Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008"

Transkript

1 Učební texty k státní bakalářské zkoušce Matematika Poslounosti a řady funkcí študenti MFF 15. augusta

2 3 Poslounosti a řady funkcí Požadavky Sojitost za ředokladu stejnoměrné konvergence Mocninné řady Taylorovy řady Fourierovy řady Táto otázka je vyracovaná hlavne odľa skrít rof. Kalendu, takže je možné že niektoré vety (nar. od rof. Pultra) budú mať iné znenie. Hlavne časť o Fourierových funkciách vyzerá byť rednášaná odlišne (menej obecne)... ;-( 3.1 Sojitost za ředokladu stejnoměrné konvergence andree (Bodová/stejnoměrná konvergence oslounosti funkcí) Řekneme, že oslounost funkcí f n konverguje bodově k funkci f na množině M (značíme f n f), jestliže ro každé x M latí lim n f n (x) = f(x), tj. jestliže x M ε > 0 n 0 N n N, n n 0 : f n (x) f(x) < ε Řekneme, že oslounost f n konverguje stejnoměrně k funkci f na množině M (značíme f n f), jestliže ε > 0 n 0 N n N, n n 0 x M : f n (x) f(x) < ε Řekneme že oslounost funkcí je stejnoměrně konvergentní na M, jestliže konverguje k nějaké funkci na M. {f n } konverguje lokálně stejnoměrně k funkci f na množině M (značíme f n loc f na M), jestliže ro každé x M existuje ε > 0 takové, že f n f na M (x ε, x + ε). Věta (Kritérium stejnoměrné konvergence) Nechť M je (nerázdná) množina, f funkce definovaná na M a {f n } oslounost funkcí definovaných na M. Pak f n f, rávě když: lim su{ f n(x) f(x) ; x M} = 0, n tj. existuje n 0 N takové, že ro n n 0 je su{ f n (x) f(x) ; x M} definováno (a konečné) a tato oslounost má limitu 0. Věta (Bolzano-Cauchyho odmínka ro stejnoměrnou konvergenci) Nechť M je (nerázdná) množina, {f n } oslounost funkcí definovaných na M. Pak oslounost f n je stejnoměrně konvergentní na M, rávě když: ε > 0 n 0 N m, n N, m n 0, n n 0 x M : f n (x) f m (x) < ε 2

3 Věta (O záměně limit, Moore-Osgoodova) Nechť a, b R, a < b, f je funkce definovaná na (a, b) a {f n } oslounost funkcí definovaných na (a, b). Dále nechť f n f na (a, b) a ro každé n N existuje vlastní lim x a+ f n (x) = c n. Pak existují vlastní limity lim n c n a lim x a+ f(x) a latí: lim c n = lim f(x) n x a+ Analogicky v bodě b zleva... Jiný záis je, že latí: lim lim f n(x) = lim lim f n(x) x a+ x a+ n n a navíc jsou tyto limity vlastní, okud ro každé n N existuje vlastní limita lim x a+ f n (x) a oslounost f n je stejnoměrně konvergentní na (a, b) ro nějaké b > a. Tato věta latí i ro oboustranné limity. Věta (Sojitost limitní funkce) Nechť I R je interval, f funkce definovaná na I a {f n } oslounost funkcí definovaných na I. Jestliže f n je sojitá na I ro každé n N a f n loc f na I, ak f je sojitá na I. Věta (Záměna limity a derivace) Nechť a, b R, a < b a {f n } je oslounost funkcí definovaných na intervalu (a, b), které mají v každém bodě (a, b) vlastní derivaci. Nechť dále latí: 1. Existuje takové x 0 (a, b), že oslounost {f n (x 0 )} je konvergentní 2. Poslounost {f n} je stejnoměrně konvergentní na (a, b) Pak oslounost {f n } je stejnoměrně konvergentní na (a, b), a označíme-li f její limitu, ak funkce f má v každém bodě x (a, b) vlastní derivaci a latí f (x) = lim n f n(x). (Bodová/stejnoměrná konvergence řady funkcí) Řekneme, že řada u n konverguje bodově na množině M, okud oslounost jejich částečných součtů je bodově konvergentní na M, tj, ro každé x M konverguje řada u n(x). Součtem řady u n nazveme funkci S(x) = u n (x) = lim n s n (x), x M, okud řada konverguje bodově na M. Řekneme, že řada u n konverguje stejnoměrně na množině M, okud oslounost jejich částečných součtů je stejnoměrně konvergentní na M. Je-li navíc M R, řekneme, že řada u n konverguje lokálně stejnoměrně na množině M, okud oslounost jejich částečných součtů je lokálně stejnoměrně konvergentní. 3

