Teorie her a ekonomické rozhodování. 8. Vyjednávací hry

Rozměr: px
Začít zobrazení ze stránky:

Download "Teorie her a ekonomické rozhodování. 8. Vyjednávací hry"

Transkript

1 Teorie her a ekonomické rozhodování 8. Vyjednávací hry

2 8. Vyjednávání Teorie her Věda o řešení konfliktů Ale také věda o hledání vzájemně výhodné spolupráce Teorie vyjednávání Odvětví teorie her dohoda o spolupráci Zabývá se vyjednávací hrou (vyjednávacím problémem) 2

3 8.1 Nashovo vyjednávací řešení John Nash v letech 1950 a 1953 publikoval články o axiomatickém přístupu k řešení vyjednávací hry Sestavil soubor axiomů Ukázal, že existuje jediné řešení, které tyto axiomy splňuje = Nashovo vyjednávací řešení 3

4 8.1 Nashovo vyjednávací řešení Ve vyjednávací hře předpokládáme Existuje množina přípustných dohod Existuje bod nedohody (hráči se nedohodnou) Hráči hledají lepší řešení než nedohodu Bod nedohody je před vyjednáváním známý příp. lze určit na základě maximinové či rovnovážné zaručené výhry 4

5 8.1 Nashovo vyjednávací řešení Vyjednávací problém je charakterizován: Množinou hráčů N = {1, 2,, N} Pro jednoduchost uvažujme 2 hráče, N = 2 Množinou přípustných dohod (množinou přípustných řešení) Bodem nedohody Množinou užitkových funkcí, které každé přípustné dohodě i bodu nedohody přiřadí užitek pro i-tého hráče 5

6 8.1 Nashovo vyjednávací řešení Předpokládáme dále Hráči jsou racionální Hráči maximalizují svůj užitek Hráči dokonale navzájem znají své užitkové funkce Uvažujeme vyjednávací hru s 2 hráči Užitková funkce 1. hráče u(x) reálné číslo Užitková funkce 2. hráče v(y) reálné číslo 6

7 8.1 Nashovo vyjednávací řešení Nashovo vyjednávací řešení (x, y ) Užitek 1. hráče u(x ) Užitek 2. hráče v(y ) Bod nedohody (x o, y o ) Užitek 1. hráče u(x o ) Užitek 2. hráče v(y o ) 7

8 8.1 Nashovo vyjednávací řešení Na základě von Neumannovy a Morgensternovy teorie užitečnosti Nash stanovil následující axiomy: 1. Paretovská efektivnost 2. Symetrie 3. Nezávislost na měřítku 4. Nezávislost na irelevantních alternativách 8

9 8.1 Nashovo vyjednávací řešení Příklad 1 ukázka významu axiomů Hru hrají dva hráči Mají si mezi sebe jakkoliv rozdělit částku 2 Kč Pokud se nedohodnou, dostane každý 0 Kč Bod nedohody Pro jednoduchost předpokládejme, že užitek obou hráčů odpovídá finančnímu zisku u x v y = x = y 9

10 v y 2 Množina přípustných dohod 0 0 Bod nedohody P 2 u x 10

11 8.1 Nashovo vyjednávací řešení Paretovská efektivnost Vyjadřuje maximalizaci užitku obou hráčů Řešení, které je dominované nemůže být vyjednávacím řešením Nechť x 1, y 1 a x 2, y 2 jsou libovolné přípustné dohody vyjednávacího problému P Pokud u x 1 > u x 2 a v y 1 > v y 2 pak x 2, y 2 nemůže být vyjednávacím řešením problému P 11

12 v y 2 Množina přípustných dohod x e, y e x 1, y 1 x 2, y 2 Paretovsky efektivní řešení 0 0 Bod nedohody P 2 u x 12

13 8.1 Nashovo vyjednávací řešení Symetrie Problém P je symetrický, pokud u x, v y a v y, u x jsou prvky vyjednávacího problému P pro bod nedohody platí u x o = v y o 13

14 v y 2 Množina přípustných dohod Symetrie v(y) x, y Paretovsky efektivní řešení u(x) 0 0 u(x) Bod u xnedohody o = v y o = 0 P v(y) 2 u x 14

15 8.1 Nashovo vyjednávací řešení Symetrie Problém P je symetrický, pokud u x, v y a v y, u x jsou prvky vyjednávacího problému P pro bod nedohody platí u x o = v y o Pokud je P symetrický, pak pro Nashovo rovnovážné řešení platí u x = v y Oba hráči mají stejné vyjednávací schopnosti 15

16 v y 2 Množina přípustných dohod Symetrie v(y) x, y Nashovo vyjednávací řešení leží na ose symetrie Paretovsky efektivní řešení 0 0 Bod nedohody P u(x) 2 u x 16

17 8.1 Nashovo vyjednávací řešení Nezávislost na měřítku Nechť x, y je vyjednávací řešení vyjednávacího problému P Pokud transformujeme původní problém P na nový problém Q pomocí nových užitkových funkcí u N x = au x + b v N y = cv y + d Pak vyjednávacím řešením problému Q bude opět x, y s užitky u N x = au x + b v N y = cv y + d 17

18 v y 2 v N y = 2y nesymetrie v(y) = 0, 5v N y Symetrie x, y Množina přípustných dohod Nashovo vyjednávací řešení 1 Paretovsky efektivní řešení 0 0 Bod nedohody P u N x = x 1 2 u x 18

19 8.1 Nashovo vyjednávací řešení Nezávislost na irelevantních alternativách Nechť vyjednávací problém Q je podmnožinou vyjednávacího problému P Jestiže x, y je vyjednávací řešení problému P A zároveň je přípustným řešením problému Q (leží v Q) Pak x, y je také vyjednávacím řešením problému Q 19

20 v y 2 Množina přípustných dohod Symetrie Nashovo vyjednávací řešení Paretovsky efektivní řešení 0 0 Bod nedohody Q P 2 u x 20

