Vícekriteriální hodnocení variant VHV

Rozměr: px
Začít zobrazení ze stránky:

Download "Vícekriteriální hodnocení variant VHV"

Transkript

1 Vícekriteriální hodnocení variant VHV V lineárním programování jsme se naučili hledat optimální řešení pro úlohy s jedním (maximalizačním nebo minimalizačním) kritériem za předpokladu, že podmínky i účelová funkce byly dány lineárními funkcemi. (V případě, že by funkce byly např. kvadratické, mluvili bychom o kvadratickém programování.) Pro úlohy, v nichž není účelová funkce jediná, ale je jich více, je nutné použít trochu jiné postupy. V takovém případě mluvíme o vícekriteriálním rozhodování. Na první pohled se nabízí možnost nějak vhodně kritéria sečíst, abychom dostali jen jediné kritérium. Pokud bychom však jen tak bohapustě kritéria sečetli, jistě bychom udělali chybu, nemůžeme přeci sčítat jen tak např. milióny korun a známky ze školy. Navíc některá kritéria mohou být důležitější (např. čistý trestní rejstřík pro výběr osoby na post generálního ředitele nejmenované firmy) než jiná (např. výška postavy nebo známka z kreslení) a na tyto skutečnosti je třeba brát zřetel. 3 Metody odhadu vah Důležité pravidlo pro volbu vah: Váhy vždy volíme tak, aby součet vah přes všechna kritéria dával jedničku. Pokud tedy váhy pro i-té kritérium označíme symbolem v i, pro i = 1,..., k, kde k je počet kritérií, pak váhy volíme tak, aby k v i = 1, v i 0. Dalším důležitým pravidlem je, že čím důležitější je kritérium, tím větší váhu musíme kritériu přidělit. Co se týče volby vah, existují dvě možnosti. První, že váhy prostě stanovíme natvrdo tzn. že si řekneme, jak důležitá jsou pro nás jednotlivá kritéria a že např. první kritérium bude mít váhu 0%, druhé 30% a třetí 50%. Zapsáno v matematických symbolech v = (v 1, v, v 3 ) = (0., 0.3, 0.5). Druhou možností je stanovit váhy pomocí některé z následujících čtyř metod. Jednotlivé metody si předvedeme na následujícím příkladu: Příklad Upír Je hluboká noc a vy se právě probouzíte ve své vyhřáté postýlce. Je šero, jen světlo z ulice matně osvětluje místnost. Máte dojem, že se nad vámi sklání postava v temném plášti s nezvykle dlouhými špičáky. Špatný sen, pomyslíte 1

2 si, otočíte se na druhý bok a v klidu usnínáte, když v tom na krku ucítíte ostrou bolest. Omdlíte. Probouzíte se a přemýšlíte o tom, že takhle blbej sen se vám už léta nezdál. Copak ještě někdo věří na upíry? Ale moment. Něco není v pořádku. Tohle není vaše postel. Ježíši, tohle je přece rakev. Přemýšlíte, co se děje. Na mrtvolu se cítíte docela živě. A pak vám to dojde. To nebyl sen, je ze vás UPÍR. Zazmatkujete a propadnete panice. Opět omdlíte. Když se proberete, vidíte všechno z té lepší stránky. Můj život stejně za moc nestál, pomyslíte si. Teď budu žít navěky. Ale... začínám mít hlad. Čím se živí upíři? Krev, potřebuji krev. Zakousnete psa, který měl právě v úmyslu proběhnout kolem, ale to vás neuspokojí. Chce to něco kvalitnějšího. Chce to výbornou lidskou krev. Do místnosti vstoupí jakýsi shrbený stařík a představí se jako váš sluha. Jste trochu v šoku, ale za chvíli začnete mít jasno. Zatímco stařík uklízí spoušť, kterou způsobila vaše chuť po krvi a na kousky rozcupovaný mrtvý pes, vysvětluje vám pravidla, která platí v říši upírů. Každý upír ovládá území do vzdálenosti 10 km od hradu, na němž sídlí. Zde může vysávat kohokoliv, kdo se mu bude líbit. Okruhy se ale překrývají a pro mladé upíry není vhodné lovit v blízkosti hradů jiných upírů, sic by je to mohlo stát jejich dlouhověký život. Není vhodné se přibližovat k česneku, kostelům, dřevěným kolíkům a stříbrným kulkám. To vše rozhodně upírův zdravotní stav nevylepší. No a co se tak povídá, je lepší si vybírat lidi s kvalitní krví, protože jinak upír ráno pozná, co je to krevní kocovina. Achych ouvej, to bylo informací. Až se mi z toho hlava točí, pomyslíte si. Nu což, chce to udělat dobrý plán. Začnete tím, že si sestavíte seznam kritérií, podle kterého si pak vyberete nejlepší oběť. Nakonec jich vymyslíte devět: 1. Vzdálenost od česnekového pole (ČES) je udávána v metrech a jedná se o vzdálenost obydlí případné oběti od nejbližšího většího zdroje česneku. Čím větší vzdálenost, tím lépe.. Vzdálenost nejbližšího upíra (VUP) je udávána v kilometrech a označuje, jak daleko od místa oběti se nachází nejbližší další upírský hrad. Čím bude dále, tím lépe. 3. Kvalita prostředí (KPR) je hodnocena body na stupnici bodů

