KINEMATIKA. 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost. Mgr. Jana Oslancová VY_32_INOVACE_F1r0218

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "KINEMATIKA. 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost. Mgr. Jana Oslancová VY_32_INOVACE_F1r0218"

Transkript

1 KINEMATIKA 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost Mgr. Jana Oslancová VY_32_INOVACE_F1r0218

2 Úkol 1: Roztřiď do dvou sloupců, které veličiny, popisující pohyb, jsou u všech bodů otáčejícího se tělesa stejné, a které se u různých bodů liší. poloměr rychlost frekvence dráha úhel otočení perioda

3 Řešení 2: pro všechny body stejné úhel otočení φ frekvence f = 1/T perioda T = 1/f pro různé body se liší poloměr r dráha s = φr rychlost v = s/t

4 Rychlosti jednotlivých bodů tělesa se liší v závislosti na jejich vzdálenosti od osy otáčení (r) urazí delší dráhu za stejný čas než body blíž ose Zavedeme novou veličinu, která nebude záviset na vzdálenosti bodů, ale bude popisovat rychlost otáčení celého tělesa. Úkol 2: Na čem by mohla záviset taková rychlost otáčení, aby byla pro všechny body stejná?

5 Úhlová rychlost Popisuje změnu úhlu otočení v čase Značíme ω (malé řecké písmeno omega) Velikost : ω = Δφ t Jednotka: rad/s = rad.s -1 Říká nám, o kolik radiánů se těleso (a všechny jeho body) otočí za 1s.

6 Úhlová rychlost Směr úhlové rychlosti závisí na směru otáčení ω = Δφ t ω Úhel otočení φ i úhlová rychlost ω jsou kladné, právě když se otáčí proti směru hodinových ručiček.

7 Úkol 3: V běžné mluvě se říká například, že kotouč se točí rychlostí 30 otáček za minutu. Jakou rychlostí se ale otáčí?

8 Řešení 3: Budeme určovat úhlovou rychlost, popisující rychlost otáčení celého kotouče. 30 otáček za minutu = 30 otáček za 60s A. 1 otočka za 2s: Δφ = 360 = 2π Δt = 2s ω = Δφ /Δt = 2π/2 = π rad.s -1 = = 3,14 rad.s -1

9 Řešení 3: druhá možnost B. za 1s půl otočky : Δφ = 180 = π Δt = 1s ω = Δφ /Δt = π/1 = π rad.s -1 = 3,14 rad.s -1

10 Úkol 4: Údaj 30ot/min souvisí s frekvencí a periodou otáčení. Odvoď (analogicky k předchozím výpočtům), jak úhlová rychlost závisí na a) periodě a b) frekvenci.

11 Řešení 4: 30ot/min A. 1 otočka za čas = periodě Δφ = 2π Δt = T ω = Δφ /Δt = 2π/T

12 Řešení 4: 30ot/min B. za 1s vykoná počet otoček = frekvenci: ω = Δφ /Δt = 2πf/1 = 2π f použijeme f = 1/T ω = Δφ /Δt = 2π/T = 2π f

13 Úhlová rychlost Má úzkou souvislost s frekvencí i periodou otáčení ω = 2π/T = 2π f Čím větší frekvence tím... úhlová rychlost. Čím větší perioda tím... úhlová rychlost.

14 Úkol 5: Urči periodu, frekvenci a úhlovou rychlost kolotoče, který se během 20 sekund otočil třikrát. Řešení: 3 otočky (φ = 6π), t = 20s T = 20/3 = 6,7s f = 3/20 = 0,15 Hz ω = φ/t = 6π/20 = 0,94 rad/s ω = 2πf = 0,94 rad/s ω = 2π/T = 0,94 rad/s

15 Úkol 6: Porovnej úhlové rychlosti minutových ručiček věžních hodin a budíku (jdou-li přesně). Jak je to s obvodovými rychlostmi jejich koncových bodů?