21 8.1 Nashovo vyjednávací řešení Nashovo vyjednávací řešení Řešení, které splňuje uvedené 4 axiomy Hledáme řešení s nejvyšší hodnotou tzv. Nashova součinu u x u x o v y v y o 21

22 8.1 Nashovo vyjednávací řešení Příklad 1: u x u x o v y v y o = u 1 u 0 v 1 v 0 = = 1 Lze ukázat, že to je nejvyšší možná hodnota, pokud u x + v y = 2 V tomto případě hledáme maximum u x 0 v y 0 = u x v y 22

23 v y Bod nedohody P 2 u x 23

24 8.2 Příklady Příklad 2: Bill a Jack směňují věci Zdroj: J. F. Nash, The Bargaining Problem. Econometrica, 1950 Dva kamarádi: Bill a Jack Bill: knížka, káča, míč, pálka, krabička Jack: psací pero, hračka, nůž, čapka 24

25 u B o = 12 u J o = Příklady Užitek pro Billa Užitek pro Jacka Billovy věci Knížka 2 4 Káča 2 2 Míč 2 1 Pálka 2 2 Krabička 4 1 Jackovy věci Psací pero 10 1 Hračka 4 1 A teď Vy! Nůž 6 2 Čapka

26 8.2 Příklady Příklad 2: Bill a Jack směňují věci Jakého nejvýhodnějšího řešení mohou chlapci dosáhnout? Kolik je Nashův součin pro Vaši výměnu? u x u x o v y v y o 26

27 u B o = 12 u J o = 6 u B = Příklady u J = 11 Kolik je Nashův Užitek pro Billa součin? Užitek pro Jacka Billovy věci Knížka 2 4 Káča 2 2 Míč 2 1 u x Pálka u x o v2 y v 2y o Krabička 4 1 = = 60 Jackovy věci Psací pero 10 1 Hračka 4 1 Máte víc? Nůž 6 2 Čapka

28 8.2 Příklady Příklad 3: Aleš a Bert investují Zdroj: Fiala a kol. Kvantitativní ekonomie, 1994 Dva kamarádi: Aleš a Bert Riskantní investice 60 Kč Při úspěchu výdělek 160 Kč (zisk 100 Kč) Při neúspěchu výdělek 0 Kč (ztráta 60 Kč) Obě možnosti s pravděpodobností 50 % 28

29 8.2 Příklady Příklad 3: Aleš a Bert investují Investice je nabídnuta nejdříve Alešovi u x = x pro x > 20 4x + 60 jinak x označuje výnos z investice Aleš citelně nese ztrátu větší než 20 Kč Má Aleš investici přijmout? 29

30 8.2 Příklady Příklad 3: Aleš a Bert investují u x = x pro x > 20 4x + 60 jinak u x = 0,5 u ,5 u 60 = 0, , = ,5 180 = = 40 Aleš by nabídku přijmout neměl Při odmítnutí bude mít u x = 0 30

31 8.2 Příklady Příklad 3: Aleš a Bert investují Investice je tedy nabídnuta Bertovi v y = y pro y > 30 3y + 60 jinak y označuje výnos z investice Bert nese ztrátu lépe než Aleš Má Bert investici přijmout? 31

32 8.2 Příklady Příklad 3: Aleš a Bert investují v y = y pro y > 30 3y + 60 jinak v y = 0,5 v ,5 v 60 = 0, , = ,5 120 = = 10 Také Bert by nabídku přijmout neměl Při odmítnutí bude mít v y = 0 32

33 8.2 Příklady Příklad 3: Aleš a Bert investují Bert navrhne Alešovi společnou investici v poměru 60:40 (náklady i výnosy) Bert zaplatí 60 % nákladů (0,6 60 = 36) Aleš zaplatí 40 % nákladů (0,4 60 = 24) Výnosy rozdělí ve stejném poměru Má Aleš na dohodu přistoupit? 33

34 8.2 Příklady Příklad 3: Aleš a Bert investují Aleš (investice: 24, výnos: 0,4.160=64) u x = x pro x > 20 4x + 60 jinak u x = 0,5 u ,5 u 24 = 0, , = ,5 36 = = 2 Při odmítnutí bude mít u x = 0 34

35 8.2 Příklady Příklad 3: Aleš a Bert investují Bert (investice: 36, výnos: 0,6.160=96) v y = y pro y > 30 3y + 60 jinak v y = 0,5 v ,5 v 36 = 0, , = ,5 48 = = 6 Při odmítnutí bude mít v y = 0 35

36 8.2 Příklady Příklad 3: Aleš a Bert investují Aleš: u x = 2 Bert: v y = 6 Má Aleš nabídku přijmout? Kolik je Nashův součin? 2 0 Co by se stalo, kdyby 6 0 = 12 Aleš vložil 20 Kč a v případě výhry získá 50 Bert vložil 40 Kč a získá 110 Kč 36

37 8.2 Příklady Příklad 3: Aleš a Bert investují Aleš: investice 20, výnos 50 u x = x pro x > 20 4x + 60 jinak u x = 0,5 u ,5 u 20 = 0, , = ,5 20 = = 5 37

38 8.2 Příklady Příklad 3: Aleš a Bert investují Bert: investice 40, výnos 110 v y = y pro y > 30 3y + 60 jinak v y = 0,5 v ,5 v 40 = 0, , = ,5 60 = = 5 38

39 8.2 Příklady Příklad 3: Aleš a Bert investují Aleš: investice 20, výnos 50 u x = 5 Bert: investice 40, výnos 110 v y = 5 Kolik je Nashův součin? = 25 Měl tedy Aleš nabídku 60:40 přijmout? 39

