MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii"

Transkript

1 MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008

2 Prohlášení: Prohlašuji, že jsem svou bakalářskou práci Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii vpracovala samostatně pod vedením RNDr. Jana Osičk, CSc. a uvedla v seznamu literatur všechn použité zdroje. V Brně dne Veronika Kruttová 1

3 Poděkování: Ráda bch poděkovala vedoucímu bakalářské práce RNDr. Janu Osičkovi, CSc za metodické vedení, cenné rad při jejím vpracování a čas strávený při konzultacích.

4 Obsah Úvod 4 1 Teorie 5 Řešené příklad na lokální a absolutní etrém 9 3 Etrém v ekonomii 14 4 Řešené příklad na průběh funkce Polnom Racionálnílomenéfunkce Goniometrickéacklometrickéfunkce Eponenciálníalogaritmickéfunkce Mocninnéfunkce Literatura 34 3

5 Úvod Hledání etrémů a všetřování průběhu funkcí je jednou ze základních aplikací diferenciálního počtu. Proto se student matematick zaměřených oborů seznamuje s řešením úloh na etrém a průběh funkcí zpravidla již v prvním semestru. Tato oblast matematik bývá probírána i na ekonomických oborech z důvodů širokého vužití etrémů v ekonomii. Tato práce je zaměřena pouze na všetřování funkcí jedné reálné proměnné. U čtenářů se předpokládá znalost diferenciálního počtu. V první kapitole naleznete tvrzení a definice užívané při řešení úloh na etrém a průběh funkcí. Použila jsem znění ze základní literatur[1], vět jsemuvádělabezdůkazůjensodkazemnaknihu,kdemůžepřípadnýzájemce důkaz nalézt. Druhá a čtvrtá kapitola obsahují řešené příklad na lokální a absolutní etrém a průběh funkcí. Zaměřila jsem se na složitější příklad ze zadání bakalářskýchzkoušekzminulýchletadoplnilajsemjepříkladz[1]a[]. Čtvrtá kapitola je rozdělena podle tpů všetřovaných funkcí. Třetí kapitola je věnována užití etrémů v ekonomii. Graf funkcí jsou vtvořen v programu MAPLE. Celá práce je vsázena sstémeml A TEXε. 4

6 Kapitola 1 Teorie V této kapitole budou uveden základní definice a tvrzení týkající se všetřování etrémů a průběhu funkce. Věta1.NechťmáfunkcefnaotevřenémintervaluIvlastníderivaci.Pak platí: 1.FunkcefjeneklesajícínaIprávětehd,kdž f () 0naI..FunkcefjerostoucínaIprávětehd,kdž f () 0naI,přičemž rovnost f ()=0neplatínažádnémpodintervaluintervaluI. Analogická tvrzení platí pro nerostoucí a klesající funkce Důkaz. Důkaz naleznete v[1] na straně 113. Důsledek. Nechť f má konečnou derivaci na otevřeném intervalu I. (a)je-li f () >0prokaždé I,pakjefrostoucínaI. (b)je-li f () <0prokaždé I,pakjefklesajícínaI. Definice3.Řekneme,žefunkce fmávbodě 0 : lokálnímaimum,eistuje-li O( 0 )tak,žeprokaždé O( 0 )je f() f( 0 ), lokálníminimum,eistuje-li O( 0 )tak,žeprokaždé O( 0 )je f() f( 0 ), ostrélokálnímaimum,eistuje-li O( 0 )tak,žeprokaždé O( 0 ) \ { 0 } je f() < f( 0 ), ostrélokálníminimum,eistuje-li O( 0 )tak,žeprokaždé O( 0 ) \ { 0 } je f() > f( 0 ). Lokální maima a minima nazýváme souhrnně lokální etrém. 5

7 Věta4.Nechťmáfunkce fvbodě 0 lokálníetrémanechť f ( 0 )eistuje. Pak f ( 0 )=0. Důkaz. Důkaz naleznete v[1] na straně 116. Věta5.Nechťjefunkce f spojitávbodě 0 amávlastníderivacivnějakémrzímokolí O( 0 ) \ { 0 }.Jestližeprovšechna O( 0 ), < 0,je f ( 0 ) > 0aprovšechna O( 0 ), > 0,je f ( 0 ) <0,pakmáfunkce fvbodě 0 ostrélokálnímaimum.(obdobnétvrzeníplatíproostrélokální minimum). Důkaz. Důkaz naleznete v[1] na straně 117. Věta6.Nechť f ( 0 )=0.Je-li f ( 0 ) >0,pakmáfunkce fvbodě 0 ostré lokálníminimum.je-li f ( 0 ) <0,pakmáfunkce fvbodě 0 ostrélokální maimum. Důkaz. Důkaz naleznete v[1] na straně 118. Definice7.Buďfunkce fdefinovanánamnožině M.Eistuje-lina Mnejvětší(nejmenší) hodnota funkce f, nazýváme ji absolutním maimem(absolutním minimem) funkce f na M. Absolutní minima a maima souhrnně nazýváme absolutními etrém. Jestližeted 0 Maplatí f() f( 0 )provšechna M,říkáme,že funkce f mána Mabsolutnímaimumvbodě 0.Podobněproabsolutní minimum. Definice8.Řekneme,žefunkce fjekonvenínaintervalui,jestližeprolibovolnétřibod 1,, 3 Itakové,že 1 < < 3,platí f( ) f( 1 )+ f( 3) f( 1 ) 3 1 ( 1 ). Řekneme, že funkce f je konkávní na intervalu I, jestliže pro libovolné tři bod 1,, 3 Itakové,že 1 < < 3,platí f( ) f( 1 )+ f( 3) f( 1 ) 3 1 ( 1 ). Pokud v definici nahradíme neostré nerovnosti ostrými, dostáváme definice pojmů ostré konvenosti a ostré konkávnosti na intervalu I. 6

