5 Informace o aspiračních úrovních kritérií

Rozměr: px
Začít zobrazení ze stránky:

Download "5 Informace o aspiračních úrovních kritérií"

Transkript

1 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná. Existují tři základní metody jak se znalostmi aspiračních úrovní pracovat konjunktivní metoda, disjunktivní metoda a metoda PRIAM. 5. Konjunktivní metoda Pro každé maximalizační kritérium je stanovena minimální hodnota, které musí varianta dosáhnout. Termín konjunktivní znamená, že varianta je akceptovatelná tehdy, když splňuje zadané aspirační úrovně yj pro všechna kritéria, tzn. varianta a i je akceptovatelná, pokud y ij yj pro všechna j =,..., k. Pro nízká yj bude množina akceptovatelných variant obrovská, pro příliš vysoká yj bude naopak množina akceptovatelných variant prázdná. Počet akceptovatelných variant (lépe řečeno poměr akceptovatelných variant) lze snadno ovlivňovat pomocí aspirační úrovně kritérií. Předpokládejme, že máme k vzájemně nezávislých a stejně důležitých kritérií. Označme r podíl neakceptovatelných variant (kolik procent má z výběru vypadnout). Symbolem q označme pravděpodobnost, že varianta je podle jednoho (libovolného neboť jsou všechna stejně důležitá) kritéria akceptovatelná. Potom pravděpodobnost, že varianta je akceptovatelná podle všech k kritérií je rovna q q... q = q k (pravděpodobnost, že nastanou současně dva nezávislé jevy, je rovna součinu jejich pravděpodobností). Podle zákonů pravděpodobnosti varianta není (podle všech kritérií) akceptovatelná s prvděpodobností q k. A tato pravděpodobnost musí být rovna podílu neakceptovatelných variant r.

2 Platí tedy r = q k, odtud snadno určíme, že q = k r. Ukažme si praktické využití této metody na příkladu s Upírem. Upír konjunktivní metoda Předpokládejme, že hodnotíme potenciální oběti podle 9 kritérií, která jsme si představili v předchozích cvičeních. Předpokládejme nyní, že všech devět kritérií má stejnou váhu. Rozsáhlý seznam obsahuje 50 možných obětí a my potřebujeme výběr zúžit pouze na 0 z nich. Jak bychom měli nastavit aspirační úrovně kritérií? Počet kritérií je tedy k = 9. Dále zvažovat chceme 0 obětí z 50, 40 jich tedy potřebujeme vyloučit a poměr neakceptovatelných obětí tedy bude r = = 4 5 = 0.8. Pravděpodobnost, že oběť bude akceptována podle jednoho kritéria bude tedy podle odvozeného vztahu q = k r = 9 4 = 9 = Je tedy potřeba zvolit aspirační úroveň pro každé kritérium tak, aby 84% variant bylo podle daného kritéria akceptováno. Co by se stalo, kdybychom rozhodovali jen na základě 5 kritérií? k = 5. r = = 4 5 = 0.8. q = k r = = 5 5 = Pro 5 kritérií je potřeba zvolit aspirační úroveň pro každé kritérium tak, aby 72,5% variant bylo podle daného kritéria akceptováno. A jak bychom nastavili úrovně, kdybychom používali jen 3 kritéria, ale byli ochotni dále uvažovat o 5 lidech z 50? k = 3. r = = 7 0 = 0.7. q = k r = 3 7 = 3 3 =