40 8.2 Příklady Příklad 3: Aleš a Bert investují Měl tedy Aleš nabídku 60:40 přijmout? Nikoliv. Vhodným vyjednáváním může Aleš získat více. Původní nabídka vedla k očekávanému užitku 2 Nashovo vyjednávací řešení má pro Aleše očekávaný užitek 5 40

41 8.2 Příklady Příklad 3: Aleš a Bert investují Pro tento příklad neexistuje řešení s vyšším Nashovým součinem než 25 Aleš: investice 20, výnos 50, u x Bert: investice 40, výnos 110, v y Aleš investuje třetinu a získá 31,25 % (méně než třetinu) Je to logické? = 5 = 5 41

42 8.2 Příklady Příklad 3: Aleš a Bert investují Bert nevnímá ztráty tak citlivě jako Aleš Do investice tedy dává vyšší částku (dvě třetiny počáteční investice) Má tedy lepší vyjednávací pozici Může požadovat více než dvě třetiny výnosu 42

43 KONEC 43

4EK201 Matematické modelování. 10. Teorie rozhodování

4EK201 Matematické modelování. 10. Teorie rozhodování 4EK201 Matematické modelování 10. Teorie rozhodování 10. Rozhodování Rozhodování = proces výběru nějaké možnosti (varianty) podle stanoveného kritéria za účelem dosažení stanovených cílů Rozhodovatel =

Více

KOOPERATIVNI HRY DVOU HRA CˇU

KOOPERATIVNI HRY DVOU HRA CˇU 8 KOOPERATIVNÍ HRY DVOU HRÁČŮ 291 V této kapitole se budeme zabývat situacemi, kdy hráči mohou před začátkem hry uzavřít závaznou dohodu o tom, jaké použijí strategie, vygenerovaný zisk si však nemohou

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

Teorie her a ekonomické rozhodování 6. Kooperativní hry více hráčů

Teorie her a ekonomické rozhodování 6. Kooperativní hry více hráčů Teorie her a ekonomické rozhodování 6. Kooperativní hry více hráčů (chyby ve skriptech) 6.1 Koaliční hra Kooperativní hra hráči mají možnost před samotnou hrou uzavírat závazné dohody dva hráči (hra má

Více

Teorie her a ekonomické rozhodování. Úvodní informace Obsah kursu 1. Úvod do teorie her

Teorie her a ekonomické rozhodování. Úvodní informace Obsah kursu 1. Úvod do teorie her Teorie her a ekonomické Úvodní informace Obsah kursu 1. Úvod do teorie her Úvodní informace Mgr. Jana SEKNIČKOVÁ, Ph.D. Místnost: 433 NB Konzultace: Středa 6:30 7:30, 19:30 20:30 Čtvrtek E-mail: jana.seknickova@vse.cz

Více

Úvod do teorie her. 6. Koaliční hry

Úvod do teorie her. 6. Koaliční hry Úvod do teorie her 6. Koaliční hry Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 2018 ÚTIA AV ČR Různé formy her Známé formy her jsou: rozvinutá, strategická, koaliční. Pro danou množinu hráčů N = {1,...,

Více

Úvod do teorie her

Úvod do teorie her Úvod do teorie her 2. Garanční řešení, hry s nulovým součtem a smíšené strategie Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 2017 ÚTIA AV ČR Program 1. Zavedeme řešení, které zabezpečuje minimální výplatu

Více

Teorie her a ekonomické rozhodování. 9. Modely nedokonalých trhů

Teorie her a ekonomické rozhodování. 9. Modely nedokonalých trhů Teorie her a ekonomické rozhodování 9. Modely nedokonalých trhů 9.1 Dokonalý trh Dokonalý trh Dokonalá informovanost kupujících Dokonalá informovanost prodávajících Nulové náklady na změnu dodavatele Homogenní

Více

Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací

Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací Teorie her a ekonomické rozhodování 7. Hry s neúplnou informací 7.1 Informace Dosud hráči měli úplnou informaci o hře, např. znali svou výplatní funkci, ale i výplatní funkce ostatních hráčů často to tak

Více

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty

Více

3. ANTAGONISTICKÉ HRY

3. ANTAGONISTICKÉ HRY 3. ANTAGONISTICKÉ HRY ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku,

Více

Stručný úvod do teorie her. Michal Bulant

Stručný úvod do teorie her. Michal Bulant Stručný úvod do teorie her Michal Bulant Čím se budeme zabývat Alespoň 2 hráči (osoby, firmy, státy, biologické druhy apod.) Každý hráč má určitou množinu strategií, konkrétní situace (outcome) ve hře

Více

Teorie her a ekonomické rozhodování 5. Opakované hry

Teorie her a ekonomické rozhodování 5. Opakované hry Teorie her a ekonomické rozhodování 5. Opakované hry (chybějící či chybná indexace ve skriptech) 5.1 Opakovaná hra Hra až dosud hráči hráli hru jen jednou v reálu se konflikty neustále opakují (firmy nabízí

Více

Teorie her a ekonomické rozhodování. 11. Aukce

Teorie her a ekonomické rozhodování. 11. Aukce Teorie her a ekonomické rozhodování 11. Aukce 11. Aukce Příklady tržních mechanismů prodej s pevnou cenou cenové vyjednávání aukce Využití aukcí prodej uměleckých předmětů, nemovitostí, prodej květin,

Více

5.7 Kooperativní hry 5.7.1 Kooperativní hra 2 hráčů 5.7.2 Kooperativní hra N hráčů 5.8 Modely oligopolu 5.9 Teorie redistribučních systémů 5.

5.7 Kooperativní hry 5.7.1 Kooperativní hra 2 hráčů 5.7.2 Kooperativní hra N hráčů 5.8 Modely oligopolu 5.9 Teorie redistribučních systémů 5. Mikroekonomie bakalářský kurz - VŠFS Jiří Mihola, jiri.mihola@quick.cz, www.median-os.cz, 2010 Téma 6 Teorie her, volby teorie redistribučních systémů a teorie veřejné Obsah 5.7 Kooperativní hry 5.7.1

Více

Úvod do teorie her

Úvod do teorie her Úvod do teorie her. Formy her a rovnovážné řešení Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 208 ÚTIA AV ČR Program. Definujeme 2 základní formy pro studium různých her: rozvinutou, strategickou. 2.