8 Věta9.Nechť f mávlastníderivacinaotevřenémintervalu I.Pakje f konvení(ostřekonvení)na I právětehd,kdžjefunkce f neklesající (rostoucí) na I. Analogickétvrzeníplatípro fkonkávní(ostřekonkávní)na Ia f nerostoucí (klesající) na I. Důkaz. Důkaz naleznete v[1] na straně 14. Důsledek10.Nechť Ijeotevřenýintervalafmávlastnídruhouderivaci na I. (a)je-li f () >0prokaždé I,pakje fostřekonvenína I. (b)je-li f () <0prokaždé I,pakje fostřekonkávnína I. Definice11.Nechťmáfunkce fderivacivbodě 0 R.Je-litatoderivace nevlastní,předpokládámenavíc,žeje fspojitávbodě 0. Řekneme,že 0 jeinflenímbodemfunkce f,jestližeeistujeokolí O δ ( 0 ) takové,žefunkce f jeostřekonkávnínaintervalu( 0 δ, 0 )ajeostře konvenínaintervalu( 0, 0 +δ)anebonaopak.stručněříkáme,žefunkce f mávbodě 0 inflei. Věta 1. 1.Nechť 0 jeinfleníbodanechťeistuje f ().Pak f ()=0..Nechť f () =0aeistujeokolí O δ ( 0 )takové,žeplatí f () <0 prokaždé ( 0 δ, 0 )af () >0prokaždé ( 0, 0 + δ),nebo naopak.pakje 0 inflenímbodemfunkce f. 3.Nechť f ()=0af () 0.Pakje 0 inflenímbodemfunkce f. Důkaz. Důkaz naleznete v[1] na straně 17. Definice13.Buď 0 R.Přímka = 0 senazýváasmptotoubezsměrnice funkce f,jestližemá fv 0 alespoňjednujednostrannoulimitunevlastní,tj. lim f()=± nebo lim f()=± Přímka =a+b, a, b Rsenazýváasmptotousesměrnicífunkce f, jestliže platí lim (f() (a+b))=0nebo lim (f() (a+b))=0. + 7

9 Věta14.Přímka = a+bjeasmptotoufunkce fpro tehd, kdž + právě f() lim + = a a lim (f() a)=b. + Analogickétvrzeníplatípro. Důkaz. Důkaz naleznete v[1] na straně 19. Důsledek15.Přímka = bjeasmptotoufunkce fpro + právě tehd, kdž lim f()=b.analogickétvrzeníplatípro. + 8

10 Kapitola Řešené příklad na lokální a absolutní etrém Příklad.1. Najděte lokální etrém funkce f: =lncos. Řešení:Funkcejedefinovánanamnožině,kdecos ( >0.Jednáseointerval π +kπ, π+kπ) pro k Z. Prvníderivacefunkce fje = sin. cos Bod,vekterýchbmohlnastatlokálníetrém,jsou =k π,kde k Z. Všetříme monotónnost funkce f- stačí na intervalu(0, π), funkce je totiž periodická. ( ( 0, π π ), π) ( ) ( π, 3π 3π,π) + + klesající klesající rostoucí rostoucí Lokálníetrémtedmohounastatvbodech =kπ, k Z.Pro klichéale není funkce definována, proto jsou lokální etrém pouze v bodech = kπ, k Z.Jdeolokálnímaimaajejichfunkčníhodnota f(kπ)=lncoskπ=0. 9

11 Příklad.. Najděte lokální a absolutní etrém funkce f na intervalu [ 3,3], f: =( )e. Řešení:Funkcejedefinovánanacelém R,jeteddefinovánainazkoumaném intervalu. Prvníderivacefunkceje = e (+1)( ).Nulovébodderivace jsou = 1a=.Všetřímeznaménkaderivacenazadanémintervalu: ( 3, 1) ( 1,) (,3) + klesající rostoucí klesající Lokálníetrémnastávajívbodech = 1a=.Jejichfunkčníhodnot jsou f( 1)= e. = 7,389(lokálníminimum)af()=e 4. =0,037 (lokální maimum). Abchom nalezli absolutní etrém, musíme vpočítat funkční hodnot v krajních bodech intervalu a porovnat je s nalezenými funkčními hodnotami lokálních etrémů. f( 3)=7e 6. =84 a f(3)=7e 6. =0,017 Absolutnímaimumfunkce fjevbodě = 3aabsolutníminimumfunkce fjevbodě = 1. Příklad.3.Najděteabsolutníetrémfunkce fnaintervalu[1,e], f: = ln. Řešení:Definičnímoboremfunkce fjemnožina D(f)=(0, ). Prvníderivacefunkce fje = (ln+1).nulovébodderivacejsou =0 a =e 1.Prvníztěchtobodůneležívdefiničnímoborufunkce fadruhý není ve zkoumaném intervalu. Funkčníhodnotvkrajníchbodechjsou f(1)=0af(e)=e.absolutní minimumnastávávbodě =1aabsolutnímaimumvbodě =e. 10