16 Úkol 7: Jak spolu souvisí obvodová rychlost a úhlová rychlost? Odvoď vztah. v = s t = s 2 s 2 t = rφ 1 rφ 1 t = r φ t = rω v = rω

17 Úkol 8: Porovnej úhlové rychlosti a) malé a velké hodinové ručičky, b) hodinové ručičky a Země.

18 Otázka: Vysvětli, jakým způsobem měří cyklistický tachometr nebo cyklopočítač ujetou vzdálenost a rychlost kola. Na čem závisí přesnost naměřených hodnot?

19 Úkol 9: Vrtule letadla se otáčí s frekvencí 31,8 Hz. Urči úhlovou rychlost vrtule. Jak velkou rychlostí se pohybují body na koncích vrtule, jejichž vzdálenost od osy je 1,5 m? Jakou dráhu uletí letadlo během jedné otočky vrtule, letí-li rychlostí 540 km h 1? Řešení: vrtule: v = 300m/s, letadlo: s = 4,7m

20 Úkol 10: Řezný kotouč pily se naprázdno otáčí s rychlostí 3000ot/min. Urči periodu, frekvenci, úhlovou rychlost jeho otáčení. Jakou rychlostí se pohybuje zub na kraji kotouče, jestliže kotouč má průměr 45 cm? Při řezání klesne rychlost otáčení o třetinu. Kolikrát se kotouč pily otočí než přeřízne prkno, jestliže řezání trvá 15 sekund? Jakou vzdálenost během řezání urazí zub na kotouči? Řešení: Kotouč pily se pohybuje s periodou 0,02 s a frekvencí 50Hz. Zub na kraji kotouče se pohybuje rychlostí 72 m/s. Během řezání se kotouč pily otočí 450 krát a urazí při tom dráhu 720 m.

21 BONUSOVÝ DOMÁCÍ ÚKOL Vypočti úhlovou rychlost, kterou se pohybuje člověk stojící na povrchu Země (R = 6378km) kvůli její rotaci kolem osy. Pomocí této rychlosti urči obvodovou rychlost, kterou se pohybuje člověk, stojící: a) na rovníku b) v Praze ( 50 severní šířky) c) na pólu.

KINEMATIKA. 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda. Mgr. Jana Oslancová VY_32_INOVACE_F1r0217

KINEMATIKA. 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda. Mgr. Jana Oslancová VY_32_INOVACE_F1r0217 KINEMATIKA 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda Mgr. Jana Oslancová VY_32_INOVACE_F1r0217 OPAKOVÁNÍ Otázka 1: Uveď příklady takových hmotných bodů, které vykonávají rovnoměrný pohyb

Více

1.3.2 Rovnoměrný pohyb po kružnici I

1.3.2 Rovnoměrný pohyb po kružnici I ..2 Rovnoměrný pohyb po kružnici I Předpoklady: 0, 0 Pedagogická poznámka: Na začátku jsem předpokládal, že rovnoměrný pohyb po kružnici je možné probrat za jednu hodinu (díky analogii s běžným rovnoměrným

Více

1.3.6 Rovnoměrný pohyb po kružnici I

1.3.6 Rovnoměrný pohyb po kružnici I ..6 Rovnoměrný pohyb po kružnici I Předpoklady: 0, 05 Pedagogická poznámka: Na začátku jsem předpokládal, že rovnoměrný pohyb po kružnici je možné probrat za jednu hodinu (díky analogii s běžným rovnoměrným

Více

Rovnoměrný pohyb po kružnici

Rovnoměrný pohyb po kružnici DUM Základy přírodních věd DUM III/2-3-06 éma: Rovnoměrný pohyb po kružnici Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Rovnoměrný pohyb po kružnici Rovnoměrný pohyb po

Více

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje

Více

FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D.

FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D. 1. KŠPA Kladno, s. r. o., Holandská 2531, 272 01 Kladno, www.1kspa.cz FYZIKA Kapitola 3.: Kinematika Mgr. Lenka Hejduková Ph.D. Kinematika obor, který zkoumá pohyb bez ohledu na jeho příčiny klid nebo

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

1.3.8 Rovnoměrně zrychlený pohyb po kružnici I

1.3.8 Rovnoměrně zrychlený pohyb po kružnici I 1.3.8 Rovnoměně zychlený pohyb po kužnici I Předpoklady: 137 Opakování: K veličinám popisujícím posuvný pohyb existují analogické veličiny popisující pohyb po kužnici: ovnoměný pohyb pojítko ovnoměný pohyb

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

Obsah: 1 Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa _ Druhy pohybů _ Rychlost rovnoměrného pohybu...

Obsah: 1 Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa _ Druhy pohybů _ Rychlost rovnoměrného pohybu... Obsah: 1 Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa... 2 4 _ Druhy pohybů... 3 5 _ Rychlost rovnoměrného pohybu... 4 6 _ Výpočet dráhy... 5 7 _ Výpočet času... 6 8 _ PL:

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

Mechanika teorie srozumitelně

Mechanika teorie srozumitelně Rovnoměrný pohybu po kružnici úhlová a obvodová rychlost Rovnoměrný = nemění se velikost rychlostí. U rovnoměrného pohybu pro kružnici máme totiž dvě rychlosti úhlovou a obvodovou. Směr úhlové rychlosti

Více

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1 DUM Základy přírodních věd DUM III/2-T3-07 Téma: Mechanika a kinematika Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TESTY Testy Část 1 1. Čím se zabývá kinematika? 2. Které těleso

Více

II. Kinematika hmotného bodu

II. Kinematika hmotného bodu II Kinematika hmotného bodu Všechny vyřešené úlohy jou vyřešeny nejprve obecně, to znamená bez číel Číelné hodnoty jou doazeny až tehdy, dopějeme-li k vyjádření neznámé pomocí vztahu obahujícího pouze

Více

Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.

Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Ze zadaných třinácti příkladů vypracuje každý posluchač samostatně

Více

Mechanika II.A Třetí domácí úkol

Mechanika II.A Třetí domácí úkol Mechanika II.A Třetí domácí úkol (Zadání je částečně ze sbírky: Lederer P., Stejskal S., Březina J., Prokýšek R.: Sbírka příkladů z kinematiky. Skripta, vydavatelství ČVUT, 2003.) Vážené studentky a vážení

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

KINEMATIKA 13. VOLNÝ PÁD. Mgr. Jana Oslancová VY_32_INOVACE_F1r0213

KINEMATIKA 13. VOLNÝ PÁD. Mgr. Jana Oslancová VY_32_INOVACE_F1r0213 KINEMATIKA 13. VOLNÝ PÁD Mgr. Jana Oslancová VY_32_INOVACE_F1r0213 Volný pád První systematické pozorování a měření volného pádu těles prováděl Galileo Galilei (1564-1642) Úvodní pokus: Poslouchej, zda

Více

KINEMATIKA 4. PRŮMĚRNÁ RYCHLOST. Mgr. Jana Oslancová VY_32_INOVACE_F1r0204

KINEMATIKA 4. PRŮMĚRNÁ RYCHLOST. Mgr. Jana Oslancová VY_32_INOVACE_F1r0204 KINEMATIKA 4. PRŮMĚRNÁ RYCHLOST Mgr. Jana Oslancová VY_32_INOVACE_F1r0204 OPAKOVÁNÍ Otázka 1: Jak se vypočítá změna veličiny (např. dráhy, času) mezi dvěma měřeními? Otázka 2: Jak se vypočítá velikost

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,

Více

Měření tíhového zrychlení reverzním kyvadlem

Měření tíhového zrychlení reverzním kyvadlem 43 Kapitola 7 Měření tíhového zrychlení reverzním kyvadlem 7.1 Úvod Tíhové zrychlení je zrychlení volného pádu ve vakuu. Závisí na zeměpisné šířce a nadmořské výšce. Jako normální tíhové zrychlení g n

