Trojfázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cíl: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně

Rozměr: px
Začít zobrazení ze stránky:

Download "Trojfázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cíl: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně"

Transkript

1 Trojázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cí: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně rozoženými parametry Homogenní vedení parametry R, L, G, C jsou rovnoměrné po ceé jeho déce.

2 . KZ.KZ u i u + dx u R dx i Ldx x t u i Ri + L x t i u dx i + G dx u + C dx x t i u Gu + C x t i Pro střídavé napětí (proud) patí j ω u t Im t e ( ) { } ( t) u d ωt Im e j u () t { j ω Im jω t } x dx e t 0 0

3 Po dosazení d dx d dx G ( R + jωl ) ( + jωc) Derivací a dosazením dostaneme vnové rovnice d d ˆ γ dx dx d d ˆ γ dx dx Kompexní konstanta přenosu γ ˆ ( km ; Ω km, S km )

4 Pozn.: V časové obasti se jedná o teegraní rovnici (matematicky vnová rovnice pro R G 0) u(t, x) u(t, x) u(t, x) RGu(t, x) + ( RC + LG) + L C x t t Obecné řešení vnových rovnic, tj. ineárních dierenciáních rovnic. řádu (char. rovnice ˆ λ γˆ 0 ) postupná a odražená vna γˆx γˆx Kˆ e + Kˆ e d dx v γˆ ( ) γˆx γˆx Kˆ e Kˆ e ( ) ( ) γˆx γˆx γˆx γˆx Kˆ e Kˆ e Kˆ e Kˆ e

5 Vnová impedance v ( Ω; Ω km, S km ) Integrační konstanty Kˆ, Kˆ se určí z okrajových podmínek. Konec vedení (x 0) index, začátek vedení (x ) index. Pro x 0: Kˆ + Kˆ ( ) Kˆ Kˆ v Odtud Kˆ ( ) + v Kˆ ( ) v

6 Pro x pak dostaneme γˆ γˆ γˆ e + e e e + v γˆ γˆ γˆ γˆ e + e e e + v Deinice hyperboických unkcí cosh γˆ + sinh γˆ v sinh γˆ + v cosh ˆ γ γˆ

7 Lze psát  Bˆ Ĉ Dˆ kde  ( ), Bˆ ( Ω), Ĉ(S), Dˆ ( ) jsou tzv. Bondeovy konstanty patí  Dˆ, ÂD Bˆ Ĉ ( cosh γ ˆ) ( sinh γˆ ) (symetrický, pasivní dvojbran) Zadány hodnoty na začátku vedení Dˆ Bˆ Ĉ  Uˆ Aˆ, BCD ˆ, ˆ, ˆ Uˆ

8 Vnová impedance impedance nekonečně douhého vedení Vstupní impedance v dx + v v ( ) dx ( dx) + v ( ) dx 0 dx v dx v dx ± ( ) dx 4 dx ( dx)

9 Spojité rozožení parametrů pro dx 0: v Ideání vedení zanedbání činných prvků (R 0, G 0). U vyšších napěťových hadin, mode nedovouje počítat ztráty. γ R + jx G + jb j X B j ( )( ) β ˆ R + jx L v G + jb C Přechod na goniometrické unkce cosh jβ jβ jβ e + e cosβ sinh jβ jβ jβ e e jsin β Z ( ) ( ) v

10 Tedy cosβ + jzv j sin β + cosβ Z v sin β ( cosβ ) ( j sin β) Přirozený výkon při němž je vedení na konci zatíženo vnovou impedancí (pro porovnání přenosové schopnosti vedení). Jakoby nekonečně douhé vedení výkon se přenáší jen postupnou vnou, odražená je nuová. v ( ) γˆ γˆ odr v e Kˆ e 0

11 * U Ŝ p 3 3 * v v (Činná sožka podstatně větší než jaová často v MW.) cosh γˆ + sinh γˆ ( ) ( sinh γˆ + cosh ˆ) γ * Nemění se áze mezi napětím a proudem jaové výkony na L a C jsou stejné. (x) v (x) Podé vedení dochází k útumu ampitudy napětí i proudu (a činného výkonu). γˆx αx jβ cosh γˆx + sinh γˆx e e e (x) ( ) x

12 Venkovní vedení Z v Ω pro 400 ( ) ( ) kv ( 580) MW pro ( 400) kv S p Kabey nižší Z v ( 50 70)Ω vyšší S p Pro ideání vedení nenastává útum cosβ + j sin β e U U jβ e jβ

13 Chod naprázdno 0 0 cosh γˆ 0 sinh γˆ v Pro ideání vedení cosβ 0 0 j sin β Zv Patí U 0 U Ferrantiho jev Vedení jako kapacita.

14 Chod nakrátko 0 v sinh γˆ cosh γˆ Pro ideání vedení jz sin β v cosβ Napětí kesá od počátku ke konci. Vedení jako indukčnost.