12 Příklad.4. Najděte lokální a absolutní etrém funkce f na intervalu [0,5], f: = Řešení: Funkce je definována v každém bodě intervalu. Prvníderivacefunkce fje =5 ( 1)( 3).Bod,vekterých =0, jsou =0, =1a=3.Nnívšetřímemonotónnostfunkce f : (0,1) (1,3) (3,5) + + rostoucí klesající rostoucí Vbodě = 1jelokálnímaimum, jehožfunkční hodnota f(1) =,a vbodě =3jelokálníminimum,jehožfunkčníhodnota f(3)= 6.Zbývá vpočítat funkční hodnot v krajních bodech: f(0)=1 a f(5)=66. Absolutnímaimumnastávávbodě =5aabsolutníminimumvbodě =3. Příklad.5. Najděte lokální a absolutní etrém funkce f na intervalu [ 1,6], 3 f: = +. Řešení: Definičním oborem funkce je množina R \ { }. První derivace funkce f je rovna = (4 ) 3 3 (+). Bod,vekterýchjeprvníderivacerovna0nebonenídefinovaná,jsou =0 a = 4. Všetříme znaménka derivace: ( 1,0) (0,4) (4,6) + klesající rostoucí klesající Vbodě =0jelokálníminimumsfunkčníhodnotou f(0)=0.vbodě =4jelokálnímaimum,jehofunkčníhodnotaje f(4). =0,4. V krajních bodech intervalu nabývá funkce hodnot: f( 1)=1 a f(6). =0,41. 11

13 Absolutnímmaimemfunkcenazadanémintervalujebod[, ]=[ 1,1] aabsolutnímminimemjebod[0,0]. Příklad.6. Najděte lokální a absolutní etrém funkce f na intervalu [,], f: =(+1) 3 +( 1) 3. Řešení: Definičním oborem funkce f je celá množina R. Funkce je sudá, protože f( )=( +1) 3+( 1) 3=( 1) 3( 1) 3+( 1) 3(+1) 3= =( 1) 3+(+1) 3= f(). První derivace funkce je rovna = 3 (+1) ( 1)+ 3 ( 1) (+1). 3 (+1)( 1) Bod,vekterýchjeprvníderivacerovna0nebonenídefinovaná,jsou = 1, =0a=1.Všetřímeznaménkaderivace: (, 1) ( 1,0) (0,1) (1,) + + klesající rostoucí klesající rostoucí Vbodech = 1a=1jsoulokálníminimaseshodnýmifunkčnímihodnotami f( 1)=f(1)= 3 4. =1,59.Vbodě =0jelokálnímaimum,jehož funkčníhodnotajerovna f(0)=. Zbývá vpočítat funkční hodnot v krajních bodech zadaného intervalu. Protože je funkce sudá, budou obě hodnot stejné. f( )=f(). =3,08. Funkcemáabsolutnímaimavbodech = a=aabsolutníminima vbodech = 1a=1. Příklad.7. Najděte lokální a absolutní etrém funkce f na intervalu [ 3,4], f: = Řešení: Definičním oborem funkce je množina R \ {1}. První derivace funkce f je rovna = ( )( +1) ( 1). Nulovýmbodempředchozírovnicejenazadanémintervalupouzebod =. 1

14 Všetříme znaménka derivace: ( 3,) (,4) + klesající rostoucí Bod =jelokálnímminimemfunkce f.jehofunkčníhodnotajerovna f()=3. Nní vpočítáme hodnot funkce v krajních bodech intervalu: f( 3 )=4,5 a f(4). =9,67. Z vpočítaných hodnot snadno určíme, že absolutní minimum funkce f na intervalu[ 3,4]jevbodě =aabsolutnímaimumjevbodě =4. Příklad.8. Najděte lokální a absolutní etrém funkce f na intervalu [ 5, 1], f: = 1 3. Řešení: Definičním oborem funkce je množina R \ {0}. První derivace funkce f je rovna = 3 3. Nulovým bodem předchozí rovnice je na zadaném intervalu pouze bod = 3. = 1,6.Všetřímeznaménkaderivace: ( 5, 3 ) ( 3, 1) + klesající rostoucí Vbodě = 3 jelokálníminimumsfunkčníhodnotou f( 3 ). =1,89. Zbývá vpočítat hodnot funkce v krajních bodech: f( 5)=5,04 a f( 1)=. Lokálníminimumvbodě = 3 jezároveňabsolutnímminimem.absolutnímaimumnastávávbodě = 5. 13

15 Kapitola 3 Etrém v ekonomii Modelovým příkladem užití etrémů v ekonomii může být problém maimalizace užitku spotřebitele. Každého spotřebitele lze podle jeho preferencí charakterizovat nějakou užitkovou funkcí, která vjadřuje, jaký užitek mu přináší různé kombinace spotřebních statků. Jeho cílem je tento užitek maimalizovat. Ale spotřeba statkůjespojenaisurčitouújmou(obětí)veforměplatbzatentostatek. Množství peněžních prostředků spotřebitele je přitom omezené. Formální zápis této úloh b mohl vpadat například takto: ma[u( 1,..., n ); n p i i M, i 0], i=1 1,..., n množstvíjednotlivýchspotřebníchstatků u( 1,..., n ) užitkováfunkcespotřebitele p i jednotkovácenai téhostatku M množství peněžních prostředků spotřebitele Řešenímtétoúlohbblakombinacestatků 1,..., n,kterábudespotřebiteli při daném rozpočtovém omezení přinášet největší užitek. Eistuje mnoho dalších problémů k řešení- např. minimalizace nákladů firm, maimalizace zisku společnosti atd. V těchto úlohách jsou vesměs všetřován funkce více reálných proměnných, navíc s určitými podmínkami, tzn. jde o vázané etrém. Tto úloh se řeší jinými metodami, které přesahují rámec mé bakalářské práce, jež je primárně zaměřena na hledání etrémů a průběhu funkcí jedné reálné proměnné. Proto zde nebudu uvádět konktrétní řešené příklad. 14

