná funkce: Příklad 1 Zadání: Vyšetřete průběh mocninné funkce. Řešení: 1. Jako první si určíme definiční obor: D(f)=R. 2. Nyní si spočítáme zda je daná funkce sudá nebo lichá: Daná funkce je lichá.

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6 Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =

Více

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008 Prohlášení: Prohlašuji, že jsem svou bakalářskou

Více

Průběh funkce pomocí systému MAPLE.

Průběh funkce pomocí systému MAPLE. Průběh funkce pomocí systému MAPLE. Vyšetřování průběhu funkce je komplení a někdy velmi obtížná úloha. V konkrétních aplikacích nás většinou zajímají jen některé otázky týkající se průběhu dané funkce.

Více

[ 5;4 ]. V intervalu 1;5 je funkce rostoucí (její první derivace je v tomto intervalu

[ 5;4 ]. V intervalu 1;5 je funkce rostoucí (její první derivace je v tomto intervalu 1..1 Průběh funkce III (prohnutí Předpoklad: 111 Pedagogická poznámka: Při poctivém probírání b tato látka zabrala dvě celé vučovací hodin. Studenti z toho nebudou příliš nadšení, je zde příliš mnoho definic

Více

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat?

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat? Vyšetřování průběhu funkce pomocí programu MatLab K práci budeme potřebovat následující příkazy pro 1. Co budeme potřebovat? (a) zadání jednotlivých výrazů symbolicky (obecně) (b) řešení rovnice f()=0,

Více

Průběh funkce pomocí systému MAPLE.

Průběh funkce pomocí systému MAPLE. Průběh funkce pomocí systému MAPLE. Vyšetřování průběhu funkce je komplení a někdy velmi obtížná úloha. V konkrétních aplikacích nás většinou zajímají jen některé otázky týkající se průběhu dané funkce.

Více

1.1 Příklad z ekonomického prostředí 1

1.1 Příklad z ekonomického prostředí 1 1.1 Příklad z ekonomického prostředí 1 Smysl solidního zvládnutí matematiky v bakalářských oborech na Fakultě podnikatelské VUT v Brně je především v aplikační síle matematiky v odborných předmětech a

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce

( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce MATA P1 Užití derivací Funkce rostoucí a klesající: Deinice rostoucí a klesající unkce Funkce je rostoucí v intervalu (a,b), právě když platí: ( ) ( ) ( ), a, b : 1 1 1 Funkce je klesající v intervalu

Více

Kapitola 4: Průběh funkce 1/11

Kapitola 4: Průběh funkce 1/11 Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající

Více

Pravdpodobnost výskytu náhodné veliiny na njakém intervalu urujeme na základ tchto vztah: f(x)

Pravdpodobnost výskytu náhodné veliiny na njakém intervalu urujeme na základ tchto vztah: f(x) NÁHODNÁ VELIINA Náhodná veliina je veliina, jejíž hodnota je jednoznan urena výsledkem náhodného pokusu (je-li tento výsledek dán reálným íslem). Jde o reálnou funkci definovanou na základním prostoru

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

GYMNÁZIUM CHEB. SEMINÁRNÍ PRÁCE Grafy funkcí sbírka ešených úloh. Radek HÁJEK, 8.A Radka JIROUŠKOVÁ, 8.A Cheb, 2006 Petr NEJTEK, 8.

