Vícekriteriální hodnocení variant úvod

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Vícekriteriální hodnocení variant úvod"

Transkript

1 Vícekriteriální hodnocení variant úvod Jana Klicnarová Katedra aplikované matematiky a informatiky Jihočeská Univerzita v Českých Budějovicích, Ekonomická fakulta 2010

2 Vícekriteriální hodnocení variant (VHV) VHV je kapitola z vícekriteriální optimalizace. Vícerkriteriální optimalizace metody, pomocí nichž hledáme optimální volbu z hlediska více kritérií při daných omezeních mluvíme o kompromisní variantě. VHV máme předem dán výčet všech možných (přípustných) variant. A jsme schopni vytvořit rozhodovací matici R, v níž řádky jsou tvořeny variantami a sloupce jednotlivými kritérii. Hodnota prvku r ij udává ohodnocení i. varianty podle j. kritéria.

3 Příklad VHV Uvažujeme o koupi stanu. Vybrali jsme si tedy čtyři typy stanů, které se nám líbili a o těch jsme si zjistili následující údaje: Produkt váha V. sloupec Experta cena Typ 1 2,4 kg 1200mm Kč Typ 2 2,5 kg 1600mm Kč Typ 3 2,7 kg 1500mm Kč Typ 4 3,5 kg 400mm Kč Typ 5 3 kg 1000mm Kč Na základě této tabulky tedy sestavíme následující kriteriální matici.

4 Kriteriální matice R = 2, , , , (1) Tato kriteriální matice má pět řádků a pět sloupců (obecně se samozřejmě počet sloupců a počet řádků liší počet řádků udává počet hodnocených variant, počet sloupců počet hodnotících kritérií). Prvek r ij nám vždy udává ohodnocení i. stanu podle j. kritéria.

5 Existence kompromisního řešení Existence přípustného řešení Stejně jako v případě jakékoliv optimalizace, zde je první otázkou, zda existuje tzv. přípustné řešení. Přípustné řešení je takové, které splňuje zadané podmínky. Poněvadž u VHV ve většině případů rovnou dostáváme (neprázdný) seznam přípustných variant, tyto varianty jsou přípustným řešením. Existence kompromisního řešení Existuje-li přípustné řešení, potom již existuje kompromisního řešení VHV.

6 Neexistuje jedno jediné správné řešení Narozdíl od většiny ostatních matematických metod používaných v ekonomii, v této problematice (až na výjimky) neexistuje jednoznačné řešení. Jednoznačné řešení v tom slova smyslu, že neexistuje jediná varianta, která je nejlepší. Výsledek volba kompromisní varianty je zde velmi ovlivněna například volbou metody, volbou případného normování a volbou vah.

7 Základní vlastnosti řešení vícekriteriální optimalizace Přesto, že obecně neexistuje jednoznačné řešení VHV a použití různých metod a různých vah může vést k různým výsledkům, přesto není každá přípustná varianta možným výsledkem. Aby námi zvolená metoda poskytovala správné výsledky klademe na používané metody následující požadavky.

8 Základní vlastnosti řešení vícekriteriální optimalizace Nedominovanost Výsledná varianta musí být nedominovaná. Řekneme, že varianta A je dominovaná (variantou B), pokud k ní existuje nějaká jiná varianta B, která je ve všech kriteriích lepší nebo stejná než varianta A a v alespoň jednom kritériu je varianta A lepší naž varianta B. Varianta A je nedominovaná, pokud neexistuje varianta, která by ji dominovala, tedy varianta A není dominovaná žádnou jinou variantou.

9 Základní vlastnosti řešení vícekriteriální optimalizace Poznámka Z popsaného je zřejmé, že nelze nikdy zvolit dominovanou variantu jako kompromisní. Poněvadž, kdybychom ji zaměnili za její dominující variantu, potom dostaneme z hlediska všech kritérií řešení stejné nebo dokonce lepší než v případě dominované varianty.

10 Základní vlastnosti řešení vícekriteriální optimalizace Determinovanost Požadujeme, aby metoda při jakémkoliv zadání našla nějaké řešení. Jednoznačnost Metoda by měla být taková, aby po nastavení parametrů (vah) dávala jednoznačné řešení.