Více

3.1 Magnetické pole ve vakuu a v látkovén prostředí

3.1 Magnetické pole ve vakuu a v látkovén prostředí 3. MAGNETSMUS 3.1 Magnetické pole ve vakuu a v látkovén prostředí 3.1.1 Určete magnetickou indukci a intenzitu magnetického pole ve vzdálenosti a = 5 cm od velmi dlouhého přímého vodiče, jestliže jím protéká

Více

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N? 1. Za jaký čas a jakou konečnou rychlostí (v km/hod.) dorazí automobil na dolní konec svahu dlouhého 25 m a skloněného o 7 0 proti vodorovné rovině, jestliže na horním okraji začal brzdit na hranici možností

Více

KINEMATIKA 5. ROVNOMĚRNÝ POHYB I. Mgr. Jana Oslancová VY_32_INOVACE_F1r0205

KINEMATIKA 5. ROVNOMĚRNÝ POHYB I. Mgr. Jana Oslancová VY_32_INOVACE_F1r0205 KINEMATIKA 5. ROVNOMĚRNÝ POHYB I. Mgr. Jana Oslancová VY_32_INOVACE_F1r0205 DRUHY POHYBŮ Velikosti okamžité rychlosti se většinou v průběhu pohybu mění Okamžitá rychlost hmotného bodu (její velikost i

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

ÚLOHA Závaží pružin kmitá harmonicky amplituda = 2 cm, doba kmitu = 0,5 s. = 0 s rovnovážnou polohou vzh ru. Úkoly l :

ÚLOHA Závaží pružin kmitá harmonicky amplituda = 2 cm, doba kmitu = 0,5 s. = 0 s rovnovážnou polohou vzh ru. Úkoly l : ÚLOHA Závažíčko zavěšené na pružině kitá haronick tak, že: aplituda výchlk je 2 c, doba kitu je T 0,5 s. Předpokládáe, že včase t 0 s prochází závažíčko rovnovážnou polohou a sěřuje vzhůru. Úkol: a) Zjistíe

Více

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy

Více

10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )

10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) ) Druhá mocnina z tabulek 1) (- 6) = 10)(- 5) = ) 7 = 4 11) 5 = ) 4,8 = 4) 40 = 5),785 = 6) 65 8 = 7) 0,01485 = 8) 5,7 = 9) = 4 1),4 = 1)80 = 14)4,6787 = 15)467 56 = 16)0,014 = 17)48,69 = 1 18) Druhá odmocnina

Více

Gravitace na vesmírné stanici. odstředivá síla

Gravitace na vesmírné stanici. odstředivá síla Gravitace na vesmírné stanici odstředivá síla O čem to bude Ukážeme si, jak by mohla odstředivá síla nahradit sílu tíhovou. Popíšeme si, jak by mohl vypadat život na vesmírné stanici, která se otáčí. 2/44

Více

Rotace zeměkoule. pohyb po kružnici

Rotace zeměkoule. pohyb po kružnici Rotace zeměkoule pohyb po kružnici O čem to bude Spočítáme rychlost pohybu Země kolem Slunce z pohybu hmotného bodu po kružnici. 2/35 O čem to bude Spočítáme rychlost pohybu Země kolem Slunce z pohybu

Více

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet

Více

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0 Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t

Více

PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST

PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST PŘÍMÁ EPŘÍMÁ ÚMĚRNOST y kx, kde k je Pro kladné veličiny x, y, které jsou přímo úměrné, platí kladné číslo, které se nazývá koeficient přímé úměrnosti. Kolikrát se zvětší x, tolikrát se zvětší y. Kolikrát

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 2. Kinematika Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:

Více

POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda POHYB TĚLESA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Pohyb Pohyb = změna polohy tělesa vůči jinému tělesu. Neexistuje absolutní klid. Pohyb i klid jsou relativní. Záleží na volbě vztažného tělesa. Spojením

Více

VIDEOSBÍRKA ENERGIE A HYBNOST

VIDEOSBÍRKA ENERGIE A HYBNOST VIDEOSBÍRKA ENERGIE A HYBNOST 1. V poloze x=2 mělo těleso o hmotnosti 1kg rychlost 3 m/s. Graf znázorňuje velikost působící síly, která urychluje přímočarý pohyb tělesa. Těleso nemění svou výšku a při

Více

MECHANIKA TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny

Více

1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy

1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy MěřENÍ MOMENTU SETRVAčNOSTI KOLA TEREZA ZÁBOJNÍKOVÁ 1. Teorie Moment setrvačnosti kola lze měřit dvěma metodami. 1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy otáčení

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická

Více

Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer

Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer Laboratorní úloha č. 3 Spřažená kyvadla Max Šauer 17. prosince 2003 Obsah 1 Úkol měření 2 2 Seznam použitých přístrojů a pomůcek 2 3 Výsledky měření 2 3.1 Stanovení tuhosti vazbové pružiny................

Více

sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj

sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj 1 2 3 4 5 6 7 8 Jakou maximální rychlostí může projíždět automobil zatáčku (o poloměru 50 m) tak, aby se navylila voda z nádoby (hrnec válec o poloměru

Více

3.1.2 Harmonický pohyb

3.1.2 Harmonický pohyb 3.1.2 Haronický pohyb Předpoklady: 3101 Graf závislosti výchylky koštěte na čase: Poloha na čase 200 10 100 poloha [c] 0 0 0 10 20 30 40 0 60 70 80 90 100-0 -100-10 -200 čas [s] U některých periodických

Více

Testovací příklady MEC2

Testovací příklady MEC2 Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být

Více

2. Kinematika bodu a tělesa

2. Kinematika bodu a tělesa 2. Kinematika bodu a tělesa Kinematika bodu popisuje těleso nebo také bod, který se pohybuje po nějaké trajektorii, křivce nebo jinak definované dráze v závislosti na poloze bodu na dráze, rychlosti a

Více

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující

Více

Digitální učební materiál

Digitální učební materiál Digitální učební mteriál Projekt: Digitální učební mteriály ve škole, registrční číslo projektu CZ..07/.5.00/.057 Příjemce: třední zdrvotnická škol Vyšší odborná škol zdrvotnická, Husov, 7 60 České Budějovice

Více

u = = B. l = B. l. v [V; T, m, m. s -1 ]

u = = B. l = B. l. v [V; T, m, m. s -1 ] 5. Elektromagnetická indukce je děj, kdy ve vodiči, který se pohybuje v magnetickém poli a protíná magnetické, indukční čáry, vzniká elektrické napětí. Vodič se stává zdrojem a je to nejrozšířenější způsob

Více

od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem

od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem Kružnice Kružnice je množina všech bodů roviny, které mají od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem je průměr kružnice.

Více

Laboratorní úloha č. 2 Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon. Max Šauer

Laboratorní úloha č. 2 Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon. Max Šauer Laboratorní úloha č. Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon Max Šauer 14. prosince 003 Obsah 1 Popis úlohy Úkol měření 3 Postup měření 4 Teoretický rozbor

Více

Příklady: 31. Elektromagnetická indukce

Příklady: 31. Elektromagnetická indukce 16. prosince 2008 FI FSI VUT v Brn 1 Příklady: 31. Elektromagnetická indukce 1. Tuhý drát ohnutý do půlkružnice o poloměru a se rovnoměrně otáčí s úhlovou frekvencí ω v homogenním magnetickém poli o indukci