Více

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry)

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry) Teorie her a ekonomické rozhodování 3. Dvoumaticové hry (Bimaticové hry) 3.1 Neantagonistický konflikt Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada

Více

Dva podniky vedou mezi sebou spor, k jehož vyřešení může každý z nich podniknout jednu

Dva podniky vedou mezi sebou spor, k jehož vyřešení může každý z nich podniknout jednu Zadání příkladu: Dva podniky vedou mezi sebou spor, k jehož vyřešení může každý z nich podniknout jednu ze tří akcí: a/ žalovat druhý podnik u soudu strategie Z b/ nabídnout druhému podniku spojení strategie

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

KOOPERATIVNÍ HRY FORMULACE, KONCEPCE ŘEŠENÍ, JÁDRO HRY, HRA VE TVARU CHARAKTERISTICKÉ FUNKCE, SHAPLEYOVA HODNOTA CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ?

KOOPERATIVNÍ HRY FORMULACE, KONCEPCE ŘEŠENÍ, JÁDRO HRY, HRA VE TVARU CHARAKTERISTICKÉ FUNKCE, SHAPLEYOVA HODNOTA CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? KOOPERATIVNÍ HRY FORMULACE, KONCEPCE ŘEŠENÍ, JÁDRO HRY, HRA VE TVARU CHARAKTERISTICKÉ FUNKCE, SHAPLEYOVA HODNOTA CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekonomická vědní disciplína, která se

Více

TEORIE HER - ÚVOD PŘEDNÁŠKA. OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáška 2. Zuzana Bělinová

TEORIE HER - ÚVOD PŘEDNÁŠKA. OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáška 2. Zuzana Bělinová PŘEDNÁŠKA 2 TEORIE HER - ÚVOD Teorie her matematická teorie rozhodování dvou racionálních hráčů, kteří jsou na sobě závislí Naznačuje, jak by se v takové situaci chovali racionální a informovaní hráči.

Více

Mikroekonomie magisterský kurz - VŠFS Jiří Mihola, jiri.mihola@quick.cz, www.median-os.cz, 2010 Téma 1 Teorie her pro manažery Obsah 5.1 Teorie her jako součást mikroekonomie 5.2 Základní pojmy teorie

Více

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky

Více

The Cooperative Games and Bargaining

The Cooperative Games and Bargaining THE: The Cooperative Games and Bargaining Brno University of Technology Brno Czech Republic November 5, 2014 Úvod Čerpáno z: Peleg, Sudholter: Introduction to the Theory of Cooperative Games McCarthy,

Více

Koaliční hry. Kooperativní hra dvou hráčů

Koaliční hry. Kooperativní hra dvou hráčů Koaliční hry Obsah kapitoly. Koalice dvou hráčů 2. Koalice N hráčů Studijní cíle Cílem tohoto tematického bloku je získání základního přehledu o kooperativních hrách a jejich aplikovatelnosti. Student

Více

Dokažte Větu 2(Minimax) ze třetího dílu seriálu pro libovolnou hru s nulovým součtem, ve kterémákaždýhráčnavýběrprávězedvoustrategií.

Dokažte Větu 2(Minimax) ze třetího dílu seriálu pro libovolnou hru s nulovým součtem, ve kterémákaždýhráčnavýběrprávězedvoustrategií. Teorie her º Ö ÐÓÚ Ö Ì ÖÑ Ò Ó Ð Ò º Ù Ò ¾¼½ ÐÓ ½º HráčIsitajněnapíšenapapírnějaképřirozenéčíslozrozmezíaž noznačmeho ivestejnou chvílisirovněžhráčiinapíšenapapírnějaképřirozenéčíslozrozmezíaž noznačmeho

Více

Teorie her a ekonomické rozhodování. 4. Hry v rozvinutém tvaru

Teorie her a ekonomické rozhodování. 4. Hry v rozvinutém tvaru Teorie her a ekonomické rozhodování 4. Hry v rozvinutém tvaru 4.1 Hry v rozvinutém tvaru Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada po sobě následujících

Více

MODELY OLIGOPOLU COURNOTŮV MODEL, STACKELBERGŮV MODEL

MODELY OLIGOPOLU COURNOTŮV MODEL, STACKELBERGŮV MODEL MODELY OLIGOPOLU COURNOTŮV MODEL, STACKELBERGŮV MODEL DOKONALÁ KONKURENCE Trh dokonalé konkurence je charakterizován velkým počtem prodávajících, kteří vyrábějí homogenní produkt a nemohou ovlivnit tržní

Více

Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost

Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost Pravděpodobnost Náhodné veličiny a jejich číselné charakteristiky Petr Liška Masarykova univerzita 19.9.2014 Představme si, že provádíme pokus, jehož výsledek dokážeme ohodnotit číslem. Před provedením

Více

TGH13 - Teorie her I.