16 Kapitola 4 Řešené příklad na průběh funkce V této kapitole budou řešen některé obtížnější úloh na průběh funkce. Pro přehlednost budou dělen podle tpu funkce. 4.1 Polnom Příklad 4.1. Všetřete průběh funkce Řešení: f: = ( 4) 3. 1.Definičníobordanéfunkceje D(f)=R.Snadnourčímeprůsečíkgrafu funkcesosami a.jezřejmé,žefunkceprocházípočátkem[0,0]a bodem[4,0].protože f( )= ( 4) 3 = (+4) 3,funkcenení ani sudá ani lichá.. Pro počítání derivací je vhodné zadanou funkci upravit = ( 4) 3 = První derivace funkce potom bude = =4( 1)( 4), odtudplne =0pro =1a=4.Všetřímeznaménkoderivace: (,1) (1,4) (4, ) + + klesající rostoucí rostoucí 15

17 Lokálníetrémnastávápouzevbodě =1,jdeolokálníminimuma jehofunkčníhodnota f(1)= Dále budeme všetřovat konvenost, konkávnost a hledat inflení bod. K tomu je potřeba vpočítat druhou derivaci. =1 7+96=1( 6+8)=1( )( 4). Všetříme znaménka derivace: (,) (,4) (4, ) + + konvení konkávní konvení Infleníbodjsouvbodech =a=4,jejichfunkčníhodnotjsou f()= 16af(4)=0. 4. Funkce nemá žádné asmptot. 5.Graffunkceje:

18 4. Racionální lomené funkce Příklad 4.. Všetřete průběh funkce f: = (+1)(4 3) + 3. Řešení: 1.Definičním oboremfunkce jemnožina R \ { 1,1} = (, 1) ( 1,1) (1, ).Průsečíksosou jsou [ 1,0] a [ 3,0] aprůsečík 4 sosou jebod[0,1].. V zadání funkce se vsktuje absolutní hodnota, proto je nutné funkcivšetřovatsohledemnato,zdaje 0nebo 0. (a)pro 0a 1mámefunkci Její derivace f 1 : = (+1)(4 3). + 3 = 6(3 7+) ( + 3). Bod,vekterýchjeprvníderivacerovnanule,jsou = 1 3 a =. Všetříme znaménka derivace: (0, 1) 3 (1,) (, ) rostoucí klesající rostoucí Vidíme,ževbodě = 1nastáválokálnímaimum,jehožfunkční 3 hodnota f( 1)= 5,avbodě =nastáválokálníminimum,jehož 3 4 funkčníhodnotaje f()=5. (b)pro 0, 1mámefunkci Její derivace f : = (+1)(4 3). 3 = 14(+3) ( 3). Bod,vekterýchmůženastatlokálníetrém,jsou = 3a=0. 17

19 Opět všetříme znaménka derivace: (, 3) ( 3,0) + klesající rostoucí Vbodě = 3tednastáválokálníminimumsfunkčníhodnotou f( 3)= Pro všetřování infleních bodů, konvenosti a konkávnosti je rovněž potřeba rozlišovat, zda jsme na intervalu(, 0] nebo[0, ). (a)pro 0jedruháderivace = ( + 3) 3. Bod,vekterýchmůženastatinflee,jsou =1a = 1 6 ( ). =3,08.Znaménkaderivace: (0,1) (1, 1 6 ( )) ( 1 6 ( ), ) + konkávní konvení konkávní (b)pro 0jedruháderivace = 14( ) ( 3) 3. Bod,vekterýchmůženastatinflee,jsou = 1a = 1 ( ). = 4,7.Znaménkaderivace: (, 1 ( )) ( 1 ( ), 1) ( 1,0) + konkávní konvení konkávní 18

20 4.Vzhledemkdefiničnímuoborufunkce,kterýje(, 1) ( 1,1) (1, ), je jasné, že funkce bude mít dvě asmptot bez směrnice ato = 1, =1.Průběhfunkcevokolítěchtoasmptotvšetříme pomocí limit: lim f()=, 1 lim f()=, 1 + lim f()=, 1 lim f()=. 1 + Zbývázjistit,zdamáfunkceasmptotsesměrnicí =a+b: lim ± f() lim ± Asmptotasesměrnicíjeted =8. 5. Nní můžeme sestrojit graf: =0=a, [ f() a]= lim f()=8=b. ±

21 Příklad 4.3. Všetřete průběh funkce Řešení: f: = 3 (+). 1. Definičním oborem funkce je množina R \ { }, funkce prochází počátkem.. Ve funkci se vsktuje absolutní hodnota, proto ji musíme všetřovat naintervalech(,0]a(0, )zvlášť. (a)pro >0mámefunkci Její první derivace je f 1 : 3 (+). = (+6) (+) 3. Bod,vekterýchjeprvníderivacerovna0nebobod,vekterých prvníderivaceneeistuje,jsou = 6, = a=0.protože anijedenztěchtobodůnesplňujepodmínku >0,budederivace na celém intervalu(0, ) buď pouze záporná nebo pouze kladná. Dosazenímlibovolnéhočíslaztohotointervaluzjistíme,že >0, zčehožplne,žefunkce fbudenaintervalu(0, )rostoucí. (b)pro 0mámefunkci Její první derivace je f : 3 (+). = (+6) (+) 3. Bod,vekterýchjeprvníderivacerovna0nebobod,vekterých prvníderivaceneeistuje,jsou = 6, = a=0.všetříme znaménka derivace: (, 6) ( 6, ) (,0] + klesající rostoucí klesající 0