4 Věta (Nutná odmínka stejnoměrné konvergence řady) Nechť řada u n konverguje stejnoměrně na množině M. Pak u n 0 na M. Věta (Srovnávací kritérium ro stejnoměrnou konvergenci) Nechť M je (nerázdná) množina a {u n }, {v n } dvě oslounosti funkcí definovaných na M, ro které latí u n (x) v n (x) ro všechna x M. Jestliže řada v n konverguje stejnoměrně na M, ak i řada u n konverguje stejnoměrně na M. Věta (Weierstrassovo kritérium) Nechť M je (nerázdná) množina, {u n } oslounost funkcí definovaných na M a c n konvergentní řada reálných čísel. Pokud ro každé x M latí u n (x) c n, ak řada u n konverguje stejnoměrně na M. Věta (Leibnizovo kritérium ro stejnoměrnou konvergenci) Nechť M je (nerázdná) množina, {u n } oslounost funkcí definovaných na M slňujících obě odmínky: 1. Pro všechna x M a n N je u n (x) u n+1 (x) 0 2. u n 0 na M Pak řada ( 1)n u n konverguje stejnoměrně na M. Věta (Dirichletovo a Abelovo kritérium) Nechť M je (nerázdná) množina a {u n }, {v n } dvě oslounosti funkcí definovaných na M, řičemž ro každé x M a každé n N latí v n (x) v n+1 (x) 0. Nechť navíc latí alesoň jedna z odmínek: 1. (Abelovo) Řada u n konverguje stejnoměrně na M, ro každé evné x je oslounost hodnot funkcí {v n (x)} monotónní (klidně ro každé x jinak) a existuje K R takové, že n N x M : v n (x) < K (tj. {v n } je stejnoměrně omezená na M). 2. (Dirichletovo) Existuje K R takové, že ro všechna x M a n N je u 1 (x) + + u n (x) K (tj. oslounost část. součtů { n i=1 u n(x)} je stejnoměrně omezená na M) a dále v n 0 na M (konverguje stejnoměrně k nulové funkci). Pak řada u n v n konverguje stejnoměrně na M. (Pozn. autora: Dále latí i věty ekvivalentní větám o záměně limit ři oslounostech... ) 3.2 Mocninné řady Nechť a R a {c n } je oslounost reálných čísel. Nekonečnou řadu funkcí tvaru c n(x a) n nazýváme mocninnou řadou o středu a. 4