GYMNÁZIUM CHEB. SEMINÁRNÍ PRÁCE Grafy funkcí sbírka ešených úloh. Radek HÁJEK, 8.A Radka JIROUŠKOVÁ, 8.A Cheb, 2006 Petr NEJTEK, 8. GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE Grafy funkcí sbírka ešených úloh Radek HÁJEK, 8.A Radka JIROUŠKOVÁ, 8.A Cheb, 006 Petr NEJTEK, 8.A Prohlášení Prohlašujeme, že jsme seminární práci na téma: Grafy funkcí

Více

Aplikace derivace a průběh funkce

Aplikace derivace a průběh funkce Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

( ) ( ) 2 2 B A B A ( ) ( ) ( ) B A B A B A

( ) ( ) 2 2 B A B A ( ) ( ) ( ) B A B A B A Vzdálenost dvou bod, sted úseky Ž Vzdálenost dvou bod Pi vyšetování vzájemné polohy bod, pímek a rovin lze použít libovolnou vhodn zvolenou soustavu souadnic (afinní). však pi vyšetování metrických vlastností

Více

13. DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET

13. DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET . DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET Dovednosti: Chápat pojem limita funkce v bodě a ovládat výpočet jednoduchých limit.. Na základě daného grafu funkce umět odhadnout limity v nevlastních bodech a nevlastní

Více

7.1 Extrémy a monotonie

7.1 Extrémy a monotonie KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x

Více

Průběh funkce II (hledání extrémů)

Průběh funkce II (hledání extrémů) .. Průběh funkce II (hledání etrémů) Předpoklad: Pedagogická poznámka: Poslední příklad v běžné vučovací hodině nestíháme. Rchlost postupu je možné značně ovlivnit tím, kolik času dáte studentům na výzkumné

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

Stručný přehled učiva

Stručný přehled učiva Stručný přehled učiva TU1M2 Matematika 2 pro LP17, LP18 4. Aplikace diferenciálního počtu 4.1 Rovnice tečny a normály Má-li funkce v bodě vlastní derivaci, pak je to směrnice tečny grafu funkce v tečném

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z ÚVODU DO MATEMATICKÉ ANLÝZY FUNKCE 999/000 CIFRIK Funkce F a) Zadání: Vyšetřete bez užití limit a derivací funkci : y = { x } f Definice:

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff Derivace funkce Derivace je základním pojmem v diferenciálním počtu. Má uplatnění tam, kde se zkoumá povaha funkčních závislostí určitých proměnných (veličin). V matematice, ekonomii, fyzice ale i v jiných

Více

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3 Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme

Více

DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE,

DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE, DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE, LIMITA FUNKCE, DERIVACE FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,

Více

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R +

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R + Funkce. Vlastnosti funkcí Funkce f proměnné R je zobrazení na množině reálných čísel (reálnému číslu je přiřazeno právě jedno reálné číslo). Z grafu poznáme, zda se jedná o funkci tak, že nenajdeme žádnou

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

Lineární funkce, rovnice a nerovnice

Lineární funkce, rovnice a nerovnice Lineární funkce, rovnice a nerovnice 1. Lineární funkce 1.1 Základní pojmy Pojem lineární funkce Funkce je předpis, který každému číslu x z definičního oboru funkce přiřadí právě jedno číslo y Obecně je

Více

22. & 23. & 24. Vlastnosti funkcí a jejich limita a derivace

22. & 23. & 24. Vlastnosti funkcí a jejich limita a derivace 22. & 23. & 24. Vlastnosti funkcí a jejich ita a derivace Základní vlastnosti Definiční obor Definiční obor je množina neznámých, pro něž je funkce definována. Obor hodnot Obor hodnot je množina všech

Více

MATEMATIKA I. Diferenciální počet funkcí jedné proměnné

MATEMATIKA I. Diferenciální počet funkcí jedné proměnné Evropský polytechnický institut, s.r.o.. soukromá vysoká škola na Moravě Kunovice MATEMATIKA I. Dierenciální počet unkcí jedné proměnné RNDr. Jitka Jablonická Doc. RNDr. Daniela Hricišáková, CSc. Evropský

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

Úloha určit průběh funkce znamená nakreslit graf funkce na zadaném intervalu, nejčastěji na celé množině reálných čísel R.