22 Lokálníetrémnastávávbodě = 6.Jetolokálníminimum, jehožfunkčníhodnotaje f( 6)= 16 =13,5.Vbodě = 16 lokální etrém nastat nemůže, protože funkce f není v tomto bodě definovaná.vbodě = 0nastáválokálníminimumsfunkční hodnotou f(0)=0. 3. Nní budeme všetřovat konvenost, konkávnost a inflení bod. (a)pro >0jedruháderivacefunkce = 4 (+) 4. Bod,vekterýchjedruháderivacerovna0nebobod,vekterých druháderivaceneeistuje,jsou = a=0.protožetto bodnespadajídointervalu(0, ),budefunkce fnacelémtomto intervalu buď pouze konkávní nebo pouze konvení. To zjistíme dosazením libovolného čísla z tohoto intervalu do druhé derivace funkce.jelikož >0,budefunkce fnaintervalu(0, )konvení. (b)pro 0mámedruhouderivacifunkce = 4 (+) 4. Bod,vekterýchjedruháderivacerovna0nebobod,vekterýchdruháderivaceneeistuje,jsou = a=0.všetříme znaménka derivace: (, ) (,0) + + konvení konvení 4. Asmptotou bez směrnice bude vzhledem k definičnímu oboru funkce přímka =. Všetříme chování funkce v okolí této přímk: lim f()=, lim f()=. + Zbývázjistit,zdamáfunkceasmptotsesměrnicí =a+b. Pro vpočítámelimit: lim f() lim =1=a, [ f() ]= 4=b. 1

23 Takžeasmptotasesměrnicípro jepřímka = 4. Pro vpočítámelimit: f() lim = 1=a, lim [ f()+]=4=b. Asmptotasesměrnicípro jepřímka = Nní můžeme sestrojit graf:

24 4.3 Goniometrické a cklometrické funkce Příklad 4.4. Všetřete průběh funkce Řešení: f: =sin3 3sin. 1. Definičním oborem funkce je R, funkce je periodická s periodou π, protože f(+π)=sin(3+6π) 3sin(+π)=sin3 3sin=f(). Funkce je lichá, protože f( )=sin( 3) 3sin( )= sin3+3sin= f(). Průsečíksosou jsouvbodech =kπpro k Z.. První derivace funkce je =3cos3 3cos. Nulovébodtétorovnicejsou =k π derivace(stačí na intervalu(0, π)): pro k Z.Všetřímeznaménka ( ( 0, π π ), π) ( ) ( π,3 π 3 π,π) + + klesající rostoucí rostoucí klesající Takželokálníminimanastanouvbodech = π +kπ, k Z,jejich funkčníhodnota f( π +kπ)= 4alokálnímaimanastanouvbodech = 3π+kπ, k Z,jejichfunkčníhodnota f(3π+kπ)=4. 3. Druhá derivace funkce je = 9sin3+3sin. Nulovébodtétorovnicejsou =kπpro k Zabod,prokteréplatí sin =± 3,cožjsounaintervalu(0,360 )bod =55., =15., =35., =

25 Všetříme znaménka derivace: (0,55 ) (55,15 ) (15,180 ) (180,35 ) (35,305 ) (305,360 ) konkávní konvení konkávní konvení konkávní konvení Funkčníhodnotinfleníchbodůjsou f(k180 )=0,kde k Z, f(55 )=f(15 ). =,0, f(35 )=f(305 ). =,0. 4. Funkce f nemá žádné asmptot. 5. Nní můžeme sestrojit graf: 6 4 π π π π 4 6 4

26 Příklad 4.5. Všetřete průběh funkce Řešení: f: = +arccotg. 1.Definičnímoboremfunkceje R,průsečíksosou jebod[0, π].. První derivace funkce je =1 +1, bod,vekterýchjeprvníderivacerovna0,jsou = 1a = 1. Všetříme znaménka derivace: (, 1) ( 1,1) (1, ) + + rostoucí klesající rostoucí Vidíme,ževbodě =1nastáválokálníminimum,jehožhodnotaje f(1)=1+ π,avbodě = 1nastáválokálnímaimum,jehožhodnota je f( 1)= 1+ 3π. 3. Druhá derivace funkce je = 4 ( +1), rovnicejerovnanulepouzevbodě =0. (,0) (0, ) + konkávní konvení Bod =0jeinflenímbodem,zároveňiprůsečíkemsosou,jeho funkční hodnotu jsme spočítali výše. 4.Nníbudemezjišťovat,zdamáfunkceasmptot.Pro vpočítáme limit: lim f() lim =1=a, [ f() ]=0=b. 5

27 Takžeasmptotasesměrnicípro jepřímka =. Pro vpočítámelimit: lim f() lim =1=a, [ f() ]=π= b. Asmptotasesměrnicípro jepřímka = +π. 5. Nní sestrojme graf:

28 4.4 Eponenciální a logaritmické funkce Příklad 4.6. Všetřete průběh funkce Řešení: f: = ln. 1. Definičním oborem funkce je množina(0, ), funkce prochází bodem [1,0].. První derivace funkce je =ln +ln =ln (ln +). Jejínulovébodjsou =e. =0,14a=1.Všetřímeznaménka derivace na definičním oboru funkce: (0,e ) (e,1) (1, ) + + rostoucí klesající rostoucí Vbodě =e. =0,14nastáválokálnímaimum,jehofunkčníhodnota je f(e )=4e.Vbodě =1jelokálníminimum,jehožfunkční hodnotajerovna f(1)=0. 3. Druhá derivace funkce je rovna = 1 (ln +1). Předchozírovnicenabývánulvbodě = e 1. = 0,37.Všetříme konvenost a konkávnost: (0,e 1 ) (e 1, ) + konkávní konvení 4. Funkce nemá žádné asmptot. K sestrojení funkce je vhodné všetřit její chování v krajním bodě definičního oboru. Vpočteme proto limitu funkcepro 0zprava: lim ln =