15 Příkad: inka x 400kV, portá se zemnicími any ázové ano 3xAFe 450/5, zemnicí AFe 85/3 Napěťové poměry (U 400 kv) UHkVL cos ϕ 0,8 ind cos ϕ 0,9 ind cos ϕ cos ϕ 0,9 kap U < U n : Ferrantiho jev U ~ U n v obasti S p a cos φ PHMWL

16 Účiník přenosu cos ϕ P S cos ϕh L nárůst KAP, pokes IND cos ϕ 0,8 ind cos ϕ 0,9 ind cos ϕ cos ϕ 0,9 kap PHMWL naprázdno vedení jako kapacitní zátěž vyšší výkony samokompenzace vedení

17 Ztráty na vedení naprázdno ~ U + zátěžné ~ I DPHMWL cos j 0,8 ind cos j 0,9 ind cos j cos j 0,9 kap PHMWL

18 DPHMWL cos j 0,8 ind cos j 0,9 ind cos j cos j 0,9 kap PHMWL

19 Účinnost přenosu P η P ηh L cos ϕ 0,8 ind cos ϕ 0,9 ind cos ϕ cos ϕ 0,9 kap maximum pro maé výkony pro vyšší výkony pochá křivka PHMWL

20 Rozvoj hyperboických unkcí (Tayorův poynom v bodě x 0) (k) (x ) k 0 (x 0 ) (x) x 0 (x x 0 ) (x 0 ) + (x 0 ) (x x 0 ) + (x x 0 ) +... k! k 0 ( γˆ ) ( γˆ ) 4 cosh γˆ K + +K 4 ( ) ( ) 3 γˆ 3/ 3 sinh γˆ γˆ + + K + +K 6 6 v sinh γˆ sinh γˆ + 6 +K sinh γˆ sinh γˆ + v 6 +K

21 Vedení se soustředěnými parametry Pro běžné výpočty (uzové sítě, MUN) s dobrou přesností (pode déky vedení) ze použít náhradní čánky. T-čánek krátká vedení, transormátory; zavádí daší uze (náhradní schéma pro vedení venkovní do cca 00 km, kabeové do cca 80 km)

22 Napětí a proud na začátku vedení Napětí a proud příčné větve + + Odtud (vztahy s Bondeovými konstantami)

23 Fázorový diagram (G 0),

24 π-čánek deší vedení, přesnější (náhradní schéma vedení venkovních do cca 50 km, kabeových do cca 00 km) Napětí a proud na začátku vedení + + ( ' ) + + ' + ''

25 Proudy příčnými větvemi ' '' Po úpravě (vztahy s Bondeovými konstantami)

26 Fázorový diagram (G 0), ' Δ ''

27 Γ-čánek (gama) - použití poměrně máo, jako náhradní schéma kratších vedení (venkovní do 80 km, kabeové do 5 km), transormátorů + ( ) + ( ) patí Â Dˆ, ÂD Bˆ Ĉ (nesymetrický, pasivní dvojbran)

28 Deší vedení kaskádní řazení čánků pro kratší úseky (daší uzy) + + ) (m ) (m m m m m m m Dˆ Ĉ Bˆ Â Π m m m m n m Dˆ Ĉ Bˆ Â Dˆ Ĉ Bˆ Â

Trojfázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cíl: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně

Trojfázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cíl: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně Trojázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cí: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně rozoženými parametry Homogenní vedení parametry R, L, G, C jsou

Více

Obvody s rozprostřenými parametry

Obvody s rozprostřenými parametry Obvody s rozprostřenými parametry EO2 Přednáška 12 Pave Máša - Vedení s rozprostřenými parametry ÚVODEM Každá kroucená dvojinka UTP patch kabeu je samostaným vedením s rozprostřenými parametry Impedance

Více

Transformátory. Teorie - přehled

Transformátory. Teorie - přehled Transformátory Teorie - přehled Transformátory...... jsou elektrické stroje, které mění napětí při přenosu elektrické energie při stejné frekvenci. Používají se především při rozvodu elektrické energie.

Více

E L E K T R I C K Á M Ě Ř E N Í

E L E K T R I C K Á M Ě Ř E N Í Střední škola, Havířov Šumbark, Sýkorova 1/613, příspěvková organizace E L E K T R I C K Á M Ě Ř E N Í R O Č N Í K MĚŘENÍ ZÁKLDNÍCH ELEKTRICKÝCH ELIČIN Ing. Bouchala Petr Jméno a příjmení Třída Školní

Více

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem Praktické příklady z Elektrotechniky. Střídavé obvody.. Základní pojmy.. Jednoduché obvody se střídavým proudem Příklad : Stanovte napětí na ideálním kondenzátoru s kapacitou 0 µf, kterým prochází proud

Více

1.1 Měření parametrů transformátorů

1.1 Měření parametrů transformátorů 1.1 Měření parametrů transformátorů Cíle kapitoly: Jedním z cílů úlohy je stanovit základní parametry dvou rozdílných třífázových transformátorů. Dvojice transformátorů tak bude podrobena měření naprázdno