11 Základní vlastnosti řešení vícekriteriální optimalizace Invariance vůči pořadí kritérií a variant. Volba výsledné kompromisní varianty by neměla záviset na původním seřazení variant ani na seřazení kriterií tzv. invariance vůči pořadí. Poznámka Tato velmi jednoduchá podmínka nám vlastně říká, že například výsledek konkurzu nesmí záviset na tom, zda si pro hodnocení seřadíme nabídky podle abecedy (názvy dodavatelů) nebo podle data přijaté nabídky, apod. Také, že musíme dostat stejný výsledek, ať kritéria, která uvažujeme seřadíme například podle abecedy či náhodně.

12 Základní vlastnosti řešení vícekriteriální optimalizace Invariance vůči jednotkám, ve kterých uvádíme hodnoty kritérií. Volba výsledné varianty by neměla záviset na jednotkách, ve kterých jsou zadány hodnoty jednotlivých kritérií invariance vůči zvolenému měřítku. Budeme-li například zadávat cenu jednotlivých variant, výsledek mého rozhodování nesmí ovlivnit, zda tuto cenu zadáváme v korunách, eurech či tisících liber.

13 Základní vlastnosti řešení vícekriteriální optimalizace Invariance vůči přidaným neoptimálním hodnotám. Volbu výsledné varianty by nemělo ovlivnit ani přidání nějaké dominované (nebo obecněji neoptimální) varianty do výběru. Tedy metoda by měla mít stejný výsledek bez ohledu na to, zda se mezi původními vyskytují jakékoliv dominované varianty či z jak širokého výběru volím.

14 Základní vlastnosti řešení vícekriteriální optimalizace Spravedlivost. Metoda by měla být taková, aby bylo možné nastavením jejích parametrů (například nastavením vah) zvolit jako kompromisní řešení každé z nedominovaných řešení. Až budeme v dalším textu popisovat jednotlivé metody vícekriteriální optimalizace, vždy zmíníme, které z těchto podmínek splňují, či naopak, které nesplňují. Nyní si uveďme pouze příklad dominované varianty.

15 Příklad dominovanost zadání Uvažujme, že mladá rodina se rozhoduje, do kterého z jihočeských měst se nastěhuje. Jako kritéria si zvolila kulturu, šanci získat zaměstnání, vzdělání a zdravotnictví. Na internetu si našla informace k následujícím třem městům: Soběslav KULTURA Společenské centrum, Knihovna, Kino, Kostel. ZAMĚSTNÁNÍ Šance získat zaměstnání přímo ve městě, popřípadě v Táboře dobrá dopravní dostupnost. VZDĚLÁNÍ MŠ 2, ZŠ 3, SOU 3, SŠ. ZDRAVOTNICTVÍ Poliklinika, lékárny 3.

16 Příklad dominovanost zadání udějovice Chýnov KULTURA Divadelní scény 9, Kina 3, Galerie 27, Muzea 5, KD 4, Hudební scény 7, Výstaviště 1, Knihovny 5, Vzdělávací centra 7, Kostely 16, Hvězdárna a planetárium. ZAMĚSTNÁNÍ Přímo ve městě. VZDĚLÁNÍ MŠ 22, ZŠ 14, SŠ 10, VOŠ 6, VŠ 3, školní jídelny 2, Dům dětí (volný čas) 10. ZDRAVOTNICTVÍ Nemocnice, Poliklinika 6, Lékárny. KULTURA Kostel, Jeskyně, Knihovna. ZAMĚSTNÁNÍ V Táboře dobrá dopravní dostupnost. VZDĚLÁNÍ MŠ, ZŠ. ZDRAVOTNICTVÍ Zdravotní středisko, lékárna.

17 Příklad dominovanost závěr České Budějovice dominují Soběslav Hodnotíme pouze podle čtyř zadaných kritérií, přičemž se uvažujeme, že čím více kulturního vyžití, čím více možností vzdělávání a čím dostupnější zdravotní péče, tím lépe. Zároveň čím větší šance získat zaměstnání přímo ve městě, tím lépe. V takovém případě je Soběslav dominována Českými Budějovicemi. Nebo-li České Budějovice dominují Soběslav. V Českých Budějovicích je totiž vše, co je v Soběslavi a v každém bodě ještě něco navíc. Přičemž v Českých Budějovicích je jistota práce v místě, v Soběslavi, pouze vysoká pravděpodobnost.

18 Příklad dominovanost závěr Je Chýnov dominovaný? A tedy za daných podmínek se již budeme rozhodovat pouze mezi Chýnovem a Českými Budějovicemi. Zda budeme považovat i Chýnov za dominovaný Českými Budějovicemi, závisí na konzultaci se zadavatelem. Zda preferuje nabízené kulturní možnosti Chýnova nebo nabízené kulturní možnosti Českých Budějovic (České Budějovice nenabízejí jeskyně). Ve všech ostatních kritériích, opět vítězí České Budějovice nad Chýnovem (podle zadaných parametrů).