29 5. Nní můžeme sestrojit graf: Příklad 4.7. Všetřete průběh funkce Řešení: f: =( )e 1. 1.Definičnímoboremfunkcemnožina R\{0}.Průsečíksosou jevbodě =.. První derivace funkce je rovna =e 1 +. Nulovébodjsou = a = 1.Všetřímeznáménkaderivace nadefiničnímoborufunkce f: (, ) (,0) (0,1) (1, ) + + rostoucí klesající klesající rostoucí 8

30 Lokálnímaimumnastávávbodě =,jehofunkčníhodnotaje f( )= 4e 1. = 6,6.Vbodě =1jelokálníminimumsfunkční hodnotou f(1)= e 1. = 0,4. 3.Druháderivacefunkce fje = 1 4e 1 (5 ). Nulovýboddruhéderivaceje = 5.Všetřímeznáménkaderivace nadefiničnímoborufunkce f: Vbodě = 5 nastáváinflee. (,0) (0, 5 ) ( 5, ) + konkávní konkávní konvení 4.Budemehledatasmptotsesměrnicívetvaru = a+b: lim ± f() lim ± =1=a, [ f() ]= 3=b. Asmptotasesměrnicífunkce fje = 3.Zbývávšetřitchování funkcevbodě =0,vekterémnenífunkce fdefinovaná. lim f()=0, 0 + lim f()=. 0 9

31 5. Nní můžeme sestrojit graf: Mocninné funkce Příklad4.8.Všetřeteprůběhfunkce fnaintervalu[0,3], Řešení: f: =(3 ). 1.Funkcemádvaprůsečíksosou atobod =0a=3.Funkceje spojitávkaždémboděintervalu[0,3].. První derivace funkce je tvaru = 3(1 ). Bod,vekterémmůženastatnazadanémintervaluetrém,je =1. 30

32 Všetříme monotónnost funkce: (0,1) (1,3) + rostoucí klesající Vbodě =1jelokálnímaimumsfunkčníhodnotou f(1)=. 3. Druhá derivace funkce je rovna = 3 4 (+1). Předchozí rovnice nemá na všetřovaném intervalu žádné nulové bod. Dosazenímlibovolnéhočíslazintervalu[0,3]zjistíme,že <0.To znamená,žefunkce fbudenacelémintervalu[0,3]konkávní. 4. Funkce nemá žádné asmptot. 5. Nní můžeme sestrojit graf:

33 Příklad 4.9. Všetřete průběh funkce 3 f: =. Řešení: 1.Vpočítámedefiničníoborfunkce f.vjdemeztoho,ževýrazpododmocninou musí být nezáporný a jmenovatel ve zlomku se nesmí rovnat nule.definičníoborbudemnožina(,0] (, ).. První derivace funkce je tvaru = ( 3) ( ) ( ). Bod, ve kterých je první derivace nulová nebo ve kterých není definovaná,jsoukrajníboddefiničníhooboru =0a=abod =3. Všetříme monotónnost funkce na D(f): (,0) (,3) (3, ) + klesající klesající rostoucí V bodě = 3 nastává lokální minimum. Jeho funkční hodnota je. f(3) = 5,. 3. Druhá derivace funkce je rovna = 3 ( ) 5. Druhá derivace není definovaná v krajních bodech definičního oboru. Všetříme znaménka derivace na D(f): (,0) (, ) + + konvení konvení 3

34 4.Budemehledatasmptotsesměrnicífunkce fvetvaru = a+b: Pro vpočítámelimit: lim f() lim =1=a, [ f() ]=1=b. Takžeasmptotasesměrnicípro jepřímka = +1. Pro vpočítámelimit: f() lim = 1=a, lim [ f()+]= 1=b. Asmptotasesměrnicípro jepřímka = 1. Nní všetříme, jak se bude funkce f chovat v krajních bodech definičníhooboru D(f): lim f()=0, 0 lim f()=. + Z poslední počítané limit plne, že funkce f bude mít asmptotu bezsměrnicevetvaru =. 5. Nní můžeme sestrojit graf:

35 Literatura [1] Došlá Z., Kuben J.: Diferenciální počet funkcí jedné proměnné, Masarkova univerzita, Brno 004 [] Jirásek F., Kriegelstein E., Tichý Z.: Sbírka řešených příkladů z matematik, 3.vdání, SNTL, Praha 1987, s [3] Studijní materiál předmětu Kvantitativní ekonomie vučovaného na Přírodovědecké fakultě pod kódem E5340. [4]RbičkaJ.:L A TEXprozačátečník,3.vdání,KONVOJ,Brno003 [5]LomtatidzeL.,PlchR.:SázímevL A TEXudiplomovouprácizmatematik, 1.vdání, Masarkova univerzita, Brno

PRŮBĚH FUNKCE - CVIČENÍ

PRŮBĚH FUNKCE - CVIČENÍ MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA PRŮBĚH FUNKCE - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat?