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

19. Elektromagnetická indukce

19. Elektromagnetická indukce 19. Elektromagnetická indukce Nestacionární magnetické pole časově proměnné. Existuje kolem nehybných vodičů s proměnným proudem, kolem pohybujících se vodičů s konstantním nebo proměnným proudem nebo

Více

3.2.2 Rovnice postupného vlnění

3.2.2 Rovnice postupného vlnění 3.. Rovnice postupného vlnění Předpoklady: 310, 301 Chcee najít rovnici, která bude udávat výšku vlny v libovolné okažiku i libovolné bodě (v jedno okažiku je v různých ístech různá výška vlny). Veličiny

Více

FYZIKA DIDAKTICKÝ TEST

FYZIKA DIDAKTICKÝ TEST NOVÁ MATURITNÍ ZKOUŠKA Ilustrační test 2008 FY2VCZMZ08DT FYZIKA DIDAKTICKÝ TEST Testový sešit obsahuje 20 úloh. Na řešení úloh máte 90 minut. Odpovědi pište do záznamového archu. Poznámky si můžete dělat

Více

ELEKTRICKÉ STROJE - POHONY

ELEKTRICKÉ STROJE - POHONY ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.1 OBECNÉ ZÁKLADY EL. POHONŮ 2. ELEKTRICKÉ POHONY Pod pojmem elektrický pohon rozumíme soubor elektromechanických vazeb a vztahů mezi elektromechanickou

Více

NESTACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

NESTACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník NESTACIONÁRNÍ MAGNETICKÉ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Nestacionární magnetické pole Vektor magnetické indukce v čase mění směr nebo velikost. a. nepohybující

Více

Mechanika II.A První domácí úkol

Mechanika II.A První domácí úkol Mechanika II.A První domácí úkol (Zadání je ze sbírky: Lederer P., Stejskal S., Březina J., Prokýšek R.: Sbírka příkladů z kinematiky. Skripta, vydavatelství ČVUT, 3.) Vážené studentky a vážení studenti,

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Sestavení diferenciální a diferenční rovnice. Petr Hušek

Sestavení diferenciální a diferenční rovnice. Petr Hušek Sestavení diferenciální a diferenční rovnice Petr Hušek Sestavení diferenciální a diferenční rovnice Petr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVU v Praze MAS 1/13 ČVU

Více

ROVNOMĚRNĚ ZRYCHLENÝ POHYB, ZPOMALENÝ POHYB TEORIE. Zrychlení. Rychlost

ROVNOMĚRNĚ ZRYCHLENÝ POHYB, ZPOMALENÝ POHYB TEORIE. Zrychlení. Rychlost Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S1_D05_Z_MECH_Rovnomerne_zrychleny_pohyb_z pomaleny_pohyb_pl Člověk a příroda Fyzika

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

Ing. Petra Cihlářová. Odborný garant: Doc. Ing. Miroslav Píška, CSc. Druhy fréz a jejich upínání Upínání obrobků Síly a výkony při frézování

Ing. Petra Cihlářová. Odborný garant: Doc. Ing. Miroslav Píška, CSc. Druhy fréz a jejich upínání Upínání obrobků Síly a výkony při frézování Vysoké učení technické v Brně Fakulta strojního inženýrství Ústav strojírenské technologie Odbor obrábění Téma: 6. cvičení - Frézování Okruhy: Druhy frézek Druhy fréz a jejich upínání Upínání obrobků Síly

Více

Ukázkové řešení úloh ústředního kola kategorie EF A) Úvodní test

Ukázkové řešení úloh ústředního kola kategorie EF A) Úvodní test Ukázkové řešení úloh ústředního kola kategorie EF A) Úvodní test 1. Ve kterém městě je pohřben Tycho Brahe? [a] v Kodani [b] v Praze [c] v Gdaňsku [d] v Pise 2. Země je od Slunce nejdál [a] začátkem ledna.