Více

METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK

METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ BRNO,KOUNICOVA16 METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK Třída : K4 Název tématu : Metodický list z elektroenergetiky Školní rok: 2009/2010 Obsah 1. Rozdělení

Více

Měření vlnové délky, impedance, návrh impedančního přizpůsobení

Měření vlnové délky, impedance, návrh impedančního přizpůsobení Měření vlnové délky, impedance, návrh impedančního přizpůsobení 1. Zadání: a) Změřte závislost v na kmitočtu pro f 8,12GHz. b) Změřte zadanou impedanci a impedančně ji přizpůsobte. 2. Schéma měřicí soupravy:

Více

Couloumbuv zákon stejne jako vetsina zakonu elektrostatiky jsou velmi podobna zakonum gravitacniho pole.

Couloumbuv zákon stejne jako vetsina zakonu elektrostatiky jsou velmi podobna zakonum gravitacniho pole. 1) Eektrostaticke poe, Cooumbuv zákon, Permitivita kazde dve teesa nabite eektrickym nabojem Q na sebe pusobi vzajemnou siou. Ta je vysise pomoci Couombovyho zákona: F = 1 4 Q Q 1 2 r r 2 0 kde první cast

Více

ELEKTRICKÉ OBVODY 1. - TEORETICKÉ OTÁZKY

ELEKTRICKÉ OBVODY 1. - TEORETICKÉ OTÁZKY ELEKTRICKÉ OBVODY 1. - TEORETICKÉ OTÁZKY 1. Definujte elektrický proud procházející průřezem vodiče a uveďte jeho jednotku. 2. Definujte elektrické napětí mezi dvěma body v elektrickém poli a uveďte jeho

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt

E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt SIMULAČNÍ MODEL ASYNCHRONNÍHO STROJE E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze Abstrakt Asynchronní motor je pro svou jednoduchost a nízkou cenu nejčastěji používaný typ elektromotoru,

Více

Měření transformátoru naprázdno a nakrátko

Měření transformátoru naprázdno a nakrátko Měření u naprázdno a nakrátko Měření naprázdno Teoretický rozbor Stav naprázdno je stavem u, při kterém je I =. řesto primárním vinutím protéká proud I tzv. magnetizační, jenž je nutný pro vybuzení magnetického

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

I. STEJNOSMĚ RNÉ OBVODY

I. STEJNOSMĚ RNÉ OBVODY Řešené příklady s komentářem Ing. Vítězslav Stýskala, leden 000 Katedra obecné elektrotechniky FEI, VŠB-Technická univerzita Ostrava stýskala, 000 Určeno pro posluchače bakalářských studijních programů

Více

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

OTÁZKY Z TEORIE ELEKTROMAGNETICKÉHO POLE Letní semestr 2003/2004 poslední úprava 25. června 2004

OTÁZKY Z TEORIE ELEKTROMAGNETICKÉHO POLE Letní semestr 2003/2004 poslední úprava 25. června 2004 OTÁZKY Z TEORIE ELEKTROMAGNETICKÉHO POLE Letní semestr 2003/2004 posední úprava 25. června 2004 1. ía současně působící na eektrický náboj v eektrickém a magnetickém poi (Lorentzova sía) [ ] F m = Q E

Více

NÁVRH TRANSFORMÁTORU. Postup školního výpočtu distribučního transformátoru

NÁVRH TRANSFORMÁTORU. Postup školního výpočtu distribučního transformátoru NÁVRH TRANSFORMÁTORU Postup školního výpočtu distribučního transformátoru Pro návrh transformátoru se zadává: - zdánlivý výkon S [kva ] - vstupní a výstupní sdružené napětí ve tvaru /U [V] - kmitočet f

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Kmitání struny. Jelikožpředpokládáme,ževýchylkystrunyjsoumalé,budeplatitcosϕ 1,2 1,takže můžeme psát. F 2 F 1 = F 2 u x 2 x.

Kmitání struny. Jelikožpředpokládáme,ževýchylkystrunyjsoumalé,budeplatitcosϕ 1,2 1,takže můžeme psát. F 2 F 1 = F 2 u x 2 x. Kmitání struny 1 Odvození vnové rovnice Vnovou rovnici pro(příčné) vny šířící se na struně odvodíme za předpokadu, že výchykastruny u(x, t)vrovině,vnížstrunakmitá,jemaá,cožnámumožníprovésthned někoik zjednodušení.