Úloha určit průběh funkce znamená nakreslit graf funkce na zadaném intervalu, nejčastěji na celé množině reálných čísel R. @034 3. Průběhy funkcí Úloha určit průběh funkce znamená nakreslit graf funkce na zadaném intervalu, nejčastěji na celé množině reálných čísel R. Abychom nakreslili dobře průběh funkce (její graf) musíme

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

! " # $ % # & ' ( ) * + ), -

!  # $ % # & ' ( ) * + ), - ! " # $ % # & ' ( ) * + ), - INDIVIDUÁLNÍ VÝUKA MATEMATIKA METODIKA Kuželosek Mgr. Petra Dunovská bezen 9 Obtížnost této kapitol matematik je dána tím, že se pi výkladu i ešení úloh komplexn vužívají vdomosti

Více

10. Derivace, průběh funkce

10. Derivace, průběh funkce Moderní technologie ve studiu aplikované yziky CZ..07/..00/07.008 0. Derivace, průběh unkce Před mnoha lety se matematici snažili o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici

Více

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH 1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU

Více

Asymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze

Asymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze Asymptoty funkce 1 Asymptota bez směrnice 6 Máme dvě funkce f 1 : y a 3 f : y 3 Člověk nemusí být matematický génius, aby pochopil, že do předpisu obou funkcí lze dosadit za libovolné reálné číslo kromě

Více

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +,

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +, Příklad 1 Najděte body, v nichž má funkce (,) vázané extrémy, případně vázané lokální extrémy s podmínkou (,)=0, je-li: a) (,)= + 1, (,)=+ 1 lok.max.v 1 2,3 2 b) (,)=+, (,)= 1 +1 1 c) (,)=, (,)=+ 1 lok.max.v

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

Algebraické rovnice. Obsah. Aplikovaná matematika I. Ohraničenost kořenů a jejich. Aproximace kořenů metodou půlení intervalu.

Algebraické rovnice. Obsah. Aplikovaná matematika I. Ohraničenost kořenů a jejich. Aproximace kořenů metodou půlení intervalu. Algebraické rovnice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Základní pojm 2 Metod řešení algebraických rovnic Algebraické řešení Grafické řešení Numerické řešení 3 Numerické řešení Ohraničenost

Více

Diferenciální počet funkcí jedné reálné proměnné LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY

Diferenciální počet funkcí jedné reálné proměnné LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY Diferenciální počet funkcí jedné reálné proměnné - 4.1 - LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY Při hledání lokálních etrémů postupujeme podle následujícího programu Nalezneme

Více

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M06, GA01 M05 DERIVACE FUNKCE

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M06, GA01 M05 DERIVACE FUNKCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA0 M06, GA0 M05 DIFERENCIÁLNÍ POČET I DERIVACE FUNKCE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 0 Typeset by L

Více

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 36 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Určete iracionální číslo, které je vyjádřeno číselným výrazem (6 2 π 4

Více

Definice : Jsou li povrchové pímky kolmé k rovin, vzniká kolmá kruhová válcová plocha a pomocí roviny také kolmý kruhový válec.

Definice : Jsou li povrchové pímky kolmé k rovin, vzniká kolmá kruhová válcová plocha a pomocí roviny také kolmý kruhový válec. 3. EZY NA VÁLCÍCH 3.1. VÁLCOVÁ PLOCHA, VÁLEC Definice : Je dána kružnice k ležící v rovin a pímka a rznobžná s rovinou. Všechny pímky rovnobžné s pímkou a protínající kružnici k tvoí kruhovou válcovou

Více

Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A

Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 1, varianta A Příklad 1 (5 bodů) Koule o poloměru R1 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční

Více

Příklad 1. Řešení 1a. Řešení 1b ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 5

Příklad 1. Řešení 1a. Řešení 1b ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 5 Příklad 1 Najděte totální diferenciál d (h) pro h=(h,h ) v příslušných bodech pro následující funkce: a) (,)= cos, =1; b) (,)=ln( + ), =2; 0 c) (,)=arctg(), =1; 0 1 d) (,)= +, =1; 1 Řešení 1a Máme nalézt