Více

KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI

KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI Šroubový pohyb vzniká složením otáčení kolem osy o a posunutí ve směru osy o, přičemž oba pohyby jsou spojité a rovnoměrné. Jestliže při pohybu po ose "dolů" je otáčení

Více

Mechanické kmitání a vlnění

Mechanické kmitání a vlnění Mechanické kmitání a vlnění Pohyb tělesa, který se v určitém časovém intervalu pravidelně opakuje periodický pohyb S kmitavým pohybem se setkáváme např.: Zařízení, které volně kmitá, nazýváme mechanický

Více

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme

Více

MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11

MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta biomedicínského inženýrství LABORATORNÍ PRÁCE MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11 Obsah ZADÁNÍ... 4 TEORIE... 4 Metoda torzních kmitů... 4 Steinerova

Více

Elektromechanický oscilátor

Elektromechanický oscilátor - 1 - Elektromechanický oscilátor Ing. Ladislav Kopecký, 2002 V tomto článku si ukážeme jeden ze způsobů, jak využít silové účinky cívky s feromagnetickým jádrem v rezonanci. I člověk, který neoplývá technickou

Více

2. Fyzikální kyvadlo (2.2) nebo pro homogenní tělesa. kde r je vzdálenost elementu dm, resp. dv, od osy otáčení, ρ je hustota tělesa, dv je objem

2. Fyzikální kyvadlo (2.2) nebo pro homogenní tělesa. kde r je vzdálenost elementu dm, resp. dv, od osy otáčení, ρ je hustota tělesa, dv je objem 30. Fyzikální kyvadlo 1. Klíčová slova Fyzikální kyvadlo, matematické kyvadlo, kmitavý pohyb, perioda, doba kyvu, tíhové zrychlení, redukovaná délka fyzikálního kyvadla, moment setrvačnosti tělesa, frekvence,

Více

STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE

STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE DANIEL TUREČEK 2005 / 2006 1. 412 5. 14.3.2006 28.3.2006 5. STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE 1. Úkol měření 1. Určete velikost tíhového zrychlení pro Prahu reverzním

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

ITO. Semestrální projekt. Fakulta Informačních Technologií

ITO. Semestrální projekt. Fakulta Informačních Technologií ITO Semestrální projekt Autor: Vojtěch Přikryl, xprikr28 Fakulta Informačních Technologií Vysoké Učení Technické v Brně Příklad 1 Stanovte napětí U R5 a proud I R5. Použijte metodu postupného zjednodušování

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Dynamika Vojtěch Beneš žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, určí v konkrétních situacích síly působící na

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q1-1 Dvě úlohy z mechaniky (10 bodíků) Než se pustíte do řešení, přečtěte si obecné pokyny ve zvláštní obálce. Část A. Ukrytý disk (3,5 bodu) Uvažujeme plný dřevěný válec o poloměru podstavy r 1 a výšce

Více

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km.

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km. 9. Astrofyzika 9.1 Uvažujme hvězdu, která je ve vzdálenosti 4 parseky od sluneční soustavy. Určete: a) jaká je vzdálenost této hvězdy vyjádřená v kilometrech, b) dobu, za kterou dospěje světlo z této hvězdy

Více

Věra Keselicová. květen 2013

Věra Keselicová. květen 2013 VY_52_INOVACE_VK62 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace Věra Keselicová květen 2013 8. ročník

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

Cíl a následující tabulku: t [ s ] s [ mm ]

Cíl a následující tabulku: t [ s ] s [ mm ] .. Rychlost Předpoklady: 0 Rychlost: kolik ukazuje ručička na tachometru jak rychle se míhá krajina za oknem jak rychle se dostaneme z jednoho místa na druhé Okamžitá rychlost se při jízdě autem neustále

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Goniometrické funkce Mirek Kubera žák načrtne grafy elementárních funkcí a určí jejich vlastnosti, při konstrukci grafů aplikuje znalosti o zobrazeních,

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal

Více

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU: 1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.

Více

Pracovní list vzdáleně ovládaný experiment. Obr. 1: Matematické kyvadlo.