3 Pro 3 kritéria a 5 uvažovaných z 50 je potřeba zvolit aspirační úroveň pro každé kritérium tak, aby 67% variant bylo podle daného kritéria akceptováno. Předpokládejme nyní, že máme 6 obětí, jejichž výsledky jsou zadány kriteriální maticí, ve které jsou všechna kritéria již převedena na maximalizační: Rozhodli jste, že aspirační úrovně kritérií yj = (30, 5, 60, 2, 3,, 20, 5, 2) nastavíte osobně. Určete množinu akceptovatelných variant. Varianta první není akceptovatelná vzhledem k prvnímu kritériu (a také sedmému). Varianta druhá splňuje všechny podmínky a je tedy akceptovatelná, stejně jako varianta čtvrtá. Třetí, pátá a šestá varianta nesplňují aspirační úrovně na první kritérium (a některá další). Bylo by ale možné postupně některé úrovně zvyšovat, až by nakonec zbyla v množině akceptovatelých variant jen jediná oběť. Kdybychom se rozhodli pro jinou volbu a aspirační úrovně nastavili např. y j = (30, 5, 60, 3, 3,, 20, 5, 2), byla by jedinou akceptovatelnou (a tedy také kompromisní a optimální) variantou a 2. V případě aspiračních úrovní yj = (30, 5, 60, 2, 3,, 20, 8, 2) bude jedinou akceptovatelnou (a tedy také kompromisní a optimální) variantou a Disjunktivní metoda Pro každé maximalizační kritérium je opět stanovena minimální hodnota, které musí varianta dosáhnout. 3

4 Termín disjunktivní znamená, že varianta je akceptovatelná tehdy, když splňuje zadané aspirační úrovně yj pro alespoň jedno kritérium, tzn. varianta a i je akceptovatelná, pokud existuje j =,..., k takové, že y ij yj. Počet akceptovatelných variant (lépe řečeno poměr akceptovatelných variant) lze opět snadno ovlivňovat pomocí aspirační úrovně kritérií. Předpokládejme, že máme k vzájemně nezávislých a stejně důležitých kritérií. Označme r podíl neakceptovatelných variant (kolik procent má z výběru vypadnout). Symbolem p označme pravděpodobnost, že varianta je podle jednoho (libovolného neboť jsou všechna stejně důležitá) kritéria akceptovatelná. Potom pravděpodobnost, že varianta není akceptovatelná podle jednoho kritéria je p. Pravděpodobnost, že varianta není akceptovatelná podle žádného z k kritérií je rovna ( p) ( p)... ( p) = ( p) k (pravděpodobnost, že nenastanou současně dva nezávislé jevy, je rovna součinu pravděpodobností, že nenastane každý z nich). A tato pravděpodobnost musí být rovna podílu neakceptovatelných variant r. Platí tedy r = ( p) k, odtud snadno určíme, že p = k r. Předveďme si i tuto metodu na příkladu s Upírem. Upír disjunktivní metoda Předpokládejme opět, že zvažujeme vhodnou oběť podle 9 stejně důležitých kritérií. V seznamu máme 50 osob a my potřebujeme k dalšímu zvážení připustit pouze 0 z nich. Jak bychom měli nastavit aspirační úrovně kritérií? Počet kritérií je tedy k = 9. Přijmout k dalšímu zvážení chceme 0 osob z 50, 40 jich tedy potřebujeme vyloučit a poměr neakceptovatelných osob tedy bude r = = 4 5 = 0.8. Pravděpodobnost, že osoba bude akceptována podle jednoho kritéria bude tedy podle odvozeného vztahu p = k r = =

5 Je tedy potřeba zvolit aspirační úroveň pro každé kritérium tak, aby 2.5% variant bylo podle daného kritéria akceptováno. 5.3 Metoda PRIAM Metoda PRIAM je interaktivní procedura pro vícekriteriální rozhodování s diskrétní množinou p variant A = a, a 2,..., a p. Při použit této metody procházíme jakýmsi stromem (termín z teorie grafů) a uzly, kterými procházíme označujeme buď jako tentativní (ukazují cestu zpět k počátečnímu uzlu a v případě potřeby se k nim vracím) nebo jako imperativní (ty jsou nezajímavé a protože se k nim již nebudu vracet, zapomínám je). Označme symbolem f j (a i ) hodnotu j-tého kritéria pro i-tou variantu, tj. f j (a i ) = y ij, a označme d počet akceptovatelných variant (tedy variant, pro které platí f j (a i ) y (S) j, kde y (S) j jsou aspirační úrovně jednotlivých kritérií). V metodě PRIAM pak mohou nastat tři různé situace: d... rozhodovatel může měnit aspirační úrovně podle počtu akceptovatelných variant d =... je dosaženo jediné akceptovatelné (nedominované) varianty d = 0... neexistuje žádná akceptovatelná varianta V takovém případě je kompromisní varianta vybírána tak, aby minimalizovala vzdálenost od zadné aspirační úrovně, tedy aby minimalizovala výraz k j= jsou ideální kriteriální hodnoty. Ukažme si metodu na příkladu Upíra. y (S) fj j f j (a i ), a i A, kde fj, j =,..., k Upír metoda PRIAM Mějme kriteriální matici s maximalizačními kritérii pro 0 potenciálních obětí (variant). 5