TGH13 - Teorie her I. TGH13 - Teorie her I. Jan Březina Technical University of Liberec 19. května 2015 Hra s bankéřem Máte právo sehrát s bankéřem hru: 1. hází se korunou dokud nepadne hlava 2. pokud hlava padne v hodu N,

Více

Hodnocení ekonomické efektivnosti projektů Průměrný výnos z investice, doba návratnosti, ČSH, VVP

Hodnocení ekonomické efektivnosti projektů Průměrný výnos z investice, doba návratnosti, ČSH, VVP Hodnocení ekonomické efektivnosti projektů Průměrný výnos z investice, doba návratnosti, ČSH, VVP Investice je charakterizována jako odložená spotřeba. Podnikové investice jsou ty statky, které nejsou

Více

1. dílčí téma: Rozhodování při riziku, neurčitosti a hry s neúplnou informací

1. dílčí téma: Rozhodování při riziku, neurčitosti a hry s neúplnou informací Cíl tematického celku: Student získá komplexní přehled teorií oligopolu, které lze úspěšně aplikovat v realitě. Druhým cílem je naučit se chápat obsah komunikace, která se vede při projednávání nejrůznějších

Více

SEMINÁRNÍ PRÁCE Z MATEMATIKY

SEMINÁRNÍ PRÁCE Z MATEMATIKY SEMINÁRNÍ PRÁCE Z MATEMATIKY PETROHRADSKÝ PARADOX TEREZA KIŠOVÁ 4.B 28.10.2016 MOTIVACE: K napsání této práce mě inspiroval název tématu. Když jsem si o petrohradském paradoxu zjistila nějaké informace

Více

Rozhodovací procesy v ŽP HRY A SIMULAČNÍ MODELY

Rozhodovací procesy v ŽP HRY A SIMULAČNÍ MODELY Rozhodovací procesy v ŽP HRY A SIMULAČNÍ MODELY Teorie her proč využívat hry? Hry a rozhodování varianty her cíle a vítězné strategie (simulační) Modely Operační hra WRENCH Cv. Katedra hydromeliorací a

Více

Čistá současná hodnota a vnitřní výnosové procento

Čistá současná hodnota a vnitřní výnosové procento Čistá současná hodnota a vnitřní výnosové procento Co je to čistá současná hodnota? Čistá současná hodnota představuje rozdíl mezi diskontovanými peněžními příjmy z určité činnosti a výdaji na tuto činnost.

Více

ÚVOD. Dokonalé informace známe všechny možné stavy světa Nereálné

ÚVOD. Dokonalé informace známe všechny možné stavy světa Nereálné RIZIKO ÚVOD Dokonalé informace známe všechny možné stavy světa Nereálné Rozhodování v nejistotě Známe všechny možné situace a jejich pravděpodobnosti Známe všechny možné situace, ale ne jejich pravděpodobnosti

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

ÚVOD DO ROZHODOVÁNÍ PŘEDNÁŠKA. OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ Přednáška 1. Zuzana Bělinová

ÚVOD DO ROZHODOVÁNÍ PŘEDNÁŠKA. OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ Přednáška 1. Zuzana Bělinová PŘEDNÁŠKA 1 ÚVOD DO ROZHODOVÁNÍ Organizační Vyučující Ing., Ph.D. email: belinova@k620.fd.cvut.cz Doporučená literatura Dudorkin J. Operační výzkum. Požadavky zápočtu docházka zápočtový test (21.5.2015)

Více

Vedoucí autorského kolektivu: Ing. Jana Soukupová, CSc. Tato publikace vychází s laskavým přispěním společnosti RWE Transgas, a. s.

Vedoucí autorského kolektivu: Ing. Jana Soukupová, CSc. Tato publikace vychází s laskavým přispěním společnosti RWE Transgas, a. s. Autoři kapitol: Doc. Ing. Bronislava Hořejší, CSc. (kapitoly 1, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16) Doc. PhDr. Libuše Macáková, CSc. (kapitoly 4, 17.6, 18, 19) Prof. Ing. Jindřich Soukup, CSc. (kapitoly

Více

Doprovodné texty ke kurzu Teorie her

Doprovodné texty ke kurzu Teorie her Doprovodné texty ke kurzu Teorie her Martin Hrubý Fakulta informačních technologií Vysoké učení technické v Brně zimní semestr, akad. rok 2010/11 1 Contents 1 Vyjednávání 3 1.1 Základní vyjednávací úloha...............................

Více

TEORIE UŽITKU A PROSPEKTOVÁ TEORIE (NAŠE VOLBY) Aleš Neusar Myšlení a rozhodování v praxi

TEORIE UŽITKU A PROSPEKTOVÁ TEORIE (NAŠE VOLBY) Aleš Neusar Myšlení a rozhodování v praxi TEORIE UŽITKU A PROSPEKTOVÁ TEORIE (NAŠE VOLBY) Aleš Neusar Myšlení a rozhodování v praxi Registrační číslo: CZ.1.07/2.2.00/28.0138 Název projektu: Modularizace manažerského a psychologického vzdělávání

Více

12 HRY S NEÚPLNOU INFORMACÍ

12 HRY S NEÚPLNOU INFORMACÍ 12 HRY S NEÚPLNOU INFORMACÍ 543 Ne v každé hře mají všichni hráči úplné informace o výplatních funkcích ostatních. Ve skutečnosti je většina situací s informací neúplnou. Například: V aukcích zpravidla

Více

Úvod do teorie her. druhé upravené vydání. Martin Dlouhý Petr Fiala

Úvod do teorie her. druhé upravené vydání. Martin Dlouhý Petr Fiala Úvod do teorie her druhé upravené vydání Martin Dlouhý Petr Fiala 2009 2 Teorie her: analýza konfliktů a spolupráce Teorie her: analýza konfliktů a spolupráce 3 Obsah Předmluva... 5 1. Úvod do teorie her

Více

5 Informace o aspiračních úrovních kritérií

5 Informace o aspiračních úrovních kritérií 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.

Více

(Ne)kooperativní hry

(Ne)kooperativní hry (Ne)kooperativní hry Tomáš Svoboda, svobodat@fel.cvut.cz katedra kybernetiky, centrum strojového vnímání 5. října 2015 Tomáš Svoboda, svobodat@fel.cvut.cz / katedra kybernetiky, CMP / (Ne)kooperativní

Více

Křivka investičních příležitostí (CIO)