5 c n(x a) n je mocninná řada o středu a. Jejím oloměrem konvergence rozumíme číslo R = su{r 0, + ) ; c n r n konverguje}, je-li uvedená množina shora omezená. Není-li shora omezená, klademe R = +. Věta c n(x a) n je mocninná řada o středu a a R její oloměr konvergence. 1. Je-li x a < R, ak řada c n(x a) n konverguje absolutně; Je-li x a > R, ak řada c n(x a) n diverguje. 2. Je-li r (0, R), ak řada c n(x a) n konverguje stejnoměrně na množině B(a, r) = {x R; x a r} = a r, a + r. 3. Řada c n(x a) n konverguje lokálně stejnoměrně na množině B(a, R) = {x R; x a < R}. Body 2. a 3. jsou vlastně ekvivalentní. Je-li R =, ak řada konverguje lokálně stejnoměrně na celém R. Množině B(a, R), kde R je oloměr konvergence mocninné řady c n(x a) n, se říká kruh konvergence. Věta (Výočet oloměru konvergence) c n(x a) n je mocninná řada o středu a a R její oloměr konvergence. 1. Jestliže L = lim su n n c n, ak { 1 R =, L > 0, L +, L = 0 c 2. Týž vzoreček latí, je-li L = lim su n+1 n c n První bod lyne z Cauchyova odmocninového kritéria konvergence řady, druhý z D Alembertova odílového kritéria. Stejné tvrzení latí i ro limity daných výrazů v říadě, že existují. Věta (... jen omocná ro následující) c n(x a) n je mocninná řada o středu a a R její oloměr konvergence. Pak i mocninné řady n.c n(x a) n 1 a c n (x n+1 a)n+1 mají oloměr konvergence R. Věta (Derivace a integrace mocninné řady) c n(x a) n je mocninná řada o středu a a R > 0 její oloměr konvergence. Definujme funkci f(x) = c n(x a) n, x B(a, R). Pak latí: 1. Funkce f je sojitá na B(a, R). 2. Funkce f má v každém bodě x B(a, R) vlastní derivaci a latí f (x) = n c n(x a) n Funkce F (x) = c n (x n+1 a)n+1 je rimitivní funkcí k f na B(a, R). 5

6 3.3 Taylorovy řady Nechť funkce f má v bodě a derivace všech řádů. Pak řadu f (n) (a) (x a) n n! nazýváme Taylorovou řadou funkce f o středu a v bodě x. Nechť funkce f má v bodě a derivace všech řádů a x R. Pak funkce f je v bodě x součtem své Taylorovy řady o středu a, rávě když lim n (f(x) T a n(x)) = 0. Věta Nechť x > a a funkce f má v každém bodě intervalu a, x derivace všech řádů. Jestliže latí odmínka existuje C R takové, že ro každé t (a, x) a každé n N je f (n) (t) C, ak funkce f je v bodě x součtem své Taylorovy řady o středu a. Analogicky ro říad x < a. Věta c n(x a) n je mocninná řada o středu a a R > 0 její oloměr konvergence. Definujme funkci f(x) = c n(x a) n, x B(a, R). Pak řada c n (x a) n je Taylorovou řadou funkce f o středu a, tj. ro každé n N {0} latí c n = f (n) (a) n!. Význam Taylorových řad: aroximace funkcí říklady (Taylorovy řady elementárních funkcí): x R : ex x = k=0 1 k! xk x R : sin x = k=0 ( 1) k 1 (2k 1)! x2k 1... zjednodušení důkazů říklad (Důkaz binomické věty): Rozvineme funkci f(x) = (1 + x) α v okolí nuly. Indukcí lze ověřit, že f (k) (x) = α(α 1) (α k + 1) (1 + x) α k. Taylorova řada funkce f(x) = (1 + x) α konverguje na ( 1, 1) a je rovna hodnotě (1 + x) α : (1 + x) α = k=0 a to dává binomickou větu. α(α 1) (α k + 1) x k = k! k=0 ( ) α x k k 6

7 3.4 Fourierovy řady Obecné Fourierovy řady Nechť {ϕ n } je oslounost komlexních funkcí na a, b, z nichž žádná není konstantně nulová. Řekneme, že tato oslounost tvoří ortogonální (krátce OG) systém na a, b, jestliže ro každá dvě různá m, n N latí: Pokud navíc a a ϕ m ϕ n = 0 ϕ n 2 = 1 ro všechna n N, říkáme, že jde o ortonormální systém. Příklady OG systémů: Systém tvořený funkcemi ex 2kπix, k Z je OG na intervalu a, a + ro každé a R Systém tvořený funkcemi 1, cos 2kπx, sin 2kπx, k N je OG na intervalu a, a + ro každé a R Věta Nechť {ϕ n } je oslounost komlexních funkcí na a, b, {a n } je oslounost komlexních čísel. Jestliže f(x) = a n ϕ n (x), x a, b, a uvedená řada konverguje stejnoměrně na a, b, ak ro každé n N latí a n = fϕ a n ϕ a n. 2 (o částech sojitá funkce) Řekneme, že funkce f je o částech sojitá na a, b, jestliže existuje D = {x i } N j=0 dělení intervalu a, b takové, že ro každé j {1,..., N} je funkce f sojitá na intervalu (x j 1, x j ) a v krajních bodech tohoto intervalu má vlastní jednostranné limity. 7