Více

Výkon střídavého proudu, účiník

Výkon střídavého proudu, účiník ng. Jaromír Tyrbach Výkon střídavého proudu, účiník odle toho, kterého prvku obvodu se výkon týká, rozlišujeme u střídavých obvodů výkon činný, jalový a zdánlivý. Ve střídavých obvodech se neustále mění

Více

1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu

1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu 1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu Cíle kapitoly: Cílem úlohy je ověřit teoretické znalosti při provozu dvou a více transformátorů paralelně. Dalším úkolem bude změřit

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY ŘEŠENÉ PŘÍKLDY K DOPLNĚNÍ ÝKY. TÝDEN Příklad. K baterii s vnitřním napětím a vnitřním odporem i je připojen vnější odpor (viz obr..). rčete proud, který prochází obvodem, úbytek napětí Δ na vnitřním odporu

Více

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu:

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu: Zkraty ES Zkrat: příčná porucha, prudká haarijní změna ES nejrozšířenější porucha ES při zkratu znikají přechodné jey Vznik zkratu: poruchoé spojení fází nazájem nebo fáze (fází) se zemí soustaě s uzemněným

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

NÁLEŽITOSTI ŽÁDOSTI O PŘIPOJENÍ VÝROBNY ELEKTŘINY K PŘENOSOVÉ NEBO DISTRIBUČNÍ SOUSTAVĚ

NÁLEŽITOSTI ŽÁDOSTI O PŘIPOJENÍ VÝROBNY ELEKTŘINY K PŘENOSOVÉ NEBO DISTRIBUČNÍ SOUSTAVĚ Příloha č. 1 k vyhlášce č. 51/2006 Sb. NÁLEŽITOSTI ŽÁDOSTI O PŘIPOJENÍ VÝROBNY ELEKTŘINY K PŘENOSOVÉ NEBO DISTRIBUČNÍ SOUSTAVĚ 1. Obchodní firma - vyplňuje žadatel podnikatel zapsaný Část B - údaje o zařízení

Více

Elektroenergetika 1. Elektrické části elektrárenských bloků

Elektroenergetika 1. Elektrické části elektrárenských bloků Elektroenergetika 1 Elektrické části elektrárenských bloků Elektrická část elektrárny Hlavním úkolem elektrické části elektráren je: Vyvedení výkonu z elektrárny zprostředkování spojení alternátoru s elektrizační

Více

6 Měření transformátoru naprázdno

6 Měření transformátoru naprázdno 6 6.1 Zadání úlohy a) změřte charakteristiku naprázdno pro napětí uvedená v tabulce b) změřte převod transformátoru c) vypočtěte poměrný proud naprázdno pro jmenovité napětí transformátoru d) vypočtěte

Více

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT. 0210 Bc. David Pietschmann.

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT. 0210 Bc. David Pietschmann. VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková

Více

Obsah OBVODY STŘÍDAVÉHO PROUDU S LINEÁRNÍMI JEDNOBRANY A DVOJBRANY. Studijní text pro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý

Obsah OBVODY STŘÍDAVÉHO PROUDU S LINEÁRNÍMI JEDNOBRANY A DVOJBRANY. Studijní text pro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý OBVODY STŘÍDVÉHO POD S NEÁNÍM JEDNOBNY DVOJBNY Studijní text pro řešitele FO a ostatní zájemce o yziku Přemysl Šedivý Obsah Jednoduchý obvod střídavého proudu Řešení obvodů střídavého proudu pomocí ázorového

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

Profilová část maturitní zkoušky 2015/2016

Profilová část maturitní zkoušky 2015/2016 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: počítačové

Více

Elektrická měření pro I. ročník (Laboratorní cvičení)

Elektrická měření pro I. ročník (Laboratorní cvičení) Střední škola informatiky a spojů, Brno, Čichnova 23 Elektrická měření pro I. ročník (Laboratorní cvičení) Studentská verze Zpracoval: Ing. Jiří Dlapal B R N O 2011 Úvod Výuka předmětu Elektrická měření

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. P = 1 T

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. P = 1 T 1 Pracovní úkol 1. Změřte účiník (a) rezistoru (b) kondenzátoru (C = 10 µf) (c) cívky Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

přednáška č. 2 Elektrárny A1M15ENY Ing. Jan Špetlík, Ph.D. Schéma vlastní spotřeby Příklady provedení schémat VS Výpočet velikosti zdrojů pro VS

přednáška č. 2 Elektrárny A1M15ENY Ing. Jan Špetlík, Ph.D. Schéma vlastní spotřeby Příklady provedení schémat VS Výpočet velikosti zdrojů pro VS Elektrárny A1M15ENY přednáška č. 2 Schéma vlastní spotřeby Příklady provedení schémat VS Výpočet velikosti zdrojů pro VS Ing. Jan Špetlík, Ph.D. ČVUT FEL Katedra elektroenergetiky E-mail: spetlij@fel.cvut.cz

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jiří Kozlík dne: 17.10.2013

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jiří Kozlík dne: 17.10.2013 Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Úloha č. 5 Název: Měření osciloskopem Pracoval: Jiří Kozlík dne: 17.10.2013 Odevzdal dne: 24.10.2013 Pracovní úkol 1. Pomocí

Více

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Sbírka příkladů z matematické analýzy II. Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................