Křivka investičních příležitostí (CIO) Kapitálový trh Křivka investičních příležitostí (CIO) Říká, jaké má jednotlivec objektivní možnosti jaké kombinace současného (PE) a budoucího příjmu (FE) může dosáhnout Pokud se vzdá nějaké částky současného

Více

Podobnostní transformace

Podobnostní transformace Schurova věta 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci tak, aby se řešení úlohy

Více

2. Schurova věta. Petr Tichý. 3. října 2012

2. Schurova věta. Petr Tichý. 3. října 2012 2. Schurova věta Petr Tichý 3. října 2012 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci

Více

Ing. Alena Šafrová Drášilová

Ing. Alena Šafrová Drášilová Rozhodování II Ing. Alena Šafrová Drášilová Obsah vztah jedince k riziku rozhodování v podmínkách rizika rozhodování v podmínkách nejistoty pravidlo maximin pravidlo maximax Hurwitzovo pravidlo Laplaceovo

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

Kvízové otázky Obecná ekonomie I. Teorie firmy

Kvízové otázky Obecná ekonomie I. Teorie firmy 1. Firmy působí: a) na trhu výrobních faktorů b) na trhu statků a služeb c) na žádném z těchto trhů d) na obou těchto trzích Kvízové otázky Obecná ekonomie I. Teorie firmy 2. Firma na trhu statků a služeb

Více

Dvou-maticové hry a jejich aplikace

Dvou-maticové hry a jejich aplikace Dvou-maticové hry a jejich aplikace Obsah kapitoly. Hry s konstantním součtem Hra v normálním tvaru (ryzí strategie) Smíšené strategie. Hry s nekonstantním součtem Nekooperativní hra Dvou-maticová hra

Více

B) EX = 0,5, C) EX = 1, F) nemáme dostatek informací.

B) EX = 0,5, C) EX = 1, F) nemáme dostatek informací. Hlasovací otázka 9 Náhodná veličina X nabývá jen dvou různých hodnot, 0 a 1. Předpokládejme P(X = 0) = 0,5. Co můžeme říci o EX? Hlasovací otázka 9 Náhodná veličina X nabývá jen dvou různých hodnot, 0

Více

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 3 Katedra ekonometrie FEM UO Brno Optimalizace portfolia Investor se s pomocí makléře rozhoduje mezi následujícími investicemi: akcie A, akcie B, státní pokladniční poukázky, dluhopis A, dluhopis

Více

Marginalismus, Lausannská, Cambridgská škola Američtí a švédští marginalisté. Představitelé

Marginalismus, Lausannská, Cambridgská škola Američtí a švédští marginalisté. Představitelé Marginalismus, Lausannská, Cambridgská škola Američtí a švédští marginalisté Představitelé Základní charakteristika Subjektivita, subjektivnost rozhodování, náklady obětované příležitosti Problém alokace

Více

Matematické důkazy Struktura matematiky a typy důkazů

Matematické důkazy Struktura matematiky a typy důkazů Matematické důkazy Struktura matematiky a typy důkazů Petr Liška Masarykova univerzita 18.9.2014 Motto: Matematika je tvořena z 50 procent formulemi, z 50 procent důkazy a z 50 procent představivostí.

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Model tahové hry s finančními odměnami

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Model tahové hry s finančními odměnami VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Obor: Statistika a ekonometrie Název bakalářské práce Model tahové hry s finančními odměnami Autor: Vedoucí bakalářské práce: Rok: 009 Markéta

Více

Semestrální práce z předmětu Matematické modelování Modely vyjednávání

Semestrální práce z předmětu Matematické modelování Modely vyjednávání Semestrální práce z předmětu Matematické modelování Modely vyjednávání Anna Řezníčková A07143 5. 1. 2009 Obsah 1 Úvod...3 2 Modelování základních vztahů...3 3 Koncepce modelování vyjednávacího procesu...7

Více

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,

Více

4EK201 Matematické modelování. 1. Úvod do matematického modelování

4EK201 Matematické modelování. 1. Úvod do matematického modelování 4EK201 Matematické modelování 1. Úvod do matematického modelování Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka

Více

Přednáška #8. Základy mikroekonomie TEORIE HER

Přednáška #8. Základy mikroekonomie TEORIE HER Přednáška #8 Základy mikroekonomie TEORIE HER 14.11.2012 V minulé přednášce jsme si vysvětlili, co je to oligopolistické tržní uspořádání Oligopol jako tržní uspořádání stojí mezi monopolem a režimem dokonalé

Více

Usekne-li Honza 1 hlavu, narostou dva ocasy. Tento tah můžeme zakreslit následujícím způsobem: Usekne-li 2 hlavy, nic nenaroste.

Usekne-li Honza 1 hlavu, narostou dva ocasy. Tento tah můžeme zakreslit následujícím způsobem: Usekne-li 2 hlavy, nic nenaroste. Řešení 2. série Řešení J-I-2-1 1. krok: Číslici 2 ve třetím řádku můžeme dostat jedině násobením 5 4 = 20, 5 5 = 25. Tedy na posledním místě v prvním řádku může být číslice 4 nebo 5. Odtud máme i dvě možnosti

Více

Princip spravedlnosti

Princip spravedlnosti Daňové principy Daňové principy vyjadřují názory, jaké by daně měly být. Leží tedy v oblasti normativní ekonomie. (Pozn.: pozitivní ekonomie říká, co se stane, když např. co se se stane, když začneme regulovat

Více

Úvod do teorie portfolia. CAPM model. APT model Výhody vs. nevýhody modelů CML SML. Beta faktor

Úvod do teorie portfolia. CAPM model. APT model Výhody vs. nevýhody modelů CML SML. Beta faktor Radka Domanská 1 Úvod do teorie portfolia CML CAPM model SML Beta faktor APT model Výhody vs. nevýhody modelů 2 Množina dostupných portfolií Všechna možná portfolia, která mohou být vytvořena ze skupiny