19 Ideální a bazální varianta Ve VHV se velmi často používá pojem ideální, resp. bazální varianta. Jedná se o hypotetické varianty, které nabývají nejlepších, resp. nejhorších hodnot z nabízených. To znamená, že ideální variantou je hypotetická varianta, která v každém kritériu nabývá nejlepší možné hodnoty, podobně bazická varianta je varianta, která má v každém kritériu nejhorší možnou hodnotu.

20 Ideální a bazální varianta příklad Ideální a bazální variantu můžeme snadno ilustrovat na příkladu koupě stanu. Máme-li zadanou kriteriální matici, a víme-li, která kritéria jsou minimalizační a která maximalizační, potom ideální varianta má v minimalizačním kritériu hodnotu minima ze sloupce a v maximalizačním hodnotu maxima ze sloupce (nejlepší hodnotu ze sloupce), u bazické varianty je to naopak (nejhorší varianta ze sloupce).

21 Ideální a bazální varianta příklad Produkt váha VS Expert cena Typ 1 2,4 kg 1200mm Kč Typ 2 2,5 kg 1600mm Kč Typ 3 2,7 kg 1500mm Kč Typ 4 3,5 kg 400mm Kč Typ 5 3 kg 1000mm Kč ideální 2,4 1600mm bazální 3,5 400mm

22 Ideální a bazální varianta příklad Všimněme si, že ideální a bazální varianta jsou skutečně pouze hypotetické, ve skutečnosti (ve většině případů) neexistují. Kdybychom náhodou měli analýzu, v níž by se nám stalo, že ideální varianta existuje, potom již nemusíme nic analyzovat, neboť v takovém případě tato ideální varianta dominuje všechny ostatní varianty a je tedy jediným možným řešením úlohy. Naopak, pokud by existovala bazální varianta, potom bychom tuto variantu mohli vyřadit z analýzy neboť by byla všemi ostatními variantami dominovaná.

23 Ideální a bazální varianta příklad s rodinou Poznámka Pokud bychom chtěli stanovit ideální a bazální variantu v příkladu s rodinou, která hledá bydlení, museli bychom s touto rodinou prokonzultovat, která z nabízených možností v jednotlivých kritériích je pro ně nejlepší a která nejhorší a na tomto základě bychom určili ideální a bazální variantu.

5 Informace o aspiračních úrovních kritérií

5 Informace o aspiračních úrovních kritérií 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.

Více

4 Kriteriální matice a hodnocení variant

4 Kriteriální matice a hodnocení variant 4 Kriteriální matice a hodnocení variant V teorii vícekriteriálního rozhodování pracujeme s kritérii, kterých je obecně k, a s variantami, kterých je obecně p. Hodnotu, které dosahuje varianta i pro j-té

Více

Výběr lokality pro bydlení v Brně

Výběr lokality pro bydlení v Brně Mendelova univerzita v Brně Provozně ekonomická fakulta Výběr lokality pro bydlení v Brně Projekt do předmětu Optimalizační metody Martin Horák Brno 5 Mendelova univerzita v Brně Provozně ekonomická fakulta

Více

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

Vícekriteriální hodnocení variant metody

Vícekriteriální hodnocení variant metody Katedra aplikované matematiky a informatiky Jihočeská Univerzita v Českých Budějovicích, Ekonomická fakulta 2010 Metody vícekriteriální hodnocení variant (VHV) Jak jsme již zmiňovali, VHV obecně neposkytuje

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

Ing. Alena Šafrová Drášilová, Ph.D.