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

CVIČENÍ Z MATEMATIKY I

CVIČENÍ Z MATEMATIKY I Slezská univerzita v Opavě Filozoficko-přírodovědecká fakulta Ústav fyziky CVIČENÍ Z MATEMATIKY I Sbírka příkladů Andrea Kotrlová Opava Obsah Příklady k opakování středoškolské látky. Úprava algebraických

Více

IX. Vyšetřování průběhu funkce

IX. Vyšetřování průběhu funkce IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde

Více

4. EZY NA KUŽELÍCH 4.1. KUŽELOVÁ PLOCHA, KUŽEL

4. EZY NA KUŽELÍCH 4.1. KUŽELOVÁ PLOCHA, KUŽEL 4. EZY NA KUŽELÍCH 4.1. KUŽELOVÁ PLOCHA, KUŽEL Definice : Je dána kružnice k ležící v rovin a mimo ni bod V. Všechny pímky jdoucí bodem V a protínající kružnici k tvoí kruhovou kuželovou plochu. Tyto pímky

Více

a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj.

a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj. @121 12. Mocninné funkce a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj. řekli: 1. Je-li exponent r přirozené číslo, může

Více

MATEMATIKA A Metodický list č. 1

MATEMATIKA A Metodický list č. 1 Metodický list č. 1 Název tématického celku: Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači

Více

Matematika pro ekonomy MATEMATIKA PRO EKONOMY

Matematika pro ekonomy MATEMATIKA PRO EKONOMY Mtemtik pro ekonomy MATEMATIKA PRO EKONOMY 8 ešení soustvy lineárních rovnic užitím mtic Gussov eliminní metod (GEM) MATICE 6 6 Hlvní digonál TROJÚHELNÍKOVÁ MATICE Pozn.: i... i-tý ádek mtice PIVOT = první

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

L I C H O B Ž N Í K (2 HODINY) ? Co to vlastn lichobžník je? Podívej se napíklad na následující obrázky:

L I C H O B Ž N Í K (2 HODINY) ? Co to vlastn lichobžník je? Podívej se napíklad na následující obrázky: L I C H O B Ž N Í K (2 HODINY)? Co to vlastn lichobžník je? Podívej se napíklad na následující obrázky: Na obrázcích je vyobrazena hospodáská budova a židlika, kterou urit mají tvoji rodie na chodb nebo

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

Vyšetřování průběhu funkcí v programu GeoGebra

Vyšetřování průběhu funkcí v programu GeoGebra Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra matematiky Bakalářská práce Vyšetřování průběhu funkcí v programu GeoGebra Autor práce: Markéta Medviďová Vedoucí práce: RNDr. Vladimíra

Více

R O V N O B Ž N Í K (2 HODINY)

R O V N O B Ž N Í K (2 HODINY) R O V N O B Ž N Í K (2 HODINY)? Co to vlastn rovnobžník je? Na obrázku je dopravní znaka, která íká, že vzdálenost k železninímu pejezdu je 1 m (dva pruhy, jeden pruh pedstavuje vzdálenost 80 m): Pozorn

Více

Základní poznatky o funkcích

Základní poznatky o funkcích Základní poznatk o funkcích Tajemství černé skříňk (Definice funkce, základní pojm) 0 c, d, g, h 0 a) ANO b) NE 0 D( f )={ 6} H( f )={ 7} 0 a) D( f )={ 0 } b) H( f )={ 8 9 0 } c) f ( 0)= f ( )=9 f ( )=

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital

Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital V této části budou uvedena některá použití derivací. a derivace a derivace -zbytek L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT Tvrzení je uvedeno pro jednostrannou limitu zprava. Samozřejmě obdobné tvrzení platí