Pracovní list vzdáleně ovládaný experiment. Obr. 1: Matematické kyvadlo. Mechanické kmitání (SŠ) Pracovní list vzdáleně ovládaný experiment Určení tíhového zrychlení z doby kmitu matematického kyvadla Fyzikální princip Matematickým kyvadlem rozumíme abstraktní model mechanického

Více

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D19_Z_OPAK_KV_Mechanicke_kmitani_T Člověk a příroda Fyzika Mechanické kmitání Opakování

Více

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení (). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,9 s do 6,5 s. 3. Jakou rychlosí

Více

DYNAMIKA ROTAČNÍ POHYB

DYNAMIKA ROTAČNÍ POHYB DYNAMIKA ROTAČNÍ POHYB Dynamika rotačního pohybu hmotného bodu kolem pevné osy - při rotační pohybu hmotného bodu kolem stálé osy stálými otáčkami kolem pevné osy (pak hovoříme o rovnoměrném rotačním pohybu)

Více

22. STT - Výroba a kontrola ozubení 1

22. STT - Výroba a kontrola ozubení 1 22. STT - Výroba a kontrola ozubení 1 Jedná se v podstatě o výrobu zubové mezery, která tvoří boky zubů. Bok zubu je tvořen - evolventou (křivka vznikající odvalováním bodu přímky po kružnici) - cykloidou

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Kinematika II. Vrhy , (2.1) . (2.3) , (2.4)

Kinematika II. Vrhy , (2.1) . (2.3) , (2.4) Kinematika II Vrhy Galileo Galilei již před čtyřmi staletími, kdy studoval pád různých těles ze šikmé věže v Pise, zjistil, že všechna tělesa se pohybují se stálým zrychlením směřujícím svisle dolů můžemeli

Více

KINEMATIKA 2. DRÁHA. Mgr. Jana Oslancová VY_32_INOVACE_F1r0202

KINEMATIKA 2. DRÁHA. Mgr. Jana Oslancová VY_32_INOVACE_F1r0202 KINEMATIKA 2. DRÁHA Mgr. Jana Oslancová VY_32_INOVACE_F1r0202 OPAKOVÁNÍ ZÁKLADNÍCH POJMŮ Otázka 1: Co znamená pojem hmotný bod a proč jej zavádíme? Uveď praktické příklady. Otázka 2: Pomocí čeho udáváme

Více

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

Harmonické oscilátory

Harmonické oscilátory Harmonické oscilátory Jakub Kákona, kaklik@mlab.cz Abstrakt Tato úloha se zabývá měřením rezonančních vlastností mechanických tlumených i netlumených oscilátorů. 1 Úvod 1. Změřte tuhost pružiny statickou

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

23_Otáčivý účinek síly 24_Podmínky rovnováhy na páce 25_Páka rovnováha - příklady PL:

23_Otáčivý účinek síly 24_Podmínky rovnováhy na páce 25_Páka rovnováha - příklady PL: Obsah 23_Otáčivý účinek síly... 2 24_Podmínky rovnováhy na páce... 2 25_Páka rovnováha - příklady... 3 PL: Otáčivý účinek síly - řešení... 4 27_Užití páky... 6 28_Zvedání těles - kladky... 6 29_Kladky

Více

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9 Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů

Více

Míchání a homogenizace směsí Míchání je hydrodynamický proces, při kterém je různými způsoby vyvoláván vzájemný pohyb částic míchaného materiálu.

Míchání a homogenizace směsí Míchání je hydrodynamický proces, při kterém je různými způsoby vyvoláván vzájemný pohyb částic míchaného materiálu. Míchání a homogenizace směsí Míchání je hydrodynamický proces, při kterém je různými způsoby vyvoláván vzájemný pohyb částic míchaného materiálu. Účelem mícháním je dosáhnout dokonalé, co nejrovnoměrnější

Více