3 a označuje, jak kvalitní je životní prostředí oběti, aby byla zajištěna co nejlepší kvalita krve, cílem je co nejvyšší dosažené hodnocení. 4. Vzdálenost od kostela (KOS) je udávána v kilometrech a jedná se o vzdálenost obydlí oběti od nejbližšího kostela nebo jiného svatého místa, kde by hrozilo nebezpečí. Čím dále od takového místa, tím lépe. 5. Krevní skupina (KS) každý upír preferuje jinou krevní skupinu a vybírá si pochopitelně tu nejlepší. Krevní skupina je hodnocena jako ve škole známkou v rozsahu 1 5, čím lepší (nižší hodnota) známka, tím lépe. 6. Obranyschopnost (OS) muži jsou lepšími bojovníky a nejednou byl upír zastrašen silným mužem. Proto je obranyschopnost také důležitým kritériem. Většinou je hodnocení takové, že muži mají 1 a ženy (jako slabší stvoření) 0. Žena je také krásnější a atraktivnější, takže osoby s ohodnocením 0 jsou žádanější. Většinou je toto kritérium pro upíra nejdůležitější. Čím menší hodnota, tím lépe. 7. Finanční zázemí (FIN) dobré finanční zázemí oběti je důležité, neboť upír pak může s majetkem nakládat dle svého uvážení. Hodnoceno je průměrným měsíčním příjmem za poslední rok v Kč, cílem je co nejlepší (nejvyšší) finanční zázemí. 8. Vzdálenost od rakve (VOR) upír pracuje jen v desetikilometrovém okruhu a dál si netroufá jít, nicméně čím blíže bydlí oběť k hradu, tím je méně práce ji naštívit a zakousnout. Vzdálenost je udávána v kilometrech a čím je nižší, tím lépe. 9. Věk (VĚK) je udáván v letech, mladá krev je pochopitelně chutnější a tak čím nižší věk, tím lépe. Pokračování příště 3.1 Metoda pořadí Kritéria seřadíme nejprve podle pořadí od nejdůležitějšího po nejméně důležité. Předpokládejme, že máme k kritérií. Nejdůležitější kritérium ohodnotíme k body (b i = k), druhé nejdůležitější k 1 body (b i = k 1), atd. až poslední (nejméně důležité) jedním bodem (b i = 1). 3

4 V případě, že by některá kritéria byla stejně důležitá, obodujeme je příslušným průměrem. Váhu příslušného kritéria pak dostaneme podle vztahu v i = b i / k b i. k b i je součtem bodů rozdělených mezi jednotlivá kritéria. Pro tento součet platí k b i = k(k + 1)/. Ukažme si nyní tuto metodu na příkladu Upíra. Nejprve očíslujeme jednotlivá kritéria a přidělíme jim index i = 1,..., 9. Pak kritéria seřadíme podle pořadí. Nakonec každému kritériu přiřadíme 1 až 9 bodů (b i ) tak, aby nejdůležitější kritérium dostalo 9 bodů,..., a nejméně důležité dostalo jeden bod. kritérium i pořadí b i v i = b i / 9 b i ČES /45 = 0.0 VUP /45 = 0.17 KPR /45 = 0.17 KOS /45 = 0.09 KS /45 = 0.07 OS /45 = 0.0 FIN 7 8 /45 = 0.04 VOR /45 = 0.13 VĚK /45 = 0.11 součet 45 1 Snadno si můžeme ověřit, že pro devět kritérií (k = 9) součet všech bodů ve sloupci b i se rovná k(k+1) = 9 10 = Bodovací metoda Výpočet vah je při použití této metody identický s postupem uvedeným v předchozí metodě, jediný rozdíl je v přidělení bodů b i. Opět platí pravidlo, že čím důležitější je některé kritérium, tím vyšší dostane počet bodů. Každé kritérium v této metodě ohodnotíme body z nějakého předem daného intervalu, např. b i < 0, 10 >. Váhu příslušného kritéria pak dostaneme podle vztahu v i = b i / k b i. 4