Více

8. Dokonalá konkurence

8. Dokonalá konkurence 8. Dokonalá konkurence Kompletní text ke kapitole viz. KRAFT, J., BEDNÁŘOVÁ, P, KOCOUREK, A. Ekonomie I. TUL Liberec, 2010. ISBN 978-80-7372-652-2; str.64-75 Dokonale konkurenční tržní prostředí lze charakterizovat

Více

HRA V NORMA LNI M TVARU

HRA V NORMA LNI M TVARU 3 HRA V NORMÁLNÍM TVARU 91 Hra v normálním tvaru Definice 1. Necht je dána konečná neprázdná n-prvková množina Q = {1, 2,..., n}, n množin S 1, S 2,..., S n a n reálných funkcí u 1, u 2,..., u n definovaných

Více

Úvod do teorie her ZVYŠOVÁNÍ ODBORNÝCH KOMPETENCÍ AKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉ UNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ

Úvod do teorie her ZVYŠOVÁNÍ ODBORNÝCH KOMPETENCÍ AKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉ UNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ ZVYŠOVÁNÍ ODBORNÝCH KOMPETENCÍ AKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉ UNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ Úvod do teorie her David Bartl, Lenka Ploháková OSNOVA Úvod (hra n hráčů ve strategickém

Více

I A M 1 ROZHODOVÁNÍ V ČASE C 2. M 1 *(1+r) C 2K =(M 1 -C 1K )(1+r) C 1 C 1K

I A M 1 ROZHODOVÁNÍ V ČASE C 2. M 1 *(1+r) C 2K =(M 1 -C 1K )(1+r) C 1 C 1K ROZHODOVÁNÍ V ČASE Jednoduchý Fisherův model alternativy jsou současná spotřeba C 1 a budoucí spotřeba C 2. (Každá z těchto spotřeb je vyjádřena jako kompozitní statek převedený pomocí jeho ceny na peníze

Více

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Necht L je lineární prostor nad R. Operaci : L L R nazýváme Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární

Více

1. dílčí téma: Úvod do teorie her a historie

1. dílčí téma: Úvod do teorie her a historie Cíl tematického celku: Cílem tohoto tematického celku je seznámit se se základy teorie her, její historií proniknout do matematických základů. Tento tematický celek je rozdělen do následujících dílčích

Více

Teorie nákladů. Rozlišení zisku. Mikroekonomie. Účetní zisk. Ekonomický zisk. Normální zisk. Zisk firmy. Důležité. Účetní, ekonomický a normální zisk

Teorie nákladů. Rozlišení zisku. Mikroekonomie. Účetní zisk. Ekonomický zisk. Normální zisk. Zisk firmy. Důležité. Účetní, ekonomický a normální zisk Zisk firmy Mikroekonomie Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU Zisk (π) je rozdíl mezi celkovými příjmy a celkovými náklady. Π = TR - TC Je také vynásobený objem produkce rozdílem průměrného

Více

Připomeňme, že naším cílem je tvorba nástroj, pro zjištění stavu světa případně

Připomeňme, že naším cílem je tvorba nástroj, pro zjištění stavu světa případně Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Racionální rozhodování Připomeňme, že naším cílem je tvorba racionálních agentů maximalizujících očekávanou

Více

2. přednáška - PRAVDĚPODOBNOST

2. přednáška - PRAVDĚPODOBNOST 2. přednáška - PRAVDĚPODOBNOST NÁHODNÝ POKUS A JEV Každá opakovatelná činnost prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě, se nazývá náhodný pokus.

Více

Edgeworthův diagram směny. Přínosy plynoucí ze směny

Edgeworthův diagram směny. Přínosy plynoucí ze směny Mařenčino množství jídla Mařenčino množství jídla Mikroekonomie a chování JEB060 Přednáška 10 PhDr. Jiří KAMENÍČEK, CSc. Edgeworthův diagram směny Obrázek 1 130 75 25 R S 70 Bod R vyjadřuje původní vybavení

Více

Pravděpodobnost je. Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava

Pravděpodobnost je. Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Pravděpodobnost je Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava ŠKOMAM, 24. 1. 2017 Čím se zabývá teorie pravděpodobnosti? Pokus děj, který probíhá, resp. nastává opakovaně

Více

Mikroekonomie magisterský kurz - VŠFS Jiří Mihola, jiri.mihola@quick.cz, www.median-os.cz, 2013 Téma 4 Teorie her pro manažery Obsah 5.7 Kooperativní hry 5.7.1 Kooperativní hra 2 hráčů 5.7.2 Kooperativní

Více

Hra pro 2 10 hráčů od deseti let. OBSAH HRY CÍL HRY

Hra pro 2 10 hráčů od deseti let. OBSAH HRY CÍL HRY Hra pro 2 10 hráčů od deseti let. OBSAH HRY 104 hracích karet s čísly 1 104, pravidla hry CÍL HRY Na všech kartách jsou symboly krav. Každá kráva, kterou během hry vezmete, znamená jeden minusový bod.

Více

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi 2.2. Cíle Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi Předpokládané znalosti Předpokladem zvládnutí

Více

Lenka Šťastná Mikroekonomie I: bakalářský kurz ZS 2010/2011

Lenka Šťastná Mikroekonomie I: bakalářský kurz ZS 2010/2011 Mikroekonomie I: bakalářský kurz ZS 2010/2011 PhDr. Lenka Šťastná Praha, VŠFS, 4.10.2010 Organizace kurzu Vyučující PhDr. Lenka Šťastná Institut ekonomických studíı FSV UK, http://ies.fsv.cuni.cz Kontakt:

Více

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010 Věty o přírustku funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické

Více

Rozlišení zisku. Mikroekonomie. Účetní zisk = Ekonomický zisk. Normální zisk. Zisk firmy. Co je důležité pro členění zisku