Ing. Alena Šafrová Drášilová, Ph.D. Rozhodování Ing. Alena Šafrová Drášilová, Ph.D. Rozhodování??? video Obsah typy rozhodování principy rozhodování rozhodovací fáze základní pojmy hodnotícího procesu rozhodovací podmínky rozhodování v podmínkách

Více

MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE

MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 PŘEDNÁŠKA 5 MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 Multiriteriální rozhodování

Více

Vícekriteriální programování příklad

Vícekriteriální programování příklad Vícekriteriální programování příklad Pražírny kávy vyrábějí dva druhy kávy (Super a Standard) ze dvou druhů kávových bobů KB1 a KB2, které mají smluvně zajištěny v množství 4 t a 6 t. Složení kávy (v procentech)

Více

Analýza obalu dat úvod

Analýza obalu dat úvod Analýza obalu dat úvod Jana Klicnarová Katedra aplikované matematiky a informatiky Jihočeská Univerzita v Českých Budějovicích, Ekonomická fakulta 2010 Analýza obalu dat (DEA) Analýza obalu dat (Data envelopement

Více

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 3 Katedra ekonometrie FEM UO Brno Optimalizace portfolia Investor se s pomocí makléře rozhoduje mezi následujícími investicemi: akcie A, akcie B, státní pokladniční poukázky, dluhopis A, dluhopis

Více

Ekonomická formulace. Matematický model

Ekonomická formulace. Matematický model Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest

Více

Vícekriteriální rozhodování za jistoty

Vícekriteriální rozhodování za jistoty Kapitola 1 Vícekriteriální rozhodování za jistoty Při řešení rozhodovacích problémů se často setkáváme s případy, kdy optimální rozhodnutí musí vyhovovat více než jednomu kritériu. Zadaná kritéria mohou

Více

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování.

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační výzkum Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu

Více

Vícekriteriální rozhodování za jistoty

Vícekriteriální rozhodování za jistoty 1 Část I Vícekriteriální rozhodování za jistoty Při řešení rozhodovacích problémů se často setkáváme s případy, kdy optimální rozhodnutí musí vyhovovat více než jednomu kritériu. Zadaná kritéria mohou

Více

6 Ordinální informace o kritériích

6 Ordinální informace o kritériích 6 Ordinální informace o kritériích Ordinální informací o kritériích se rozumí jejich uspořádání podle důležitosti. Předpokládejme dále standardní značení jako v předchozích cvičeních. Existují tři základní

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

Socio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů

Socio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů Klub regionalistů 11.11.2010 Projekt SGS SP/2010 Socio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů Jiří Adamovský Lucie Holešinská Katedra regionální a environmentální ekonomiky

Více

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty

Více

minimalizaci vzdálenosti od ideální varianty

minimalizaci vzdálenosti od ideální varianty UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Metody vícekriteriálního rozhodování založené na minimalizaci vzdálenosti od ideální

Více

Jednotkový vektor vektor, která má na jednom místě jedničku a na ostatních nuly, například (0, 1, 0).

Jednotkový vektor vektor, která má na jednom místě jedničku a na ostatních nuly, například (0, 1, 0). 1. Základní pojmy www.cz-milka.net Systém neprázdná, účelově definovaná množina prvků a vazeb mezi nimi, která se zachycením vstupů a výstupů vykazuje kvantifikovatelné chování v čase. Model formalizovaný

Více

Operační výzkum. Přiřazovací problém.

Operační výzkum. Přiřazovací problém. Operační výzkum Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ..7/2.2./28.326

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

Diplomová práce. Heuristické metody pro vícekriteriální analýzu

Diplomová práce. Heuristické metody pro vícekriteriální analýzu Diplomová práce Heuristické metody pro vícekriteriální analýzu vypracoval: Jaroslav Smrž vedoucí práce: doc. RNDr. Jindřich Klapka, CSc. obor: Inženýrská informatika a automatizace specializace: Informatika

Více

Lineární programování

Lineární programování Lineární programování Petr Tichý 19. prosince 2012 1 Outline 1 Lineární programování 2 Optimalita a dualita 3 Geometrie úlohy 4 Simplexová metoda 2 Lineární programování Lineární program (1) min f(x) za

Více

Algoritmus pro hledání nejkratší cesty orientovaným grafem

Algoritmus pro hledání nejkratší cesty orientovaným grafem 1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Vícekriteriální hodnocení variant VHV

Vícekriteriální hodnocení variant VHV Vícekriteriální hodnocení variant VHV V lineárním programování jsme se naučili hledat optimální řešení pro úlohy s jedním (maximalizačním nebo minimalizačním) kritériem za předpokladu, že podmínky i účelová

Více

Metodologický přístup a popis prací na projektu

Metodologický přístup a popis prací na projektu Metodologický přístup a popis prací na projektu Použitá metodika Projekt vychází metodologicky z přístupu ke gender analýze strategických dokumentů zpracované v rámci diplomové práce Ludmily Rejmanové

Více

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 202 Založeno na materiálech doc. Michala Kulicha Náhodný vektor často potřebujeme