6 Zvolme nyní první aspirační úrovně y () = (00, 2, 30,, 2, 0, 0, 2, 2). d = počet variant, pro které platí f(a i ) y () = 9, jediná varianta, která tyto aspirační úrovně nesplňuje, je a 5. Neboť d, můžeme změnit aspirační úrovně. Zvolme y (2) = (0, 4, 50, 2, 3,, 5, 5, 5). d = 3, akceptovatelné jsou varianty a, a 2, a 4. Opět zvýšíme aspirační úrovně y (3) = (20, 6, 75, 3, 3,, 20, 6, 0). V tomto případě je d = 0 a neexistuje žádná akceptovatelná varianta. Vrátíme se tedy do předchozího uzlu a mezi přípustnými variantami a, a 2, a 4 hledáme tu, která je nejblíže k zadaným aspiračním úrovním. Potřebujeme nejdříve určit ideální variantu. Tu jsme se naučili určovat v předchozím cvičení. f = (50, 6, 00, 3, 4,, 30, 0, 20). Nyní pro každou variantu a i určíme hodnotu výrazu k j= y (S) fj j f j (a i ). a : = a 2 : = a 4 : =

7 Jako kompromisní vybereme variantu, která má tento výraz minimální. V našem případě to bude varianta a 2. A co by se stalo, kdybychom zvolili místo aspiračních úrovní y (3) jiné aspirační úrovně y (4) = (20, 6, 75, 2, 3,, 20, 6, 0)? V takovém případě by d = a existovala by tedy jediná akceptovatelná varianta a 4, kterou bychom prohlásili za optimální. 7

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování.

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační výzkum Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu

Více

Vícekriteriální rozhodování za jistoty

Vícekriteriální rozhodování za jistoty Kapitola 1 Vícekriteriální rozhodování za jistoty Při řešení rozhodovacích problémů se často setkáváme s případy, kdy optimální rozhodnutí musí vyhovovat více než jednomu kritériu. Zadaná kritéria mohou

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Vícekriteriální rozhodování za jistoty

Vícekriteriální rozhodování za jistoty 1 Část I Vícekriteriální rozhodování za jistoty Při řešení rozhodovacích problémů se často setkáváme s případy, kdy optimální rozhodnutí musí vyhovovat více než jednomu kritériu. Zadaná kritéria mohou

Více

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209 9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů; b) dá alespoň jeden koš; c) dá nejdříve

Více

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry. Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Výběr lokality pro bydlení v Brně

Výběr lokality pro bydlení v Brně Mendelova univerzita v Brně Provozně ekonomická fakulta Výběr lokality pro bydlení v Brně Projekt do předmětu Optimalizační metody Martin Horák Brno 5 Mendelova univerzita v Brně Provozně ekonomická fakulta

Více

Socio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů

Socio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů Klub regionalistů 11.11.2010 Projekt SGS SP/2010 Socio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů Jiří Adamovský Lucie Holešinská Katedra regionální a environmentální ekonomiky

Více

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204 9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými

Více

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry)

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry) Teorie her a ekonomické rozhodování 3. Dvoumaticové hry (Bimaticové hry) 3.1 Neantagonistický konflikt Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada

Více

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

Simplexová metoda. Simplexová tabulka: Záhlaví (účelová funkce) A ~ b r βi. z j c j. z r

Simplexová metoda. Simplexová tabulka: Záhlaví (účelová funkce) A ~ b r βi. z j c j. z r Simplexová metoda Simplexová metoda, je jedním ze způsobů, jak řešit úlohy lineárního programování. Tato metoda vede k cíly, nelezení optimálního řešení, během konečného počtu kroků, pokud se při prvním

Více

Ekonomická formulace. Matematický model

Ekonomická formulace. Matematický model Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest

Více

Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím.

Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím. Regulární matice Věnujeme dále pozornost zejména čtvercovým maticím. Věta. Pro každou čtvercovou matici A = (a ij ) řádu n nad tělesem (T, +, ) jsou následující podmínky ekvivalentní: (i) Řádky matice

Více

Vícekriteriální hodnocení variant VHV

Vícekriteriální hodnocení variant VHV Vícekriteriální hodnocení variant VHV V lineárním programování jsme se naučili hledat optimální řešení pro úlohy s jedním (maximalizačním nebo minimalizačním) kritériem za předpokladu, že podmínky i účelová

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

7. přednáška Systémová analýza a modelování. Přiřazovací problém

7. přednáška Systémová analýza a modelování. Přiřazovací problém Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů

Více

Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla

Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla Ramseyovy věty Martin Mareš Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla na mé letošní přednášce z Kombinatoriky a grafů I Předpokládá, že čtenář se již seznámil se základní

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

Teoretická rozdělení

Teoretická rozdělení Teoretická rozdělení Diskrétní rozdělení Obsah kapitoly Studijní cíle Doba potřebná ke studiu Pojmy k zapamatování Úvod Některá teoretická rozdělení diskrétních veličin: Alternativní rozdělení Binomické

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

4.5 Stanovení hodnoticích kritérií a požadavky na jejich obsah

4.5 Stanovení hodnoticích kritérií a požadavky na jejich obsah nadhodnocením ukazatele výkonu). Současně se objektivností rozumí, že technické podmínky nebyly nastaveny diskriminačně, tedy tak, aby poskytovaly některému uchazeči konkurenční výhodu či mu bránily v

Více

KAPITOLA 11 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM

KAPITOLA 11 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM KAPITOLA 11 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM FILTROVÁNÍ DAT Po filtrování dat jsou zobrazeny pouze řádky, které splňují zadaná kritéria, a řádky, které nechcete zobrazit, jsou skryty. Filtrovat

Více

Teorie her a ekonomické rozhodování. 4. Hry v rozvinutém tvaru

Teorie her a ekonomické rozhodování. 4. Hry v rozvinutém tvaru Teorie her a ekonomické rozhodování 4. Hry v rozvinutém tvaru 4.1 Hry v rozvinutém tvaru Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada po sobě následujících

Více

Teorie her a ekonomické rozhodování. 11. Aukce

Teorie her a ekonomické rozhodování. 11. Aukce Teorie her a ekonomické rozhodování 11. Aukce 11. Aukce Příklady tržních mechanismů prodej s pevnou cenou cenové vyjednávání aukce Využití aukcí prodej uměleckých předmětů, nemovitostí, prodej květin,

Více

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PRAVDĚPODOBNOST

Více

1) TEORIE ROZHODOVÁNÍ

1) TEORIE ROZHODOVÁNÍ 1) TEORIE ROZHODOVÁNÍ 1. Uveďte stručný popis libovolného praktického problému, který by bylo možné řešit pomocí rozhodovacího modelu. Zdůvodněte, proč je použití tohoto modelu v dané situaci adekvátní.

Více

Konkurzní řízení ve společnosti SpenglerFox

Konkurzní řízení ve společnosti SpenglerFox Konkurzní řízení ve společnosti SpenglerFox Velká případová studie projektu ZIP ESF napomáhá rozvoji zaměstnanosti podporou zaměstnatelnosti, podnikatelského ducha, rovných příležitostí a investicemi do

Více

Teorie síťových modelů a síťové plánování

Teorie síťových modelů a síťové plánování KSI PEF ČZU Teorie síťových modelů a síťové plánování Část přednášky doc. Jaroslava Švasty z předmětu systémové analýzy a modelování. Zápis obsahuje základní vymezení projektu, časového plánování a popis