Více

1990 SYNCHRONNÍ FÁZORY NAP

1990 SYNCHRONNÍ FÁZORY NAP Založeno 1990 SYNCHONNÍ FÁZOY NAPĚTÍ A POUDU V ENEGETICE, IDENTIFIKACE PAAMETŮ VEDENÍ ZA POVOZU Ing. Antonín Popelka, AIS spol. s r.o. Brno, 24.9.2006 Úvod Současný stav elektrizační sítě stejně jako mnoho

Více

PRAVIDLA PROVOZOVÁNÍ. MOTORPAL,a.s.

PRAVIDLA PROVOZOVÁNÍ. MOTORPAL,a.s. PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY MOTORPAL,a.s. licence na distribuci elektřiny č. 120705508 Příloha 1 Dotazníky pro registrované údaje 2 Obsah Dotazník 1a Údaje o všech výrobnách - po

Více

Vedení vvn a vyšší parametry vedení

Vedení vvn a vyšší parametry vedení Veení vvn a vyšší parametry veení Při řešení těchto veení je třeba vzhleem k jejich élce uvažovat nejenom opor veení R a inukčnost veení L, ale také kapacitu veení C. Svo veení G se obvykle zanebává. Tyto

Více

1 Zdroj napětí náhradní obvod

1 Zdroj napětí náhradní obvod 1 Zdroj napětí náhradní obvod Příklad 1. Zdroj napětí má na svorkách naprázdno napětí 6 V. Při zatížení odporem 30 Ω klesne napětí na 5,7 V. Co vše můžete o tomto zdroji říci za předpokladu, že je v celém

Více

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování)

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) FYZIKA II Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) Osnova přednášky činitel jakosti, vektorové diagramy v komplexní rovině Sériový RLC obvod - fázový posuv, rezonance

Více

TRANSFORMÁTORY Ing. Eva Navrátilová

TRANSFORMÁTORY Ing. Eva Navrátilová STŘEDNÍ ŠOLA, HAVÍŘOV-ŠUMBAR, SÝOROVA 1/613 příspěvková organizace TRANSFORMÁTORY Ing. Eva Navrátilová - 1 - Transformátor jednofázový = netočivý elektrický stroj, který využívá elektromagnetickou indukci

Více

VY_32_INOVACE_ENI_3.ME_01_Děliče napětí frekvenčně nezávislé Střední odborná škola a Střední odborné učiliště, Dubno Ing.

VY_32_INOVACE_ENI_3.ME_01_Děliče napětí frekvenčně nezávislé Střední odborná škola a Střední odborné učiliště, Dubno Ing. Číslo projektu..07/.5.00/34.058 Číslo materiálu VY_3_INOVAE_ENI_3.ME_0_Děliče napětí frekvenčně nezávislé Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

Integrovaná střední škola, Sokolnice 496

Integrovaná střední škola, Sokolnice 496 Integrovaná střední škola, Sokolnice 496 Název projektu: Moderní škola Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných

Více

Transformátor trojfázový

Transformátor trojfázový Transformátor trojfázový distribuční transformátory přenášejí elektricky výkon ve všech 3 fázích v praxi lze použít: a) 3 jednofázové transformátory větší spotřeba materiálu v záloze stačí jeden transformátor

Více

PŘÍLOHA 1 PPDS:DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE

PŘÍLOHA 1 PPDS:DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE AVIDLA OVOZOVÁNÍ DISTRIBUČNÍCH SOUSTAV PŘÍLOHA 1 DOTAZNÍKY O REGISTROVANÉ ÚDAJE Strana 3 Obsah Dotazník 1a - Údaje o výrobnách pro všechny výrobny 3 Dotazník 1b - Údaje o výrobnách pro výrobny s výkonem

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ.

2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ. .8 Zobecnění vtahů mei atížením a vnitřními silami prutu (rovinný prut atížený v rovině) µ x N V M dm µ df df x =R. MdM x NdN VdV Náhradní břemena: df x = x. df =. dm µ =µ. Obecný rovinný prut: spojité

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

Učební text. Západočeská univerzita v Plzni, Fakulta elektrotechnická. Zpracoval: Filip Kratochvíl 2006 - 1 -

Učební text. Západočeská univerzita v Plzni, Fakulta elektrotechnická. Zpracoval: Filip Kratochvíl 2006 - 1 - Trojázové obvody ápadočeská niverzita v lzni, Faklta elektrotechnická čební text TROJFÁOÉ OBODY pracoval: Filip Kratochvíl 006 - - Trojázové obvody Obsah OBSH.... TROJFÁOÉ OBODY - TEORE..... TROJFÁOÁ SOST.....