Více

Systémové modelování. Ekonomicko matematické metody I. Lineární programování

Systémové modelování. Ekonomicko matematické metody I. Lineární programování Ekonomicko matematické metody I. Lineární programování Modelování Modelování je způsob zkoumání reality, při němž složitost, chování a další vlastnosti jednoho celku vyjadřujeme složitostí, chováním a

Více

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012 Algebra - třetí díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Dělitelnost 2 Grupy zbytkových tříd 3 Jedna z

Více

VÝSLEDKY VÝZKUMU. indikátor ECI/TIMUR A.1 SPOKOJENOST OBYVATEL S MÍSTNÍM SPOLEČENSTVÍM V PROSTĚJOVĚ

VÝSLEDKY VÝZKUMU. indikátor ECI/TIMUR A.1 SPOKOJENOST OBYVATEL S MÍSTNÍM SPOLEČENSTVÍM V PROSTĚJOVĚ VÝSLEDKY VÝZKUMU indikátor ECI/TIMUR A.1 SPOKOJENOST OBYVATEL S MÍSTNÍM SPOLEČENSTVÍM V PROSTĚJOVĚ Realizace průzkumu, zpracování dat a vyhodnocení: Střední odborná škola podnikání a obchodu, spol. s r.o.

Více

1. dílčí téma: Rozhodování při riziku, neurčitosti a hry s neúplnou informací

1. dílčí téma: Rozhodování při riziku, neurčitosti a hry s neúplnou informací Cíl tematického celku: Student získá komplexní přehled teorií oligopolu, které lze úspěšně aplikovat v realitě. Druhým cílem je naučit se chápat obsah komunikace, která se vede při projednávání nejrůznějších

Více

VÍCEKRITERIÁLNÍ MANAŢERSKÉ ROZHODOVÁNÍ V PODMÍNKÁCH RIZIKA A NEJISTOTY

VÍCEKRITERIÁLNÍ MANAŢERSKÉ ROZHODOVÁNÍ V PODMÍNKÁCH RIZIKA A NEJISTOTY Internetový časopis o jakosti Vydavatel: Katedra kontroly a řízení jakosti, FMMI, VŠB-TU Ostrava VÍCEKRITERIÁLNÍ MANAŢERSKÉ ROZHODOVÁNÍ V PODMÍNKÁCH RIZIKA A NEJISTOTY ÚVOD Všemi sekvenčními manažerskými

Více

6 Simplexová metoda: Principy

6 Simplexová metoda: Principy 6 Simplexová metoda: Principy V této přednášce si osvětlíme základy tzv. simplexové metody pro řešení úloh lineární optimalizace. Tyto základy zahrnují přípravu kanonického tvaru úlohy, definici a vysvětlení

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

f ( x) = 5x 1 + 8x 2 MAX, 3x x ,

f ( x) = 5x 1 + 8x 2 MAX, 3x x , 4. okruh z bloku KM1 - řídicí technika Zpracoval: Ondřej Nývlt (o.nyvlt@post.cz) Zadání: Lineární programování (LP), simplexová metoda, dualita v LP. Nelineární programování. Vázaný extrém. Karush-Kuhn-Tuckerova

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

VÝSLEDKY VÝZKUMU. indikátor ECI/TIMUR A.1 SPOKOJENOST OBYVATEL S MÍSTNÍM SPOLEČENSTVÍM V PROSTĚJOVĚ

VÝSLEDKY VÝZKUMU. indikátor ECI/TIMUR A.1 SPOKOJENOST OBYVATEL S MÍSTNÍM SPOLEČENSTVÍM V PROSTĚJOVĚ VÝSLEDKY VÝZKUMU indikátor ECI/TIMUR A.1 SPOKOJENOST OBYVATEL S MÍSTNÍM SPOLEČENSTVÍM V PROSTĚJOVĚ Realizace průzkumu, zpracování dat a vyhodnocení: Střední odborná škola podnikání a obchodu, spol. s r.o.

Více

Organizace zabezpečování veřejných statků a služeb (1) Ekonomie veřejného sektoru

Organizace zabezpečování veřejných statků a služeb (1) Ekonomie veřejného sektoru Organizace zabezpečování veřejných statků a služeb (1) Ekonomie veřejného sektoru 1 Mechanismy zabezpečování veřejných statků a služeb Tržní selhání --- veřejný sektor Veřejné statky, služby někdo je musí

Více

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. 3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.