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat? Vyšetřování průběhu funkce pomocí programu MatLab K práci budeme potřebovat následující příkazy pro 1. Co budeme potřebovat? (a) zadání jednotlivých výrazů symbolicky (obecně) (b) řešení rovnice f()=0,

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

Derivace a průběh funkce příklady z písemných prací

Derivace a průběh funkce příklady z písemných prací Derivace a průběh funkce příklady z písemných prací Vyšetřete průběh následuících funkcí. Příklad. = x +arctg( x ). D(f) =R.. Funkce e spoitá na R. 3. Funkce není lichá, sudá, ani periodická.. lim x ±

Více

Prbh funkce Jaroslav Reichl, 2006

Prbh funkce Jaroslav Reichl, 2006 rbh funkce Jaroslav Reichl, 6 Vyšetování prbhu funkce V tomto tetu je vzorov vyešeno nkolik úloh na vyšetení prbhu funkce. i ešení úlohy jsou využity základní vlastnosti diferenciálního potu.. ešený píklad

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

CVIČENÍ Z MATEMATIKY I

CVIČENÍ Z MATEMATIKY I Slezská univerzita v Opavě Filozoficko-přírodovědecká fakulta Ústav fyziky CVIČENÍ Z MATEMATIKY I Sbírka příkladů Andrea Kotrlová Opava Obsah Příklady k opakování středoškolské látky. Úprava algebraických

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

MATEMATIKA Přijímací zkoušky na ČVUT

MATEMATIKA Přijímací zkoušky na ČVUT Kolektiv MATEMATIKA Přijímací zkoušky na ČVUT Praha 200 Vydavatelství ČVUT Lektoři: doc. RNDr. Čeněk Zlatník, CSc. doc. RNDr. Ludmila Machačová, CSc. Jaroslav Černý, Růžena Černá, František Gemperle, Vladimíra

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

ZMĚNY VE VÝUCE MATEMATIKY JAKO DŮSLEDEK POČÍTAČEM PODPOROVANÉ VÝUKY

ZMĚNY VE VÝUCE MATEMATIKY JAKO DŮSLEDEK POČÍTAČEM PODPOROVANÉ VÝUKY ZMĚNY VE VÝUCE MATEMATIKY JAKO DŮSLEDEK POČÍTAČEM PODPOROVANÉ VÝUKY Marie Polcerová Fakulta chemická, Vysoké učení technické v Brně Abstrakt: Zavedení nového samostatného povinného předmětu Počítačová

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

Prùbìh funkce. d) f(x) = x sin x [rostoucí v R] d) f(x) =ln 1+x [nemá lokální extrém] x = 1 inexní body

Prùbìh funkce. d) f(x) = x sin x [rostoucí v R] d) f(x) =ln 1+x [nemá lokální extrém] x = 1 inexní body Urèete, kde je unkce rostoucí a kde klesající: Prùbìh unkce a) () =ln 0; e klesající ; e ; + rostoucí b) () =+ [( ; 0) [ (0; ) klesající ; ( ; ) [ (; +) rostoucí] c) () =e jj [ ( ; 0) rostoucí ; (0; +)

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a MA 6. cvičení výpočet limit posloupností Lukáš Pospíšil,202 Malý (ale pěkný) důkaz na úvod V dnešním cvičení se naučíme počítat jednoduché limity, nicméně by na začátek bylo vhodné ukázat, že to co hledáme,

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4 Přednáška z MA Michal Tuláček 6. prosince 004 Obsah IV.7 Průběhy funkce 3 Vyšetřování průběhu funkce- KUCHAŘKA 4 3 Vzorový příklad na průběh funkce ze cvičení 4 4 Příkladynadobumezikapremahusou 7 Definice:

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY POMNĚNKA prase Pomni, abys nezapomněl na Pomněnku MSc. Catherine Morris POMNĚNKA Verze ze dne: 9. srpna 05 Materiál je v aktuální

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY Daniel Nechvátal :: maturitní otázky z matematiky 008 :: MOCNINY A ODMOCNINY ) Zjednodušte následující výrazy a určete, pro které hodnoty proměnných mají smysl a) ( ) ( ) [ ] ( ) ( ) [ ] : n n n n b) [

Více

Funkce. Definiční obor a obor hodnot

Funkce. Definiční obor a obor hodnot Funkce Definiční obor a obor hodnot Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné

Více

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom.

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. @213 17. Speciální funkce Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. Nyní si řekneme něco o třech

Více

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch Marie Hojdarová Jana Krejčová Martina Zámková RNDr. Marie Hojdarová, CSc., RNDr. Jana Krejčová, Ph.D., RNDr. Ing. Martina Zámková, Ph.D. ISBN: 978-80-87035-94-8

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu matematika a ve volitelných předmětech Deskriptivní geometrie,

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

GONIOMETRICKÉ FUNKCE

GONIOMETRICKÉ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol GONIOMETRICKÉ

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

16. DEFINIČNÍ OBORY FUNKCÍ

16. DEFINIČNÍ OBORY FUNKCÍ 6 DEFINIČNÍ OBORY FUNKCÍ 6 Urči definiční obor funkce 7 46 0 7 46 = 0 46 ± 5, = = 7; = 4 7 D ( f ) = ( ; 7 ; ) 7 f : y = 7 46 Funkce odmocnina je definována pro kladná reálná čísla a pro nulu Problematické

Více

MATEMATIKA ZIMNÍ SEMESTR 2008/2009 Autor: Mati neučitel.