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

ZÁKLADNÍ TYPY ROZHODOVACÍH PROBLÉMŮ

ZÁKLADNÍ TYPY ROZHODOVACÍH PROBLÉMŮ ZÁKLADNÍ TYPY ROZHODOVACÍH PROBLÉMŮ ZPRACOVALA ING. RENATA SKÝPALOVÁ CZ.1.07/1.1.00/14.0143 OSNOVA HODINY Dobře a špatně strukturované problémy Rozhodovací procesy za jistoty, rizika a nejistoty Přehled

Více

3. Optimalizace pomocí nástroje Řešitel

3. Optimalizace pomocí nástroje Řešitel 3. Optimalizace pomocí nástroje Řešitel Rovnováha mechanické soustavy Uvažujme dvě různé nehmotné lineární pružiny P 1 a P 2 připevněné na pevné horizontální tyči splývající s osou x podle obrázku: (0,0)

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

Metoda analýzy datových obalů (DEA)

Metoda analýzy datových obalů (DEA) Kapitola 1 Metoda analýzy datových obalů (DEA) Modely datových obalů slouží pro hodnocení technické efektivity produkčních jednotek na základě velikosti vstupů a výstupů. Hodnocenými jednotkami mohou být

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

PRAVDĚPODOBNOST A JEJÍ UŽITÍ PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují

Více

KOUPENÉ A PRODANÉ OPCE VERTIKÁLNÍ SPREADY

KOUPENÉ A PRODANÉ OPCE VERTIKÁLNÍ SPREADY KAPITOLA 3 KOUPENÉ A PRODANÉ OPCE VERTIKÁLNÍ SPREADY Vertikální spread je kombinace koupené a prodané put nebo call opce se stejným expiračním měsícem. Výraz spread se používá proto, že riziko je rozložené

Více

Otázky ke státní závěrečné zkoušce

Otázky ke státní závěrečné zkoušce Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního

Více

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k,

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k, Řešení 1. série Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy h = 1 2 v d, h = 1 2 s k, kde h je počet hran, v je počet vrcholů, d je stupeň vrcholu, s je počet stěn a k je počet úhlů

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Lineární algebra 10. přednáška: Ortogonalita II Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text byl vytvořen

Více

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1. Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =

Více

8 Kořeny cyklických kódů, BCH-kódy

8 Kořeny cyklických kódů, BCH-kódy 24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Jednotkový vektor vektor, která má na jednom místě jedničku a na ostatních nuly, například (0, 1, 0).

Jednotkový vektor vektor, která má na jednom místě jedničku a na ostatních nuly, například (0, 1, 0). 1. Základní pojmy www.cz-milka.net Systém neprázdná, účelově definovaná množina prvků a vazeb mezi nimi, která se zachycením vstupů a výstupů vykazuje kvantifikovatelné chování v čase. Model formalizovaný

Více

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012 Algebra - třetí díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Dělitelnost 2 Grupy zbytkových tříd 3 Jedna z

Více

I. kolo kategorie Z7

I. kolo kategorie Z7 60. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Součin číslic libovolného vícemístného čísla je vždy menší než toto číslo. Pokud počítáme součin číslic daného vícemístného čísla, potom součin

Více

Operační výzkum. Přiřazovací problém.

Operační výzkum. Přiřazovací problém. Operační výzkum Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ..7/2.2./28.326

Více

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE Testy dobré shody Vedoucí diplomové práce: RNDr. PhDr. Ivo

Více

Příčíme. Příčíme Zadání první úlohy Zadání druhé úlohy. Příčíme. Jiří Přibyl UJEP

Příčíme. Příčíme Zadání první úlohy Zadání druhé úlohy. Příčíme. Jiří Přibyl UJEP Příčíme Zadání první úlohy Zadání druhé úlohy Příčíme Jiří Přibyl UJEP Úloha první Příčíme Zadání první úlohy Zadání druhé úlohy Úkol Určete příčku mimoběžek p a q, která je dána vektorem w(1, 1, 2), a

Více

DOE (Design of Experiments)

DOE (Design of Experiments) DOE - DOE () DOE je experimentální strategie, při které najednou studujeme účinky několika faktorů, prostřednictvím jejich testování na různých úrovních. Charakteristika jakosti,y je veličina, pomocí které