Více

JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH EKONOMICKÁ FAKULTA VÍCEKRITERIÁLNÍ ANALÝZA VARIANT A JEJÍ APLIKACE V PRAXI

JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH EKONOMICKÁ FAKULTA VÍCEKRITERIÁLNÍ ANALÝZA VARIANT A JEJÍ APLIKACE V PRAXI JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH EKONOMICKÁ FAKULTA Katedra aplikované matematiky a informatiky Studijní program: Studijní obor: N6208 Ekonomika a management Účetnictví a finanční řízení podniku

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry)

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry) Teorie her a ekonomické rozhodování 3. Dvoumaticové hry (Bimaticové hry) 3.1 Neantagonistický konflikt Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada

Více

3. Optimalizace pomocí nástroje Řešitel

3. Optimalizace pomocí nástroje Řešitel 3. Optimalizace pomocí nástroje Řešitel Rovnováha mechanické soustavy Uvažujme dvě různé nehmotné lineární pružiny P 1 a P 2 připevněné na pevné horizontální tyči splývající s osou x podle obrázku: (0,0)

Více

Obecná úloha lineárního programování

Obecná úloha lineárního programování Obecná úloha lineárního programování Úloha Maximalizovat hodnotu c T x (tzv. účelová funkce) za podmínek Ax b (tzv. omezující podmínky) kde A je daná reálná matice typu m n a c R n, b R m jsou dané reálné

Více

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

KOOPERATIVNI HRY DVOU HRA CˇU

KOOPERATIVNI HRY DVOU HRA CˇU 8 KOOPERATIVNÍ HRY DVOU HRÁČŮ 291 V této kapitole se budeme zabývat situacemi, kdy hráči mohou před začátkem hry uzavřít závaznou dohodu o tom, jaké použijí strategie, vygenerovaný zisk si však nemohou

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Informační

Více

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer Přednáška MATEMATIKA č. 3 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 21. 10. 2010 Uvažujme neprázdnou množinu přirozených čísel M = {1, 2,..., n}. Z kombinatoriky

Více

HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO

HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO Heuristické algoritmy jsou speciálními algoritmy, které byly vyvinuty pro obtížné úlohy, jejichž řešení je obtížné získat v rozumném čase. Mezi

Více

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU STATISTIKY

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU STATISTIKY ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ FAKULTA DOPRAVNÍ SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU STATISTIKY Facebook vs. studium Vypracovali: Martina Grivalská Nikola Karkošiaková Barbora Brůhová Obsah 1. Úvod 2. Dotazník 3.

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava luk76/la1

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava    luk76/la1 Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://homel.vsb.cz/ luk76/la1 Text

Více

Průzkum aktuální situace na trhu práce z hlediska možností uplatnění absolventů VŠKE, a.s. (výsledky za období 1/2012 6/2012)

Průzkum aktuální situace na trhu práce z hlediska možností uplatnění absolventů VŠKE, a.s. (výsledky za období 1/2012 6/2012) Průzkum aktuální situace na trhu práce z hlediska možností uplatnění absolventů VŠKE, a.s. (výsledky za období 1/2012 6/2012) Obsah Úvod... 2 1. Vymezení možnosti uplatnění absolventů VŠKE, a.s... 3 2.

Více

4.5 Stanovení hodnoticích kritérií a požadavky na jejich obsah

4.5 Stanovení hodnoticích kritérií a požadavky na jejich obsah nadhodnocením ukazatele výkonu). Současně se objektivností rozumí, že technické podmínky nebyly nastaveny diskriminačně, tedy tak, aby poskytovaly některému uchazeči konkurenční výhodu či mu bránily v

Více

Č. j. S 105/ /2450/2000-Vs V Brně dne 1. srpna 2000

Č. j. S 105/ /2450/2000-Vs V Brně dne 1. srpna 2000 Č. j. S 105/2000-152/2450/2000-Vs V Brně dne 1. srpna 2000 Úřad pro ochranu hospodářské soutěže ve správním řízení zahájeném dne 21.7.2000 z vlastního podnětu podle 57 odst. 1 zákona č. 199/1994 Sb., o

Více

Konvexní množiny Formulace úloh lineárního programování. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Konvexní množiny Formulace úloh lineárního programování. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 2 Katedra ekonometrie FEM UO Brno Euklidovský prostor E n Pod pojmem n-rozměrný euklidovský prostor budeme rozumnět prostor, jehož prvky jsou uspořádané n-tice reálných čísel X = (x 1, x 2,...,