8 Nechť {ϕ n } je OG systém na a, b a funkce f je o částech sojitá na a, b. Pro n N oložme a a n = fϕ n ϕ a n. 2 Tato čísla nazýváme Fourierovými koeficienty funkce f vzhledem k OG systému {ϕ n } na a, b a řadu a n ϕ n nazýváme Fourierovou řadou f vzhledem k OG systému {ϕ n } na a, b Trigonometriké Fourierovy řady (o částech sojitá eriodická funkce) Buď funkce f eriodická s eriodou > 0. Řekneme, že je o částech sojitá, je-li o částech sojitá na intervalu 0,. Nechť f je -eriodická funkce a a, b R. 1. Pak f je očástech sojitá na a, a +, rávě když je o částech sojitá na b, b a+ a f = + f, okud alesoň jeden z těchto integrálů existuje. b Nechť funkce f je -eriodická o částech sojitá funkce. Jejími trigonometrickými Fourierovými koeficienty rozumíme čísla a n = 2 0 b n = 2 f(x) cos 2πnx dx, n N {0} 0 f(x) sin 2πnx dx, n N Trigonometrickou Fourierovou řadou funkce f ak rozumíme řadu a ( a n cos 2πnx + b n sin 2πnx ) 8

9 (Besselova nerovnost) Besselova nerovnost ro trigonometrické Fourierovy řady má tvar a ( a n 2 + b n 2 ) 2 f 2. Podobná nerovnost latí i ro obecné Fourierovy řady. (Riemann-Lebesgue) důsledkem této nerovnosti je fakt, že lim a n = lim b n = 0. Věta (Persevalova rovnost) Pro trigonometrické Fourierovy řady latí v Besselově nerovnosti rovnost. Pro funkce s eriodou 2π otom latí: 1 π f 2 = a π π 2 ( a n 2 + b n 2 ) (jedna z variant záisu) 0 Nechť f je -eriodická o částech sojitá funkce taková, že všechny její trigonometrické Fourierovy koeficienty jsou nulové. Pak f(x) = 0 ro všechna x 0, s výjimkou konečně mnoha bodů. Věta (Symetrie funkce a Trigonometrické Fourierovy koeficienty) Nechť f je -eriodická o částech sojitá funkce, a n, n N {0} a b n, n N, její trigonometrické Fourierovy koeficienty. Pak latí 1. Pro všechna n N {0} je a n = 0, rávě když f( x) = f(x) ro všechna x 0, s výjimkou konečně mnoha bodů. 2. Pro všechna n N je b n = 0, rávě když f( x) = f(x) ro všechna x 0, s výjimkou konečně mnoha bodů. Nechť f je -eriodická o částech sojitá funkce. Řekneme, že f je o částech hladká, jestliže f je o částech sojitá. Věta (O konvergenci Fourierových řad) Nechť f je o částech hladká -eriodická funkce. Pak latí: 1. Trigonometrická Fourierova řada funkce f konverguje bodově na R a její součet v bodě x R je 1 2 (lim t x f(t) + lim t x+ f(t)) 2. Je-li f navíc sojitá na intervalu (a, b), ak její trigonometrická Fourierova řada konverguje lokálně stejnoměrně na (a, b) a její součet je f(x) ro každé x (a, b). 3. Je-li navíc sojitá na R, ak její trigonometrická Fourierova řada konverguje stejnoměrně na R a její součet je f(x) ro každé x R. 9

17. Posloupnosti a řady funkcí

17. Posloupnosti a řady funkcí 17. Posloupnosti a řady funkcí Aplikovaná matematika III, NMAF073 M. Rokyta, KMA MFF UK ZS 2011/12 17.1 Stejnoměrná konvergence posloupnosti funkcí Definice Necht M je množina, f, f n : M R m, m, n N.