5 Pro příklad Generálního ředitele určíme váhy následovně: kritérium i b i v i = b i / 9 b i ČES 1 1 1/53 = VUP 9 9/53 = KPR 3 9 9/53 = KOS 4 4 4/53 = KS 5 4 4/53 = OS /53 = FIN 7 3 3/53 = VOR 8 8 8/53 = VĚK 9 5 5/53 = součet Metoda párového srovnávání (Fullerova metoda) Tato metoda bývá nazývána Fullerovou metodou proto, že při její aplikaci sestavujeme váhy pomocí tzv. Fullerova trojúhelníku. Princip párového srovnávání je takový, že vždy porovnáváme dvě kritéria a z každé takové dvojice kritérií vybereme to důležitější. Srovnáváme-li každá dvě kritéria z celkového počtu k kritérií, vybíráme všechny kombinace dvou prvků z k. Celkový počet porovnání je tedy roven N = ( ) k = k(k 1)(k )! = k(k 1).!(k )! Pro větší přehlednost při srovnávání sestavujeme tzv. Fullerův trojúhelník. Trojúhelník má vždy k 1 dvojřádků. V prvním řádku jsou všechny kombinace pro porovnání s prvním kritériem, v druhém kombinace pro porovnání s druhým kritériem, kromě té, která je v předchozím řádku, v každém dalším řádku jsou kombinace pro porovnání s dalším kritériem, které nejsou v předchozích řádcích. Každý řádek má tedy o 1 člen méně, než řádek předchozí. 5

6 k 1 k k k 3 k 3 k 3 k k 1 k k k k 1 k 1 k k Označme symbolem n i počet zakroužkovaných i, konkrétně tedy počet zakroužkovaných jedniček označíme n 1, apod. Váhy potom spočítáme podle vztahu v i = n i P k n i = n i N. Ukažme si metodu na příkladu Upíra. Nejprve sestavíme Fullerův trojůhelník a pak v každé dvojici zakroužkujeme kritérium, které nám připadá důležitější

7 Počet porovnání N = ( ) 9 = 9 8 = 36. i n i v i = n i /N 1 0 0/36 = /36 = /36 = /36 = /36 = /36 = /36 = /36 = /36 = 0.08 součet Kvantitativní párové srovnávání (Saatyho metoda) Saatyho metoda patří mezi nejčastěji používané metody pro volbu vah, používá se např. v postupu AHP. Srovnávají se opět vždy páry kritérií (stejně jako v předchozím případě) a hodnocení se ukládá do tzv. Saatyho matice S = (s ij ) podle následujícího systému: (s ij ) = 1 i a j jsou rovnocenná 3 i je slabě preferováno před j 5 i je silně preferováno před j 7 i je velmi silně preferováno před j 9 i je absolutně preferováno před j Hodnoty,4,6 a 8 jsou ponechány pro hodnocení mezistupňů. Je zřejmé, že s ii = 1, neboť kritérium je rovnocenné samo se sebou. Navíc musí platit, že s ji = 1/s ij pro všechna i. Hodnota s ij představuje přibližný poměr vah kritéria i a j, v matematickém zápisu s ij v i /v j. 7

8 Předpokládejme, že skutečný poměr vah je v i /v j, my tento poměr odhadujeme hodnotou s ij a chceme, aby se toto s ij v i /v j. Minimalizujeme tedy součet čtverců rozdílu F = k k za podmínky: k v i = 1 ( s ij v ) i min v j co nejméně lišilo od To je ale problém kvadratického programování a při výpočtech by mohlo dojít k potížím. Pro snadnější výpočet se používá metoda geometrického průměru, neboli metoda nejmenších logaritmických čtverců. Jde o minimalizaci kvadratické formy F = k (ln s ij (ln v i ln v j )) min j>i za podmínky: k v i = 1 Řešením je geometrický průměr řádků matice S: v i = [ ] 1/k k s ij pro i = 1,..., k. [ ] 1/k k k s ij Problémem ovšem je, že matice S musí být uspokojivě konzistentní, tzn. σ < 0.1 pro k = 3 σ < 0. pro k = 4, 5, 6, 7 σ < 0.3 pro k > 7 kde σ je odhad rozptylu. Platí σ = F/d, kde F je hodnota výše uvedené kvadratické formy a d = k(k 1) (k 1) = (k 1)(k ), což je počet srovnání snížený o počet lineárně nezávislých váhových parametrů. 8