Více

VÝSLEDKY VÝZKUMU. indikátor ECI/TIMUR A.1 SPOKOJENOST OBYVATEL S MÍSTNÍM SPOLEČENSTVÍM V PROSTĚJOVĚ

VÝSLEDKY VÝZKUMU. indikátor ECI/TIMUR A.1 SPOKOJENOST OBYVATEL S MÍSTNÍM SPOLEČENSTVÍM V PROSTĚJOVĚ VÝSLEDKY VÝZKUMU indikátor ECI/TIMUR A.1 SPOKOJENOST OBYVATEL S MÍSTNÍM SPOLEČENSTVÍM V PROSTĚJOVĚ Realizace průzkumu, zpracování dat a vyhodnocení: Střední odborná škola podnikání a obchodu, spol. s r.o.

Více

Simplexová metoda. Simplexová tabulka: Záhlaví (účelová funkce) A ~ b r βi. z j c j. z r

Simplexová metoda. Simplexová tabulka: Záhlaví (účelová funkce) A ~ b r βi. z j c j. z r Simplexová metoda Simplexová metoda, je jedním ze způsobů, jak řešit úlohy lineárního programování. Tato metoda vede k cíly, nelezení optimálního řešení, během konečného počtu kroků, pokud se při prvním

Více

Náhodný vektor a jeho charakteristiky

Náhodný vektor a jeho charakteristiky Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

7. přednáška Systémová analýza a modelování. Přiřazovací problém

7. přednáška Systémová analýza a modelování. Přiřazovací problém Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů

Více

Úvod do teorie her

Úvod do teorie her Úvod do teorie her 2. Garanční řešení, hry s nulovým součtem a smíšené strategie Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 2017 ÚTIA AV ČR Program 1. Zavedeme řešení, které zabezpečuje minimální výplatu

Více

É č É Í Ř Á Ě ž š č č š š šť Ť Ý č č Ť Ť Ť č Ť č šť Í č č č š š ď ž Ť Á č Í Ó š Ž š Č Ť č Ť č Ť ď č š Č Ď ž ž š č č č Ú Š š Ť Č š ž š š č Ú š č š É Š š šš š Ť č č č č š č š Ť č č ž š č Ť č š Ť š č š č

Více

Z X 5 0 4 H o d n o c e n í v l i v ů n a ž i v o t n í p r o s t ř e d í. Vybrané metody posuzování dopadu záměrů na životní

Z X 5 0 4 H o d n o c e n í v l i v ů n a ž i v o t n í p r o s t ř e d í. Vybrané metody posuzování dopadu záměrů na životní Z X 5 0 4 H o d n o c e n í v l i v ů n a ž i v o t n í p r o s t ř e d í Vybrané metody posuzování dopadu záměrů na životní prostředí. ř Posuzování dopadu (impaktu) posuzované činnosti na životní prostředí

Více

řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky

řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky řešeny numericky řešeny numericky Břetislav Fajmon, UMAT FEKT, VUT Brno Na minulé přednášce jsme viděli některé klasické metody a přístupy pro řešení diferenciálních rovnic: stručně řečeno, rovnice obsahující

Více

Á Ž Ú ž ň š ž Ž š Ť Ť Ž Ď Ť Ž ž Ť š ř Ť Ť Ť Ť Ť ž š ž š Ť š Ť Ť š ř Ť Ť Ť Ť Š Ť Ť Ý Á ť ř Ť ž š ň Ť Ť Ž Ť Ť Ť Ž Ž ř ž ž Ť Ž Ě Ť ž Ť Ť Ť Ť š Ť Ž š Ť Ů Ť ť ť Ť ť Ž Č Ž š Ť ř Ť Ž š Ů Ť Ť š Ť Ť ž š ť Ť Ž Ž

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

Požadavky zaměstnavatelů na terciární vzdělávání. Vadim Petrov Toyota Peugeot Citroën Automobile 24. února 2010

Požadavky zaměstnavatelů na terciární vzdělávání. Vadim Petrov Toyota Peugeot Citroën Automobile 24. února 2010 Požadavky zaměstnavatelů na terciární vzdělávání Vadim Petrov Toyota Peugeot Citroën Automobile 24. února 2010 Obsah ❶ Terciární vzdělávání ❷ Marketing vzdělávání ❸ TPCA jako zaměstnavatel ❹ Role a očekávání