MATEMATIKA ZIMNÍ SEMESTR 2008/2009 Autor: Mati neučitel. MATEMATIKA ZIMNÍ SEMESTR 008/009 Autor: Mati neučitel. Kdo se matiku pilně učil, a jen si není jistý zadanými příklady, tomu stačí ty kousky podbarvené oranžově. Kdo najde nějakou mou chybu, o které ještě

Více

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina Reálná čísla Iracionální číslo je číslo vyjádřené ve tvaru nekonečného desetinného rozvoje, ve kterém se nevyskytuje žádná perioda. Při počítání je potřeba iracionální číslo vyjádřit zaokrouhlené na určitý

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

Optimalizace úvěrových nabídek. EmbedIT 7.11.2013 Tomáš Hanžl

Optimalizace úvěrových nabídek. EmbedIT 7.11.2013 Tomáš Hanžl Optimalizace úvěrových nabídek EmbedIT 7.11.2013 Tomáš Hanžl Obsah Spotřebitelský úvěr Popis produktu Produktová definice v HC Kalkulace úvěru Úloha nalezení optimálního produktu Shrnutí Spotřebitelský

Více

2.1.17 Parametrické systémy lineárních funkcí II

2.1.17 Parametrické systémy lineárních funkcí II .1.17 Parametrické sstém lineárních funkcí II Předpoklad: 11 Pedagogická poznámka: Celá hodina vznikla na základě jednoho příkladu ze sbírk úloh od Jindr Petákové. S příkladem mělo několik generací studentů

Více

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika O FUNKCÍCH Obsah Nezbytně nutná kapitola, kterou musíte znát pro studium limit, derivací a integrálů. Základ, bez kterého se neobejdete. Nejprve se seznámíte se všemi typy funkcí, které budete potřebovat,

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT7

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT7 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT7. Najděte rovnici tečny ke křivce y x v bodě a. x Tečna je přímka. Přímka se zapisuje jako lineární

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

SOUHRNNÝ PŘEHLED nově vytvořených / inovovaných materiálů v sadě

SOUHRNNÝ PŘEHLED nově vytvořených / inovovaných materiálů v sadě SOUHRNNÝ PŘEHLED nově vytvořených / inovovaných materiálů v sadě Název projektu Zlepšení podmínek vzdělávání SZŠ Číslo projektu CZ.1.07/1.5.00/34.0358 Název školy Střední zdravotnická škola, Turnov, 28.

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2 Obsah Definiční obory výrazů s proměnnou... Zápisy výrazů...3 Sčítání a odčítání mnohočlenů...4 Násobení mnohočlenů...5 Dělení mnohočlenů...7 Rozklad mnohočlenů na součin vytýkání...9 Rozklad mnohočlenů

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Materiál má podobu pracovního listu s úlohami, pomocí nichž si žáci procvičí zobrazení, funkce a

Materiál má podobu pracovního listu s úlohami, pomocí nichž si žáci procvičí zobrazení, funkce a Autor Mgr. Bronislava Salajová Tematický celek Funkce Cílová skupina 3. ročník SŠ s maturitní zkouškou Anotace Materiál má podobu pracovního listu s úlohami, pomocí nichž si žáci procvičí zobrazení, funkce

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Využití programu MS Excel při výuce vlastností kvadratické funkce

Využití programu MS Excel při výuce vlastností kvadratické funkce Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,

Více

Základní pojmy o signálech

Základní pojmy o signálech Základní pojmy o signálech klasifikace signálů transformace časové osy energie a výkon periodické signály harmonický signál jednotkový skok a impuls Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

EKONOMETRIE 2. přednáška Modely chování výrobce I.

EKONOMETRIE 2. přednáška Modely chování výrobce I. EKONOMETRIE. přednáška Modely hování výrobe I. analýza raionálního hování firmy při rozhodování o objemu výroby, vstupů a nákladů při maimalizai zisku základní prinip při rozhodování výrobů Produkční funke

Více

Jaromír Kuben. Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04.1.03/3.2.15.1/0016

Jaromír Kuben. Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04.1.03/3.2.15.1/0016 VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA DIFERENCIÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ Jaromír Kuben Petra Šarmanová Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04..03/3..5./006

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

Pednáška mikro 04: Poptávková a nabídková funkce, cenová elasticita poptávky

Pednáška mikro 04: Poptávková a nabídková funkce, cenová elasticita poptávky Pednáška mikro 04: Potávková a nabídková funkce, cenová elasticita otávk 1. Matematické minimum (dolnit na cviení v íad otávk od student) funkce = edis(druhá odmocnina, dvojnásobek snížený o jednu : =

Více

Školní výstupy Učivo Průřezová témata, přesahy, poznámky. Školní výstupy Učivo Průřezová témata, přesahy, poznámky

Školní výstupy Učivo Průřezová témata, přesahy, poznámky. Školní výstupy Učivo Průřezová témata, přesahy, poznámky Gymnázium Rumburk (vyšší stupeň osmiletého gymnázia a čtyřleté gymnázium v Rumburku) Předmět:Matematika Charakteristika vyučovacího předmětu 1. Obsahové, časové a organizační vymezení Předmět vzniká Matematika

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Základní cvičení z matematiky,

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) =

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) = ZJIŠŤOVÁNÍ DEFINIČNÍHO OBORU FUNKCÍ Definiční obor funkce f(x) zjišťujeme tímto postupem: I. Vypíšeme si všechny výrazy pro které by mohlo být něco zakázáno a napíšeme podmínky pro to, aby se ty zakázané

Více

Fibonacciho čísla na střední škole

Fibonacciho čísla na střední škole Fibonacciho čísla na střední škole Martina Jarošová Abstract In this contribution we introduce some interesting facts about Fibonacci nunbers We will prove some identities using different proof methods

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

MAT 1 Mnohočleny a racionální lomená funkce

MAT 1 Mnohočleny a racionální lomená funkce MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie

Více

5. Kvadratická funkce

5. Kvadratická funkce @063 5. Kvadratická funkce Kvadratickou funkci také znáte ze základní školy, i když jen v té nejjednodušší podobě. Definice: Kvadratická funkce je dána předpisem f: y = ax 2 + bx + c, kde a, b, c R, a

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více