Více

Vysokofrekvenční obvody s aktivními prvky

Vysokofrekvenční obvody s aktivními prvky Vokofrekvenční obvod aktivními prvk Základními aktivními prvk ve vokofrekvenční technice jou bipolární a unipolární tranzitor. Dalšími aktivními prvk jou hbridní nebo monolitické integrované obvod. Tranzitor

Více

Ele 1 základní pojmy, požadavky a parametry, transformátory - jejich význam. princip činnosti transformátoru, zvláštní transformátory

Ele 1 základní pojmy, požadavky a parametry, transformátory - jejich význam. princip činnosti transformátoru, zvláštní transformátory ,Předmět: Ročník: Vytvořil: Datum: ELEKTROTECHNIKA PRVNÍ ZDENĚK KOVAL Název zpracovaného celku: 29. 11. 2013 Ele 1 základní pojmy, požadavky a parametry, transformátory - jejich význam. princip činnosti

Více

1. Obecná struktura pohonu s napěťovým střídačem

1. Obecná struktura pohonu s napěťovým střídačem 1. Obecná struktura pohonu s napěťovým střídačem Topologicky můžeme pohonný systém s asynchronním motorem, který je napájen z napěťového střídače, rozdělit podle funkce a účelu do následujících částí:

Více

1 Měření paralelní kompenzace v zapojení do trojúhelníku a do hvězdy pro symetrické a nesymetrické zátěže

1 Měření paralelní kompenzace v zapojení do trojúhelníku a do hvězdy pro symetrické a nesymetrické zátěže 1 Měření paralelní kompenzace v zapoení do troúhelníku a do hvězdy pro symetrické a nesymetrické zátěže íle úlohy: Trofázová paralelní kompenzace e v praxi honě využívaná. Úloha studenty seznámí s vlivem

Více

Učební osnova předmětu ELEKTRICKÁ MĚŘENÍ. studijního oboru. 26-41-M/01 ELEKTROTECHNIKA (silnoproud)

Učební osnova předmětu ELEKTRICKÁ MĚŘENÍ. studijního oboru. 26-41-M/01 ELEKTROTECHNIKA (silnoproud) Učební osnova předmětu ELEKTRICKÁ MĚŘENÍ studijního oboru 26-41-M/01 ELEKTROTECHNIKA (silnoproud) 1. Obecný cíl předmětu: Předmět Elektrická měření je profilujícím předmětem studijního oboru Elektrotechnika.

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA II MODUL KŘIVKOVÉ INTEGRÁLY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Daněček, Oldřich Dlouhý,

Více

ŘÍ ó Ý Ň É Ť Í ň ó Ř Í Í Ň ď ď ď Ě Í Á Ý ó Á ó ď ó Í ó Ř Č ó Ř Ř Á Š Ď ď ď Č Ý Ý Í ň Ý ň Ý Ý ň Í Ý Ó Í Ý ň Ň ď ň ó ó ó ď ň Á Á Á Ě Ě ň ň ň Á Á ó ď Í Ě ď Ď ň Ý ď ó ň Š Í Á ÁŠ Ě Š Í Á ď ď ď ď Ý ň ň Í Ž

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTRONIKY A VÝKONOVÉ ELEKTRONIKY BAKALÁŘSKÁ PRÁCE 1f transformátor vedoucí práce: Ing. Lukáš BOUZEK 2012 autor: Michal NOVOTNÝ 2012 Anotace

Více

Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice

Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice Střídavý proud Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice Vznik střídavého proudu Výroba střídavého napětí:. indukční - při otáčivé pohybu cívky v agnetické poli

Více

Finální zpráva MĚŘENÍ PARAMETRŮ KOMPRESOROVÉ JEDNOTKY NAPÁJENÉ Z REGULÁTORU FA ERAM SPOL S R.O. doc. Ing. Stanislav Mišák, Ph.D. Strana 1 (celkem 15)

Finální zpráva MĚŘENÍ PARAMETRŮ KOMPRESOROVÉ JEDNOTKY NAPÁJENÉ Z REGULÁTORU FA ERAM SPOL S R.O. doc. Ing. Stanislav Mišák, Ph.D. Strana 1 (celkem 15) 2014 MĚŘENÍ PARAMETRŮ KOMPRESOROVÉ JEDNOTKY NAPÁJENÉHO Z REGULÁTORU FA ERAM SPOL S R.O. Finální zpráva MĚŘENÍ PARAMETRŮ KOMPRESOROVÉ JEDNOTKY NAPÁJENÉ Z REGULÁTORU FA ERAM SPOL S R.O. doc. Ing. Stanislav

Více

STRUKTURA A VLASTNOSTI KAPALIN

STRUKTURA A VLASTNOSTI KAPALIN I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í STUKTUA A VLASTNOSTI KAPALIN. Povrchové napětí a) yzikání jev Povrch kapain se chová jako napjatá pružná membrána (důkaz vodoměrka, maé kapičky koue)

Více

Téma 4 Výpočet přímého nosníku

Téma 4 Výpočet přímého nosníku Stavební statika, 1.ročník bakaářského studia Téma 4 Výpočet přímého nosníku Výpočet nosníku v osové úoze Výpočet nosníku v příčné úoze ve svisé a vodorovné havní rovině Výpočet nosníku v krutové úoze

Více

Měření na 3fázovém transformátoru

Měření na 3fázovém transformátoru Měření na 3fázovém transformátoru Transformátor naprázdno 0. 1. Zadání Změřte trojfázový transformátor v chodu naprázdno. Regulujte napájecí napětí v rozmezí 75 až 120 V, měřte proud naprázdno ve všech

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Alena Škárová Výkon v obvodu

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.