Více

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2 Matematika 2 14. přednáška Číselné a mocninné řady Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel

Více

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a řady. 28. listopadu 2015 Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

1 Posloupnosti a řady.

1 Posloupnosti a řady. 1 Posloupnosti a řady. 1.1 Posloupnosti reálných čísel. Definice 1.1: Posloupností reálných čísel nazýváme zobrazení f množiny N všech přirozených čísel do množiny R všech reálných čísel. Pokud nemůže

Více

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183 Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více

Nekonečné číselné řady. January 21, 2015

Nekonečné číselné řady. January 21, 2015 Nekonečné číselné řady January 2, 205 IMA 205 Příklad 0 = 0 + 0 +... + 0 +... =? n= IMA 205 Příklad n= n 2 + n = 2 + 6 + 2 +... + n 2 +... =? + n s = 2 s 2 = 2 3... s 3 = 3 4 IMA 205 Příklad (pokr.) =

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Přednáška 6, 7. listopadu 2014

Přednáška 6, 7. listopadu 2014 Přednáška 6, 7. listopadu 204 Část 3: nekonečné řady Základní definice. Nekonečná řada, krátce řada, je posloupnost reálných čísel (a n ) R uvedená v zápisu a n = a + a 2 + a 3 +..., spolu s metodou přiřazující

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

Učební texty k státní bakalářské zkoušce Matematika. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika študenti MFF 15. augusta 2008 1 Vážený študent/čitateľ, toto je zbierka vypracovaných otázok pre bakalárske skúšky Informatikov. Otázky boli vypracované

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Kapitola 1. Funkční posloupnosti a řady

Kapitola 1. Funkční posloupnosti a řady 1 2 Kapitola 1 Funkční posloupnosti a řady Definice 1.1(funkční posloupnost) Funkční posloupnost( = posloupnost funkcí) je zobrazení, které každému přirozenému číslu n N přiřazuje právějednufunkci f n

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

(verze 12. května 2015)

(verze 12. května 2015) Pár informací o nekonečných řadách (doplňkový text k předmětu Matematická analýza 3) Pavel Řehák (verze 12. května 2015) 2 Několik slov na úvod Tento text tvoří doplněk k části předmětu Matematická analýza

Více

Funkcionální řady. January 13, 2016

Funkcionální řady. January 13, 2016 Funkcionální řady January 13, 216 f 1 + f 2 + f 3 +... + f n +... = f n posloupnost částečných součtů funkcionální řada konverguje na množine M konverguje posloupnost jeho částečných součtů na množine

Více

Aplikovaná matematika I, NMAF071

Aplikovaná matematika I, NMAF071 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 1 Aplikovaná matematika I, NMAF071 M. Rokyta, KMA MFF UK ZS 2013/14 Sylabus = obsah (plán) přednášky [a orientační

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57 Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011 Diferenciál funkce Derivace vyšších řádů L Hospitalovo pravidlo Jiří Fišer 22. a 23. března 2011 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT2 Přednáška č. 6 22. a 23. března 2011 1 / 18 y ω(h) dy O x Obrázek:

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital

Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital V této části budou uvedena některá použití derivací. a derivace a derivace -zbytek L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT Tvrzení je uvedeno pro jednostrannou limitu zprava. Samozřejmě obdobné tvrzení platí

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Matematika 3. Úloha 1. Úloha 2. Úloha 3

Matematika 3. Úloha 1. Úloha 2. Úloha 3 Matematika 3 Úloha 1 Co lze říci o funkci imaginární část komplexního čísla která každému komplexnímu číslu q přiřazuje číslo Im(q)? a. Je to funkce mnohoznačná. b. Je to reálná funkce komplexní proměnné.