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

StatSoft Jak vyzrát na datum

StatSoft Jak vyzrát na datum StatSoft Jak vyzrát na datum Tento článek se věnuje podrobně možnostem práce s proměnnými, které jsou ve formě datumu. A že jich není málo. Pokud potřebujete pracovat s datumem, pak se Vám bude tento článek

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

Kód uchazeče ID:... Varianta: 14

Kód uchazeče ID:... Varianta: 14 Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 14 1. V lednu byla zaměstnancům zvýšena mzda o 16 % prosincové mzdy. Následně

Více

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?]

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?] Optimalizace obecný úvod 1 Optimalizace obecný úvod Motivace optimalizačních úloh [proč optimalizovat?] Formalizace problému [jak obecně popsat optimalizační úlohu?] Klasifikace optimalizačních problémů

Více

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit Teorie grafů zadání úloh letní semestr 2008/2009 Poslední aktualizace: 19. května 2009 Obsah Úloha číslo 1 5 Úloha číslo 2 6 Úloha číslo 3 7 Úloha číslo 4 8 Úloha číslo 5 9 Úloha číslo 6 10 Úloha číslo

Více

9.1.1 Základní kombinatorická pravidla I

9.1.1 Základní kombinatorická pravidla I 9.. Základní kombinatorická pravidla I Předpoklady: Př. : Ve třídě je 7 děvčat a 3 kluků. Kolik máme možností jak vybrat dvojici klukholka, která bude mít projev na maturitním plese? Vybíráme ze 7 holek

Více

skladbu obou směsí ( v tunách komponenty na 1 tunu směsi):

skladbu obou směsí ( v tunách komponenty na 1 tunu směsi): Klíčová slova: simplexová metoda 1 Simplexová metoda Postup výpočtu: 1. Nalezení výchozího řešení. 2. Test optima: pokud je řešení optimální výpočet končí, jinak krok 3. 3. Iterační krok, poté opět test

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

SÍŤOVÁ ANALÝZA. Kristýna Slabá, kslaba@students.zcu.cz. 1. července 2010

SÍŤOVÁ ANALÝZA. Kristýna Slabá, kslaba@students.zcu.cz. 1. července 2010 SÍŤOVÁ ANALÝZA Kristýna Slabá, kslaba@students.zcu.cz 1. července 2010 Obsah 1 Úvod do síťové analýzy Hlavní metody síťové analýzy a jejich charakteristika Metoda CPM Metoda PERT Nákladová analýza Metoda

Více

Systémové modelování. Ekonomicko matematické metody I. Lineární programování

Systémové modelování. Ekonomicko matematické metody I. Lineární programování Ekonomicko matematické metody I. Lineární programování Modelování Modelování je způsob zkoumání reality, při němž složitost, chování a další vlastnosti jednoho celku vyjadřujeme složitostí, chováním a

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Náhodný jev a definice pravděpodobnosti

Náhodný jev a definice pravděpodobnosti Náhodný jev a definice pravděpodobnosti Obsah kapitoly Náhodný jev. Vztahy mezi náhodnými jevy. Pravidla pro počítání s pravděpodobnostmi. Formule úplné pravděpodobnosti a Bayesův vzorec. Studijní cíle

Více

které je z různých pohledů charakterizují. Několik z nich dokážeme v této kapitole.

které je z různých pohledů charakterizují. Několik z nich dokážeme v této kapitole. Kapitola 7 Stromy Stromy jsou jednou z nejdůležitějších tříd grafů. O tom svědčí i množství vět, které je z různých pohledů charakterizují. Několik z nich dokážeme v této kapitole. Představíme také dvě

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě.

Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Základy teorie pravděpodobnosti Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Náhodný jev jakékoli tvrzení

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

Délka (dny) 150 - - 2 terénní úpravy (prvotní) 15-20 - příprava staveniště (výstavba přístřešku pro materiál)

Délka (dny) 150 - - 2 terénní úpravy (prvotní) 15-20 - příprava staveniště (výstavba přístřešku pro materiál) Skupinová práce. Zadání skupinové práce Síťová analýza metoda CPM Dáno: Výstavba skladu zásob obilí představuje následující činnosti: Tabulka Název činnosti Délka (dny) Optimální projekt. Optimální dělníků

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

NEXIS 32 rel. 3.50. Generátor fází výstavby TDA mikro

NEXIS 32 rel. 3.50. Generátor fází výstavby TDA mikro SCIA CZ, s. r. o. Slavíčkova 1a 638 00 Brno tel. 545 193 526 545 193 535 fax 545 193 533 E-mail info.brno@scia.cz www.scia.cz Systém programů pro projektování prutových a stěnodeskových konstrukcí NEXIS

Více

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Zařazování dětí mladších tří let do mateřské školy. Vyhodnocení dotazníkového šetření. Příloha č. 1

Zařazování dětí mladších tří let do mateřské školy. Vyhodnocení dotazníkového šetření. Příloha č. 1 Příloha č. 1 Zařazování dětí mladších tří let do mateřské školy Vyhodnocení dotazníkového šetření Pro dotazníkové šetření bylo náhodným výběrem zvoleno 1500 mateřských škol (MŠ) ze všech krajů České republiky,

Více

DISKRÉTNÍ NÁHODNÉ VELIČINY (II)

DISKRÉTNÍ NÁHODNÉ VELIČINY (II) DISKRÉTNÍ NÁHODNÉ VELIČINY (II). Jaá je pravděpodobnost že při deseti poctivých hodech poctivou hrací ostou a) padnou samé šesty b) nepadne ani jedna šesta c) padne alespoň jedna šesta d) padnou právě

Více

Hodnocení vybraných zemí EU za podpory metod multikriteriálního hodnocení variant

Hodnocení vybraných zemí EU za podpory metod multikriteriálního hodnocení variant JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH EKONOMICKÁ FAKULTA Katedra aplikované matematiky a informatiky Studijní program: N6208 Ekonomika a management Studijní obor: Účetnictví a finanční řízení podniku

Více

Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací

Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací Teorie her a ekonomické rozhodování 7. Hry s neúplnou informací 7.1 Informace Dosud hráči měli úplnou informaci o hře, např. znali svou výplatní funkci, ale i výplatní funkce ostatních hráčů často to tak

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM CÍLE KAPITOLY Využívat pokročilé možnosti formátování, jako je podmíněné formátování, používat vlastní formát čísel a umět pracovat s listy. Používat

Více

Induktivní statistika. z-skóry pravděpodobnost

Induktivní statistika. z-skóry pravděpodobnost Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných

Více

Čistá současná hodnota a vnitřní výnosové procento

Čistá současná hodnota a vnitřní výnosové procento Čistá současná hodnota a vnitřní výnosové procento Co je to čistá současná hodnota? Čistá současná hodnota představuje rozdíl mezi diskontovanými peněžními příjmy z určité činnosti a výdaji na tuto činnost.

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel

Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel Modul Řešitel (v anglické verzi Solver) je určen pro řešení lineárních i nelineárních úloh matematického programování. Pro ilustraci

Více

4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet.

4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet. 4 Stromy a les Jedním ze základních, a patrně nejjednodušším, typem grafů jsou takzvané stromy. Jedná se o souvislé grafy bez kružnic. Přes svou (zdánlivou) jednoduchost mají stromy bohatou strukturu a

Více

Metodologický přístup a popis prací na projektu

Metodologický přístup a popis prací na projektu Metodologický přístup a popis prací na projektu Použitá metodika Projekt vychází metodologicky z přístupu ke gender analýze strategických dokumentů zpracované v rámci diplomové práce Ludmily Rejmanové

Více

Management. Rozhodování. Ing. Vlastimil Vala, CSc. Ústav lesnické a dřevařské ekonomiky a politiky

Management. Rozhodování. Ing. Vlastimil Vala, CSc. Ústav lesnické a dřevařské ekonomiky a politiky Management Rozhodování Ing. Vlastimil Vala, CSc. Ústav lesnické a dřevařské ekonomiky a politiky Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více