Více

Přenosový kanál dvojbrany

Přenosový kanál dvojbrany STŘEDNÍ PRŮMYSLOVÁ ŠKOLA NA PROSEKU EVROPSKÝ SOCIÁLNÍ FOND Přenosový kanál dvojbrany PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava atedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - T Ostrava 9. TRASFORMÁTORY. Princip činnosti ideálního transformátoru. Princip činnosti skutečného transformátoru 3. Pracovní

Více

7 Mezní stavy použitelnosti

7 Mezní stavy použitelnosti 7 Mezní stavy použitenosti Cekové užitné vastnosti konstrukcí mají spňovat dva zákadní požadavky. Prvním požadavkem je bezpečnost, která je zpravida vyjádřena únosností. Druhým požadavkem je použitenost,

Více

Vzdálené laboratoře pro IET1

Vzdálené laboratoře pro IET1 Vzdálené laboratoře pro IET1 1. Bezpečnost práce v elektrotechnice Odpovědná osoba - doc. Ing. Miloslav Steinbauer, Ph.D. (steinbau@feec.vutbr.cz) Náplní tématu je uvést posluchače do problematiky: - rizika

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

Trojfázové obvody ELEKTROTECHNIKA 2 (BEL2) doc. Ing. Jiří Sedláček, CSc. doc. Ing. Miloslav Steinbauer, Ph.D. doc. Ing. Petr Drexler, Ph.D.

Trojfázové obvody ELEKTROTECHNIKA 2 (BEL2) doc. Ing. Jiří Sedláček, CSc. doc. Ing. Miloslav Steinbauer, Ph.D. doc. Ing. Petr Drexler, Ph.D. ELEKTROTECHNIKA 2 (BEL2) Trojfázové obvody doc. Ing. Jiří Sedláček, CSc. doc. Ing. Miloslav Steinbauer, Ph.D. doc. Ing. Petr Drexler, Ph.D. TEE FEKT VT v Brně 1 Vznik vícefázové soustavy Jednofázová soustava

Více

Témata profilové maturitní zkoušky z předmětu Elektroenergie

Témata profilové maturitní zkoušky z předmětu Elektroenergie ta profilové maturitní zkoušky z předmětu Elektroenergie Název oboru: profilová - povinná ústní zkouška 1. Základní elektrárenské pojmy, elektrizační a distribuční soustava; návrh přípojnic 2. Druhy prostředí

Více

METODICKÝ NÁVOD MODULU

METODICKÝ NÁVOD MODULU Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název Základy matematiky modulu: Zkratka: ZM Počet kreditů: 4 Semestr: Z/L Mentor: Petr Dolanský Tutor: Petr Dolanský I OBSAH BALÍČKU STUDIJNÍCH

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

Zdeněk Halas. Aplikace matem. pro učitele

Zdeněk Halas. Aplikace matem. pro učitele Obyčejné diferenciální rovnice Nejzákladnější aplikace křivky Zdeněk Halas KDM MFF UK, 2011 Aplikace matem. pro učitele Zdeněk Halas (KDM MFF UK, 2011) Obyčejné diferenciální rovnice Aplikace matem. pro

Více

NÁLEŽITOSTI ŽÁDOSTI O PŘIPOJENÍ VÝROBNY ELEKTŘINY K PŘENOSOVÉ SOUSTAVĚ NEBO DISTRIBUČNÍ SOUSTAVĚ

NÁLEŽITOSTI ŽÁDOSTI O PŘIPOJENÍ VÝROBNY ELEKTŘINY K PŘENOSOVÉ SOUSTAVĚ NEBO DISTRIBUČNÍ SOUSTAVĚ Příloha č. 1 k vyhlášce č. 51/2006 Sb. NÁLEŽITOSTI ŽÁDOSTI O PŘIPOJENÍ VÝROBNY ELEKTŘINY K PŘENOSOVÉ SOUSTAVĚ NEBO DISTRIBUČNÍ SOUSTAVĚ 1. Obchodní firma (vyplňuje žadatel - podnikatel zapsaný v obchodním

Více

č ú ř č ř č č ř ú Í ř č č ří č č č č č ž ř č Íř ř ř Š ř ř č ř č č ž č č Í ř ž ž Í ú ř ř ú ž ř č č ž ž č ž Š ž č č Č ř ř ú č č č č č Í č ž Ů č ř č úč ž ř č č č Í Í č ř ří č ř Í č ó ŘÍ č ž č ž č č ž ř ž