Více

VII. Limita a spojitost funkce

VII. Limita a spojitost funkce VII. Limita a spojitost funkce VII.1. Limita funkce Úvodní poznámky: Limita funkce f v bodě c R hodnota a R, k níž se přibližují hodnoty f(x), jestliže x se blíží k hodnotě c; funkce f nemusí být definovaná

Více

3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim

3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim 3 a b s = (a + b) 2 f(s) 3,46 4,680 3,93-2,9422 3,93 4,680 4,2962-2,034 4,2962 4,680 4,4886-0,0954 4,4886 4,680 4,5848 3,2095 4,4886 4,5848 4,5367,0963 4,4886 4,5367 4,526 0,427 4,4886 4,526 4,5006 0,508

Více

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí 10 Určitý integrál 10.1 Riemnnův integrál Definice. Konečnou posloupnost {x j } n j=0 nzýváme dělením intervlu [,b], jestliže pltí = x 0 < x 1 < < x n = b. Body x 0,...,x n nzýváme dělícími body. Normou

Více

Riemannův určitý integrál

Riemannův určitý integrál Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami

Více

f(x) = ln arcsin 1 + x 1 x. f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech f(x) = (sin x) x2 + 3 cos x

f(x) = ln arcsin 1 + x 1 x. f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech f(x) = (sin x) x2 + 3 cos x Příkad Nalezněte definiční obor funkce f(x) = ln arcsin + x x Určete definiční obor funkce f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech [;?] a Určete definiční obor

Více

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x. 1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle

Více

Písemná zkouška z Matematiky II pro FSV vzor

Písemná zkouška z Matematiky II pro FSV vzor Písemná zkouška z Matematik II pro FSV vzor. (0 bodů) Určete a nakreslete definiční obor funkce sin x f(x, ) = (Kalenda 00/) spočtěte její parciální derivace podle všech proměnných všude, kde existují,

Více

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010 Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

Matematická analýza. L. Pick a J. Spurný

Matematická analýza. L. Pick a J. Spurný Matematická analýza L. Pick a J. Spurný 25. května 200 Obsah Matematická analýza a 5 Výroky, důkazové techniky a množiny.................................... 5. Výroková a predikátová logika....................................

Více

Užití nekonečných řad při řešení obyčejných diferenciálních rovnic. Michal Ostřanský

Užití nekonečných řad při řešení obyčejných diferenciálních rovnic. Michal Ostřanský Užití nekonečných řad při řešení obyčejných diferenciálních rovnic Michal Ostřanský Bakalářská práce 2017 ABSTRAKT Cílem bakalářské práce je ukázat možnosti použití nekonečných řad při řešení obyčejných

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost

Více

1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady... 2 1.2 Základnívlastnostiřad... 3

1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady... 2 1.2 Základnívlastnostiřad... 3 VII. Číselné řady Obsah 1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady...... 2 1.2 Základnívlastnostiřad..... 3 2 Řady s nezápornými členy 3 2.1 Kritériakonvergenceadivergence...... 3 3 Řady absolutně

Více

Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy.

Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. 6 Skalární součin Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. Příklad: Určete odchylku přímek p, q : p : x =1+3t,

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem 2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice

Více

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27 Řetězové zlomky HL Academy - Chata Lopata 2012 13.2. 18.2.2012 Emu (Brkos 2012) Řetězové zlomky 13.2. 18.2.2012 1 / 27 Obsah 1 Úvod 2 Základní pojmy 3 Konečné řetězové zlomky Sblížené zlomky Euklidův algoritmus

Více

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Matematika (KMI/PMATE) Přednáška druhá aneb Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) 1 / 30 Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam

Více

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Necht L je lineární prostor nad R. Operaci : L L R nazýváme Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární

Více

Analytická metoda aneb Využití vektorů v geometrii

Analytická metoda aneb Využití vektorů v geometrii KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor

Více

IX. Vyšetřování průběhu funkce

IX. Vyšetřování průběhu funkce IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde

Více

Posloupnosti a jejich limity

Posloupnosti a jejich limity KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny

Více

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných študenti MFF 15. augusta 2008 1 5 Základy teorie funkcí více proměnných Požadavky Parciální derivace a totální

Více

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její

Více

Obsah. 1 Lineární prostory 2

Obsah. 1 Lineární prostory 2 Obsah 1 Lineární prostory 2 2 Úplné prostory 2 2.1 Metrické prostory.................................... 2 2.2 Banachovy prostory................................... 3 2.3 Lineární funkcionály..................................

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

OBECNOSTI KONVERGENCE V R N

OBECNOSTI KONVERGENCE V R N FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce

Více

Konvergence kuncova/

Konvergence  kuncova/ Konvergence http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Příklady.. 3. 3 + d Konverguje - u je funkce spojitá, u srovnáme s /. e d Konverguje - na intervalu [, ] je funkce spojitá, na intervalu

Více

Kapitola 7: Integrál. 1/17

Kapitola 7: Integrál. 1/17 Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený

Více

Úvod základy teorie zobrazení

Úvod základy teorie zobrazení Úvod základy teorie zobrazení V přednášce se budeme zabývat diferenciálním a integrálním počtem funkcí více proměnných. Přednáška navazuje na přednášku atematická analýza 1 z prvního semestru. Proto se

Více

Metody výpočtu limit funkcí a posloupností

Metody výpočtu limit funkcí a posloupností Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou

Více

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M05, GA01 M04 LIMITA A SPOJITOST FUNKCE

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M05, GA01 M04 LIMITA A SPOJITOST FUNKCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA0 M05, GA0 M04 DIFERENCIÁLNÍ POČET I LIMITA A SPOJITOST FUNKCE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 0 Typeset

Více

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický

Více

Náhodným (stochastickým) procesem nazveme zobrazení, které každé hodnotě náhodnou veličinu X ( t)

Náhodným (stochastickým) procesem nazveme zobrazení, které každé hodnotě náhodnou veličinu X ( t) MARKOVOVY PROCESY JAKO APARÁT PRO ŘEŠENÍ SPOLEHLIVOSTI VÍCESTAVOVÝCH SYSTÉMŮ Náhodné rocesy Náhodným (stochastckým) rocesem nazveme zobrazení, které každé hodnotě náhodnou velčnu X ( t). Proměnná t má

Více

a n (z z 0 ) n, z C, (1) n=0

a n (z z 0 ) n, z C, (1) n=0 Mocniné řady Nechť 0, a 0, a, a 2,... jsou konečná komplexní čísla. Pak řadu funkcí a n ( 0 ) n, C, () naýváme mocninou řadou. Číslo 0 koeficienty mocniné řady. Onačme dále: se naývá střed mocniné řady,

Více

Matematika I (KMI/PMATE)

Matematika I (KMI/PMATE) Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce

Více

Kapitola 4: Průběh funkce 1/11

Kapitola 4: Průběh funkce 1/11 Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základ matematik pro FEK 7. přednáška Blanka Šedivá KMA zimní semestr 06/07 Blanka Šedivá (KMA) Základ matematik pro FEK zimní semestr 06/07 / 5 Jednostranné limit Definice: Vlastní limita ve vlastním

Více

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření

Více

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy 1 Matematika I. I. Lineární algebra II. Základy matematické analýzy III. Diferenciální počet IV. Integrální počet 2 Matematika

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

Matematika 1 pro PEF PaE

Matematika 1 pro PEF PaE Derivace funkcí jedné proměnné / 9 Matematika pro PEF PaE 4. Derivace funkcí jedné proměnné Přemysl Jedlička Katedra matematiky, TF ČZU Derivace funkcí jedné proměnné Nejjednodušší derivace 2 / 9 Derivace