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

MANAŽERSKÉ ROZHODOVÁNÍ

MANAŽERSKÉ ROZHODOVÁNÍ MANAŽERSKÉ ROZHODOVÁNÍ Téma 21 - PRAVIDLA ROZHODOVÁNÍ ZA RIZIKA A NEJISTOTY doc. Ing. Monika MOTYČKOVÁ (Grasseová), Ph.D. Univerzita obrany Fakulta ekonomika a managementu Katedra vojenského managementu

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Ů š š č É É É š É Ř š š Ř Ž É Í Ř Š šš š É É š Ž Ě É Ř É Ř š ě É É É Ď Ž Ě š č š Ř Ý Ů É č É š Ě č É Ě ž ů š š ň č É č č É č É ů É É Ř š č Ř Ť É Ř č Ů č É É Ř É č š Ě ě ů š š ě ý š č č ě ý š č Í ě ý š

Více

Příloha č. 3. Kombinační třídění

Příloha č. 3. Kombinační třídění Příloha č. 3 Kombinační třídění Měření závislosti mezi spokojeností s kulturním programem v Třebíči a dojížděním za kulturou do větších měst. Řádky: Vyhovuje Vám kulturní program nabízený v Třebíči? Sloupce:

Více

13. Lineární programování

13. Lineární programování Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

Úvod do řešení lineárních rovnic a jejich soustav

Úvod do řešení lineárních rovnic a jejich soustav Úvod do řešení lineárních rovnic a jejich soustav Rovnice je zápis rovnosti dvou výrazů, ve kterém máme najít neznámé číslo (neznámou). Po jeho dosazení do rovnice musí platit rovnost. Existuje-li takové

Více

soubor dat uspořádaných do řádků a sloupců

soubor dat uspořádaných do řádků a sloupců MS Access je program, který umožňuje vytvářet a spravovat databáze. Důležitým prvkem při tvorbě databáze je vytvoření vhodné struktury tabulek. Tabulku začneme vytvářet definováním jejich polí (=sloupců).

Více

Otázky ke státní závěrečné zkoušce

Otázky ke státní závěrečné zkoušce Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního

Více

Management. Rozhodování. Ing. Vlastimil Vala, CSc. Ústav lesnické a dřevařské ekonomiky a politiky

Management. Rozhodování. Ing. Vlastimil Vala, CSc. Ústav lesnické a dřevařské ekonomiky a politiky Management Rozhodování Ing. Vlastimil Vala, CSc. Ústav lesnické a dřevařské ekonomiky a politiky Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Materiál byl vytvořen v rámci projektu Nové výzvy, nové příležitosti, nová škola

Materiál byl vytvořen v rámci projektu Nové výzvy, nové příležitosti, nová škola Materiál byl vytvořen v rámci projektu Nové výzvy, nové příležitosti, nová škola Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Co je to databáze? Jaké

Více

II. kolo kategorie Z9

II. kolo kategorie Z9 6. ročník Matematické olympiády II. kolo kategorie Z9 Z9 II Je dán kosodélník jako na obrázku. Po straně se pohybuje bod a po straně se pohybuje bod tak, že úsečka je rovnoběžná s. Když byl průsečík úseček

Více

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní

Více

SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC

SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC Pojm: Algebraická rovnice... rovnice obsahující pouze celé nezáporné mocnin neznámé, tj. a n n + a n 1 n 1 +... + a 2 2 + a 1 + a 0 = 0, kde n je přirozené číslo.

Více

Algebraické struktury s jednou binární operací

Algebraické struktury s jednou binární operací 16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte

Více

10. N á h o d n ý v e k t o r

10. N á h o d n ý v e k t o r 10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět

Více

Teorie her. Kapitola 1. 1.1 Základní pojmy. 1.1.1 Základní pojmy

Teorie her. Kapitola 1. 1.1 Základní pojmy. 1.1.1 Základní pojmy Kapitola 1 Teorie her Dosud jsme se věnovali jednokriteriální či vícekriteriální optimalizaci, kde ve všech úlohách byly předem pevně dané podmínky a ty se nijak neměnily v závislosti na našem rozhodnutí.

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Statistická teorie učení

Statistická teorie učení Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální

Více

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky

Více

Profesní orientace a trh práce očima středoškoláků

Profesní orientace a trh práce očima středoškoláků Profesní orientace a trh práce očima středoškoláků Úvodem 72 % studentů chce pokračovat ve studiu, více než polovina z nich formou denního studia 26 007 Kč je průměrný očekávaný výdělek po 1 roku praxe

Více