Více

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle

Více

Homogenní rovnice. Uvažujme rovnici. y = f(x, y), (4) kde

Homogenní rovnice. Uvažujme rovnici. y = f(x, y), (4) kde Homogenní rovnice Uvažujme rovnici kde y = f(, y), (4) f(λ, λy) = f(, y), λ. Tato rovnice se nazývá homogenní rovnice 1. řádu. Ukážeme, že tuto rovnici lze převést substitucí na rovnici se separovanými

Více

. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0

. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0 Příklad 1 Určete definiční obor funkce: a) = b) = c) = d) = e) = 9 f) = Řešení 1a Máme určit definiční obor funkce =. Výraz je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy

Více

Aplikační úlohy z diferenciálního počtu jedné proměnné

Aplikační úlohy z diferenciálního počtu jedné proměnné Jihočeská univerzita v Českých Budějovicích Fakulta Katedra Bakalářská práce Aplikační úlohy z diferenciálního počtu jedné proměnné Vypracoval: Michaela Jelínková Vedoucí práce: RNDr. Vladimíra Petrášková,

Více

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Planimetrie 2. část, Funkce, Goniometrie 2. ročník a sexta 4 hodiny týdně PC a dataprojektor, učebnice Planimetrie II. Konstrukční úlohy Charakterizuje

Více

DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH

DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH Reálná funkce dvou proměnných a definiční obor Kartézský součin R R značíme R 2 R 2 je množina všech uspořádaných dvojic reálných čísel (rovina) Prvk R 2 jsou bod v rovině

Více

2. EZY NA JEHLANECH. Píklad 47 : Sestrojte ez pravidelného tybokého jehlanu ABCDV rovinou.

2. EZY NA JEHLANECH. Píklad 47 : Sestrojte ez pravidelného tybokého jehlanu ABCDV rovinou. 2. EZY NA JEHLANECH Píklad 47 : Sestrojte ez pravidelného tybokého jehlanu ABCDV rovinou. Popis konstrukce : Podobn jako u píkladu 41 je výhodné proložit nkterými dvma hranami jehlanu rovinu kolmou k pdorysn.

Více

Nerovnice v součinovém tvaru, kvadratické nerovnice

Nerovnice v součinovém tvaru, kvadratické nerovnice Nerovnice v součinovém tvaru, kvadratické nerovnice Příklad: Pro která x R je součin x x 5 kladný? Řešení: Víme, že součin je kladný, mají-li oba činitelé stejné znaménko. Tedy aby platilo x x 5 0, musí

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

RNDr. Jiří Dočkal, CSc. MATEMATIKA I. Řešené příklady

RNDr. Jiří Dočkal, CSc. MATEMATIKA I. Řešené příklady RNDr. Jiří Dočkal, CSc. MATEMATIKA I Řešené příklady Uváděné řešené příklady jsou vybrány a řazeny v návaznosti na orientační učební pomůcku Doc.RNDr.Ing. Josef Nedoma, CSc.: MATEMATIKA I. Tato sbírka

Více

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

2.1 Pokyny k otev eným úlohám. 2.2 Pokyny k uzav eným úlohám. Testový sešit neotvírejte, po kejte na pokyn!

2.1 Pokyny k otev eným úlohám. 2.2 Pokyny k uzav eným úlohám. Testový sešit neotvírejte, po kejte na pokyn! MATEMATIKA základní úrove obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bod Hranice úspšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. asový limit pro ešení

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Diferenciální počet VY_32_INOVACE_M0216.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Diferenciální počet VY_32_INOVACE_M0216. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické

Více

Nejprve si uděláme malé opakování z kurzu Množiny obecně.

Nejprve si uděláme malé opakování z kurzu Množiny obecně. @021 3. Řešení grafické přímka v kartézské soustavě souřadnic Nejprve si uděláme malé opakování z kurzu Množiny obecně. Rovnice ax + by + c = 0, kde aspoň jedno z čísel a,b je různé od nuly je v kartézské

Více

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y = 0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si

Více