Více

17. ledna porad te se s kolegou nebo doporučenou literaturou. Pomocí vodorovných čar jsou

17. ledna porad te se s kolegou nebo doporučenou literaturou. Pomocí vodorovných čar jsou Stručné poznámky z MA pro I ZS 2008/9 Robert Šámal 17. ledna 2009 Tento text se vztahuje k předmětu NMAI054, paralelka Y. Vznikl (vzniká) úpravou textu z loňska od Stanislava Hencla (děkuji!). Najdete

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 2. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 17. února 2010 Jan Tomeček, tomecek@inf.upol.cz

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva

Více

Požadavky ke zkoušce. Ukázková písemka

Požadavky ke zkoušce. Ukázková písemka Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 1 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní

Více

Numerické řešení nelineárních rovnic

Numerické řešení nelineárních rovnic Numerické řešení nelineárních rovnic Mirko Navara http://cmp.felk.cvut.cz/ navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html

Více

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova

Více

Věta o dělení polynomů se zbytkem

Věta o dělení polynomů se zbytkem Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)

Více

RNDr. Blanka Šedivá, PhD. Katedra matematiky FAV Západočeská univerzita v Plzni.

RNDr. Blanka Šedivá, PhD. Katedra matematiky FAV Západočeská univerzita v Plzni. KMA/ZM1 Přednášky RNDr. Blanka Šedivá, PhD. Katedra matematiky FAV Západočeská univerzita v Plzni sediva@kma.zcu.cz Obsah 0.1 Matematické objekty, matematické definice, matematické věty.............. 4

Více

Zimní semestr akademického roku 2015/ ledna 2016

Zimní semestr akademického roku 2015/ ledna 2016 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Zimní semestr akademického roku 015/016 5. ledna 016 Obsah Cvičení Předmluva iii

Více

7.1 Extrémy a monotonie

7.1 Extrémy a monotonie KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y = 0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

CVIČENÍ Z ELEKTRONIKY

CVIČENÍ Z ELEKTRONIKY Střední růmyslová škola elektrotechnická Pardubice CVIČENÍ Z ELEKRONIKY Harmonická analýza Příjmení : Česák Číslo úlohy : Jméno : Petr Datum zadání :.1.97 Školní rok : 1997/98 Datum odevzdání : 11.1.97

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

Laplaceova transformace

Laplaceova transformace Lalaceova transformace EO2 Přednáška 3 Pavel Máša ÚVODEM Víme, že Fourierova transformace díky řísným odmínkám existence neexistuje ro řadu běžných signálů dokonce i funkce sin musela být zatlumena Jak

Více

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)

Více

5. Limita a spojitost

5. Limita a spojitost 5. Limita a spojitost 5. Limita posloupnosti 5. Limita a spojitost Verze 16. prosince 2016 Diferenciální počet a integrální počet tvoří klasický základ Matematické analýzy. Diferenciální počet zkoumá lokální

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Tabulkové limity. n! lim. n n) n + lim. n + n β = 0. n + a n = 0. lim. (d) Pro α > 0 (tj. libovolně velké) a pro β > 0 (tj.

Tabulkové limity. n! lim. n n) n + lim. n + n β = 0. n + a n = 0. lim. (d) Pro α > 0 (tj. libovolně velké) a pro β > 0 (tj. 1 Limity posloupností 1. (a) pro a > 1 je (c) Pro β > 0 a a > 1 Tabulkové ity n! n n = 0 a n n! = 0. n β a n = 0. (d) Pro α > 0 (tj. libovolně velké) a pro β > 0 (tj. libovolně malé) ln α n n β = 0. (e)

Více

Základy elementární teorie čísel

Základy elementární teorie čísel Základy elementární teorie čísel Jiří Velebil: X01DML 29. října 2010: Základy elementární teorie čísel 1/14 Definice Řekneme, že přirozené číslo a dělí přirozené číslo b (značíme a b), pokud existuje přirozené

Více