Více

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3. Předmět: Elektromagnetické vlny, antény a vedení Úloha: Symetrizační obvody Jméno: Jan Švec Měřeno dne: 3.3.29 Odevzdáno dne: 6.3.29 ID: 78 357 Číslo úlohy: 7 Klasifikace: 1. Zadání 1. Změřte kmitočtovou

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL

DIGITÁLNÍ UČEBNÍ MATERIÁL DIGITÁLNÍ UČEBNÍ MATERIÁL škola Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 číslo projektu číslo učebního materiálu předmět, tematický celek ročník CZ.1.07/1.5.00/34.1037 VY_32_INOVACE_ZIL_VEL_123_12

Více

2-LC: Měření elektrických vlastností výkonových spínačů (I)

2-LC: Měření elektrických vlastností výkonových spínačů (I) 2-LC: Měření elektrických vlastností výkonových spínačů (I) Cíl měření: Ověření a porovnání vlastností výkonových spínačů: BJT, MOSFET a tyristoru. Zkratování řídících vstupů Obr. 1 Přípravek pro měření

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

+ U CC R C R B I C U BC I B U CE U BE I E R E I B + R B1 U C I - I B I U RB2 R B2

+ U CC R C R B I C U BC I B U CE U BE I E R E I B + R B1 U C I - I B I U RB2 R B2 Pro zadané hodnoty napájecího napětí, odporů a zesilovacího činitele β vypočtěte proudy,, a napětí,, (předpokládejte, že tranzistor je křemíkový a jeho pracovní bod je nastaven do aktivního normálního

Více

Inovace předmětů studijních programů strojního inženýrství v oblasti teplotního namáhání

Inovace předmětů studijních programů strojního inženýrství v oblasti teplotního namáhání Grantový projekt FRVŠ MŠMT č.97/7/f/a Inovace předmětů studijních programů strojního inženýrství v obasti tepotního namáhání Některé apikace a ukázky konkrétních řešení tepeného namáhání těes. Autorky:

Více

Zařízení pro řízení jalového výkonu fotovoltaických elektráren

Zařízení pro řízení jalového výkonu fotovoltaických elektráren Zařízení pro řízení jalového výkonu fotovoltaických elektráren Dr. Ing. Tomáš Bůbela ELCOM, a.s. Regulace napětí v místě připojení FVE Regulace napětí řízením jalového výkonu Současné požadavky na řízení

Více

Ekvivalence obvodových prvků. sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá

Ekvivalence obvodových prvků. sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá neboli sériové a paralelní řazení prvků Rezistor Ekvivalence obvodových prvků sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá Paralelní řazení společné napětí proudy jednotlivými

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

1. Stanovení modulu pružnosti v tahu přímou metodou

1. Stanovení modulu pružnosti v tahu přímou metodou . Stanovení moduu pružnost v tahu přímou metodou.. Zadání úohy. Určte modu pružnost v tahu přímou metodou pro dva vzorky různých materáů a výsedky porovnejte s tabukovým hodnotam.. Z naměřených hodnot

Více

Témata profilové maturitní zkoušky z předmětu Souborná zkouška z odborných elektrotechnických předmětů (elektronická zařízení, elektronika)

Témata profilové maturitní zkoušky z předmětu Souborná zkouška z odborných elektrotechnických předmětů (elektronická zařízení, elektronika) ta profilové maturitní zkoušky z předmětu Souborná zkouška z odborných elektrotechnických předmětů (elektronická zařízení, elektronika) 1. Cívky - vlastnosti a provedení, řešení elektronických stejnosměrných

Více

Vyhláška kterou se stanoví podrobnosti měření elektřiny a předávání technických údajů

Vyhláška kterou se stanoví podrobnosti měření elektřiny a předávání technických údajů SBÍRKA ZÁKONŮ ČESKÉ REPUBLIKY Vyhláška kterou se stanoví podrobnosti měření elektřiny a předávání technických údajů Citace pův. předpisu: 218/2001 Sb. Částka: 84/2001 Sb. Datum přijetí: 14. června 2001

Více

Aktualizace studie proveditelnosti Severojižního kolejového diametru v Brně Energetické výpočty

Aktualizace studie proveditelnosti Severojižního kolejového diametru v Brně Energetické výpočty Ing. Jiří Princ technické výpočty, projekty, expertízy Choceradská 22, Praha 4 Aktualizace studie proveditelnosti Severojižního kolejového diametru v Brně Energetické výpočty Objednatel: SUDOP BRNO, spol.

Více

Fyzikální praktikum...

Fyzikální praktikum... Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum... Úloha č.... Název úlohy:... Jméno:...Datum měření:... Datum odevzdání:... Připomínky opravujícího: Možný počet bodů Udělený počet bodů Práce při

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XVIII Název: Přechodové jevy v RLC obvodu Pracoval: Pavel Brožek stud. skup. 12 dne 24.10.2008

Více

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI 0a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI Úvod: Klasický síťový transformátor transformátor s jádrem skládaným z plechů je stále běžně používanou součástí

Více