Rozlišení zisku. Mikroekonomie. Účetní zisk = Ekonomický zisk. Normální zisk. Zisk firmy. Co je důležité pro členění zisku Zisk firmy Mikroekonomie Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU Zisk (π) je rozdíl mezi celkovými příjmy a celkovými náklady. Π = TR - TC Je také vynásobený objem produkce rozdílem průměrného

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

10 Přednáška ze

10 Přednáška ze 10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský

Více

Firmy na dokonale konkurenčních trzích

Firmy na dokonale konkurenčních trzích Firmy na dokonale konkurenčních trzích Motivace Každá firma musí učinit následující rozhodnutí: kolik vyrábět jakou cenu si účtovat s jakými výrobními faktory (kolik práce a kolik kapitálu) Tato rozhodnutí

Více

Věc: Rozšířené stanovisko Ministerstva financí k tzv. Kvízomatům

Věc: Rozšířené stanovisko Ministerstva financí k tzv. Kvízomatům MINISTERSTVO FINANCÍ Státní dozor nad sázkovými hrami a loteriemi Věc: Rozšířené stanovisko Ministerstva financí k tzv. Kvízomatům Podle ust. 1 odst. 1 zákona č. 202/1990 Sb., o loteriích a jiných podobných

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

D D P. e e e. ...požadovaná výnosová míra D...očekávané dividendy P. očekávaná prodejní cena. D n. n nekonečno. e e e e

D D P. e e e. ...požadovaná výnosová míra D...očekávané dividendy P. očekávaná prodejní cena. D n. n nekonečno. e e e e Téma 8: Chování cen akcií a investiční management Struktura přednášky: 1. Chování cen akcií fundamentální a technická analýza a teorie efektivních trhů. Riziko a výnos Markowitzův model 3. Kapitálový trh

Více

4. Aplikace matematiky v ekonomii

4. Aplikace matematiky v ekonomii 4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení Co to je kombinatorika Kombinatorika je vstupní branou do teorie pravděpodobnosti. Zabývá se různými způsoby výběru prvků z daného souboru. 2011 Ing. Janurová Kateřina, FEI VŠB-TU

Více

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška: Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní

Více

Rozhodování při riziku, neurčitosti a hry s neúplnou informací. Rozhodování při riziku

Rozhodování při riziku, neurčitosti a hry s neúplnou informací. Rozhodování při riziku Rozhodování při riziku, neurčitosti a hry s neúplnou informací Obsah kapitoly Studijní cíle Doba potřebná ke studiu Pojmy k zapamatování Úvod Výkladová část 1) Rozhodování při riziku a neurčitosti I. Rozhodování

Více

Nejistota a rovnováha Varian: Mikroekonomie: moderní přístup, kapitoly 12 a 16 Varian: Intermediate Microeconomics, 8e, Chapters 12 and 16 1 / 42

Nejistota a rovnováha Varian: Mikroekonomie: moderní přístup, kapitoly 12 a 16 Varian: Intermediate Microeconomics, 8e, Chapters 12 and 16 1 / 42 Nejistota a rovnováha Varian: Mikroekonomie: moderní přístup, kapitoly 12 a 16 Varian: Intermediate Microeconomics, 8e, Chapters 12 and 16 1 / 42 Na této přednášce se dozvíte jak vypadá rozhodování za

Více

Modely oligopolu. I. Dokonalý trh II. Nedokonalý trh 1. Modely oligopolu. Dokonalý trh. Nedokonalý trh

Modely oligopolu. I. Dokonalý trh II. Nedokonalý trh 1. Modely oligopolu. Dokonalý trh. Nedokonalý trh Modely oligopolu Obsah kapitoly Studijní cíle I. Dokonalý trh II. Nedokonalý trh 1. Modely oligopolu Student získá komplexní přehled teorií oligopolu, které lze úspěšně aplikovat v realitě. Doba potřebná

Více

TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA.

TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA. TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA. PAVEL RŮŽIČKA 4.1. (Kvazi)kompaktnost a sub-báze. Buď (Q, ) uspořádaná množina. Řetězcem v Q budeme rozumět lineárně

Více

Ekonomie 2 Bakaláři Pátá přednáška Devizový (měnový) kurz

Ekonomie 2 Bakaláři Pátá přednáška Devizový (měnový) kurz Ekonomie 2 Bakaláři Pátá přednáška Devizový (měnový) kurz Podstata devizového (měnového)kurzu Cena jedné měny vyjádřená v jiné měně (bilaterární kurz) Z pohledu domácí měny: - Přímý záznam: 1 EUR = 25

Více

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice 9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky

Více

Analýza jádra kooperativních her

Analýza jádra kooperativních her Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Martin Kašpar Analýza jádra kooperativních her Katedra pravděpodobnosti a matematické statistiky Vedoucí diplomové práce: Studijní

Více

ZOOLORETTO ROZŠÍŘENÍ

ZOOLORETTO ROZŠÍŘENÍ ZOOLORETTO ROZŠÍŘENÍ Michael Schacht TŘI NOVÉ BUDOVY (Drei Zusatzgebäude) 4 nové destičky, a sice: - 1 restaurace (Restaurant) - 1 obchod se suvenýry (Souvenirshop) - 2 pavilóny (Pavillon) Čtyři nové destičky

Více

P 1 = P 1 1 = P 1, P 1 2 =

P 1 = P 1 1 = P 1, P 1 2 = 1 Výpočet inverzní matice Věta 1 Necht P U elementární matice vzniklá el úpravou U Pak je P U regulární Důkaz: Protože elementární úprava U je invertovatelná, existuje el úprava U, která vrací změny U

Více

Veřejné finance - základní otázky

Veřejné finance - základní otázky Veřejné finance - základní otázky - jak rozsáhlá má být redistribuce důchodů? - jak ovlivňovat hospodářský cyklus (dynamiku HDP)? - co a kolik se má vyrábět ve veřejném sektoru? - jak se uskutečňují kolektivní

Více