9 Samotná metoda je velmi jednoduchá a zahrnuje následujících 5 kroků. Nejprve vyplníme Saatyho matici: 1. Na diagonále budou jedničky (s ii = 1).. s ij < 0, 9 >, pokud i je preferováno před j. 3. s ji = 1/s ij Pro každé i spočítáme hodnotu s i = k s ij. Pro každé i spočítáme hodnotu R i = (s i ) 1/k = k s i. Dále spočítáme k R i. Nakonec určíme váhy kritérií podle vztahu v i = R i. kp R i Pro ilustraci metody použijeme příklad Upíra, tentokrát ovšem budeme uvažovat pouze prvních 5 kritérií. s ij f1 f f3 f4 f5 s i = 5 s ij R i = (s i ) 1/5 v i = R i / 5 R i f1 1 1/5 1/5 1/3 1/ 1/ f f f4 3 1/4 1/4 1 3/ f5 1/5 1/5 1/ 1 1/ součet

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

4 Kriteriální matice a hodnocení variant

4 Kriteriální matice a hodnocení variant 4 Kriteriální matice a hodnocení variant V teorii vícekriteriálního rozhodování pracujeme s kritérii, kterých je obecně k, a s variantami, kterých je obecně p. Hodnotu, které dosahuje varianta i pro j-té

Více

6 Ordinální informace o kritériích

6 Ordinální informace o kritériích 6 Ordinální informace o kritériích Ordinální informací o kritériích se rozumí jejich uspořádání podle důležitosti. Předpokládejme dále standardní značení jako v předchozích cvičeních. Existují tři základní

Více

Socio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů

Socio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů Klub regionalistů 11.11.2010 Projekt SGS SP/2010 Socio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů Jiří Adamovský Lucie Holešinská Katedra regionální a environmentální ekonomiky

Více

5 Informace o aspiračních úrovních kritérií

5 Informace o aspiračních úrovních kritérií 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

Vícekriteriální hodnocení variant úvod

Vícekriteriální hodnocení variant úvod Vícekriteriální hodnocení variant úvod Jana Klicnarová Katedra aplikované matematiky a informatiky Jihočeská Univerzita v Českých Budějovicích, Ekonomická fakulta 2010 Vícekriteriální hodnocení variant

Více

Vícekriteriální rozhodování za jistoty

Vícekriteriální rozhodování za jistoty Kapitola 1 Vícekriteriální rozhodování za jistoty Při řešení rozhodovacích problémů se často setkáváme s případy, kdy optimální rozhodnutí musí vyhovovat více než jednomu kritériu. Zadaná kritéria mohou

Více

Operační výzkum. Přiřazovací problém.

Operační výzkum. Přiřazovací problém. Operační výzkum Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ..7/2.2./28.326

Více

Vícekriteriální rozhodování za jistoty

Vícekriteriální rozhodování za jistoty 1 Část I Vícekriteriální rozhodování za jistoty Při řešení rozhodovacích problémů se často setkáváme s případy, kdy optimální rozhodnutí musí vyhovovat více než jednomu kritériu. Zadaná kritéria mohou

Více

Vícekriteriální programování příklad

Vícekriteriální programování příklad Vícekriteriální programování příklad Pražírny kávy vyrábějí dva druhy kávy (Super a Standard) ze dvou druhů kávových bobů KB1 a KB2, které mají smluvně zajištěny v množství 4 t a 6 t. Složení kávy (v procentech)

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Z X 5 0 4 H o d n o c e n í v l i v ů n a ž i v o t n í p r o s t ř e d í. Vybrané metody posuzování dopadu záměrů na životní

Z X 5 0 4 H o d n o c e n í v l i v ů n a ž i v o t n í p r o s t ř e d í. Vybrané metody posuzování dopadu záměrů na životní Z X 5 0 4 H o d n o c e n í v l i v ů n a ž i v o t n í p r o s t ř e d í Vybrané metody posuzování dopadu záměrů na životní prostředí. ř Posuzování dopadu (impaktu) posuzované činnosti na životní prostředí

Více

Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot.

Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot. Průměr Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot. Co je to průměr # Průměrem se rozumí klasický aritmetický průměr sledovaných hodnot. Můžeme si pro

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry)

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry) Teorie her a ekonomické rozhodování 3. Dvoumaticové hry (Bimaticové hry) 3.1 Neantagonistický konflikt Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více

7. přednáška Systémová analýza a modelování. Přiřazovací problém

7. přednáška Systémová analýza a modelování. Přiřazovací problém Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů

Více

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu. Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme

Více

V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech:

V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech: Příklad 1 V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech: Skupina Počet ženichů Počet nevěst 15-19 let 11 30 20-24 let 166 272 25-29 let 191

Více

TEST 1 (40 bodů) (9 4)! 2. Nejméně kolikrát musíme hodit kostkou, abychom měli alespoň 80% pravděpodobnost, že padne alespoň jedna šestka?

TEST 1 (40 bodů) (9 4)! 2. Nejméně kolikrát musíme hodit kostkou, abychom měli alespoň 80% pravděpodobnost, že padne alespoň jedna šestka? TEST (40 bodů) Jméno:. Pin karty se skládá ze čtyř náhodně vybraných číslic až 9, z nichž se žádné neopakuje. Jaká je pravděpodobnost, že všechny čtyři číslice budou liché? podíl všech možností,jak vybrat

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Ekonomická formulace. Matematický model

Ekonomická formulace. Matematický model Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest

Více

Výběr lokality pro bydlení v Brně

Výběr lokality pro bydlení v Brně Mendelova univerzita v Brně Provozně ekonomická fakulta Výběr lokality pro bydlení v Brně Projekt do předmětu Optimalizační metody Martin Horák Brno 5 Mendelova univerzita v Brně Provozně ekonomická fakulta

Více

13. Lineární programování

13. Lineární programování Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Přiřazovací problém. Přednáška č. 7

Přiřazovací problém. Přednáška č. 7 Přiřazovací problém Přednáška č. 7 Přiřazovací problém je jednou podtřídou logistických úloh. Typickým problémem může být nejkratší převoz materiálu od dodavatelů ke spotřebitelům. spotřebitelé a i dodavatelé

Více

Layout pracoviště a řízení Rozvrhování pracovníků

Layout pracoviště a řízení Rozvrhování pracovníků Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Layout pracoviště a řízení Rozvrhování pracovníků Jan Vavruška Technická univerzita

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29 Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

P 1 = P 1 1 = P 1, P 1 2 =

P 1 = P 1 1 = P 1, P 1 2 = 1 Výpočet inverzní matice Věta 1 Necht P U elementární matice vzniklá el úpravou U Pak je P U regulární Důkaz: Protože elementární úprava U je invertovatelná, existuje el úprava U, která vrací změny U

Více

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Kartografické stupnice. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita

Kartografické stupnice. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Kartografické stupnice Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vytvoření dokumentu: 20. 9. 2004 Datum poslední aktualizace: 16. 10. 2012 Stupnice

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

Matematické metody rozhodování

Matematické metody rozhodování Matematické metody rozhodování Roman Hájek, Klára Hrůzová, Tomáš Konečný, Markéta Krmelová, Martin Trnečka 20. března 2010 Rozhodovacíproblém: Výběrideálníhonotebooku. ID Notebook Váha Design Baterie Procesor

Více

4. Trojúhelníkový rozklad p. 1/20

4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet

Více

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické

Více

Náhodný vektor a jeho charakteristiky

Náhodný vektor a jeho charakteristiky Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich

Více

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 37 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na staré hliněné desce je namalován čtverec

Více

časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality.

časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality. Modelování dynamických systémů Matematické modelování dynamických systémů se využívá v různých oborech přírodních, technických, ekonomických a sociálních věd. Použití matematického modelu umožňuje popsat

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_42_INOVACE_M.2.01 Integrovaná střední škola

Více

a se nazývá aritmetická právě tehdy, když existuje takové číslo d R

a se nazývá aritmetická právě tehdy, když existuje takové číslo d R Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ Mgr. Tomáš MAŇÁK. březen 014 Název zpracovaného celku: ARITMETICKÁ POSLOUPNOST A JEJÍ UŽITÍ ARITMETICKÁ POSLOUPNOST Teorie: Posloupnost každé ( ) n n1

Více

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný

Více

Pearsonův korelační koeficient

Pearsonův korelační koeficient I I.I Pearsonův korelační koeficient Úvod Předpokládejme, že náhodně vybereme n objektů (nebo osob) ze zkoumané populace. Často se stává, že na každém z objektů měříme ne pouze jednu, ale několik kvantitativních

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

DIPLOMOVÁ PRÁCE. Fuzzy rozšíření Saatyho AHP

DIPLOMOVÁ PRÁCE. Fuzzy rozšíření Saatyho AHP UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE Fuzzy rozšíření Saatyho AHP Vedoucí diplomové práce: RNDr. Ondřej Pavlačka, Ph.D.

Více

Zadání Máme data hdp.wf1, která najdete zde: Bodová předpověď: Intervalová předpověď:

Zadání Máme data hdp.wf1, která najdete zde:  Bodová předpověď: Intervalová předpověď: Predikce Text o predikci pro upřesnění pro ty, které zajímá, kde se v EViews všechna ta čísla berou. Ruční výpočty u průběžného testu nebudou potřeba. Co bude v závěrečném testu, to nevím. Ale přečíst

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Kvantitativní metody v rozhodování. Marta Doubková

Kvantitativní metody v rozhodování. Marta Doubková Kvantitativní metody v rozhodování Marta Doubková Seminární práce 28 OBSAH 1 LINEÁRNÍ PROGRAMOVÁNÍ KAPACITNÍ ÚLOHA... 3 2 DISTRIBUČNÍ ÚLOHA... 7 3 ANALÝZA KRITICKÉ CESTY METODA CPM... 13 4 MODEL HROMADNÉ

Více

Příklady modelů lineárního programování

Příklady modelů lineárního programování Příklady modelů lineárního programování Příklad 1 Optimalizace výroby konzerv. Podnik vyrábí nějaký výrobek, který prodává v 1 kg a 2 kg konzervách, přičemž se řídí podle následujících velmi zjednodušených

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Př. : Stanovte jednotlivé četnosti a číselné charakteristiky zadaného statistického souboru a nakreslete krabicový graf:, 8, 7, 43, 9, 47, 4, 34, 34, 4, 35. Statistický soubor seřadíme vzestupně podle

Více

Numerická matematika 1

Numerická matematika 1 Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................

Více

Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany

Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany 3 Metoda nejmenších čtverců 3 Metoda nejmenších čtverců Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany 73-80. Jedná se o třetí možnou metodu aproximace,

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

minimalizaci vzdálenosti od ideální varianty

minimalizaci vzdálenosti od ideální varianty UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Metody vícekriteriálního rozhodování založené na minimalizaci vzdálenosti od ideální

Více

Matematická olympiáda ročník ( ) Komentáře k úlohám 2. kola pro kategorie Z5 až Z9. kategorie Z5 Z5 II 1 Z5 II 2 Z5 II 3

Matematická olympiáda ročník ( ) Komentáře k úlohám 2. kola pro kategorie Z5 až Z9. kategorie Z5 Z5 II 1 Z5 II 2 Z5 II 3 1 of 6 20. 1. 2014 12:14 Matematická olympiáda - 49. ročník (1999-2000) Komentáře k úlohám 2. kola pro kategorie Z5 až Z9. kategorie Z5 Z5 II 1 Jirka půjčil Mirkovi předevčírem přibližně 230 Kč, tj. 225

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru 1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

ekologie Pavel Fibich Vektor a Matice Operace s maticemi Vlastnosti matic Pavel Fibich Shrnutí Literatura

ekologie Pavel Fibich Vektor a Matice Operace s maticemi Vlastnosti matic Pavel Fibich Shrnutí Literatura emi - nalévárna pavel.fibich@prf.jcu.cz 4. října 2012 Obsah emi 1 2 3 emi 4 5 6 emi Proč povídat o ích v kurzu? ové modely se používají v populační ekologii téměř nejčastěji bude snažší porozumět práci

Více

INTERNETOVÉ ZKOUŠKY NANEČISTO 1. kolo řešení matematika

INTERNETOVÉ ZKOUŠKY NANEČISTO 1. kolo řešení matematika INTERNETOVÉ ZKOUŠKY NANEČISTO 1. kolo řešení matematika 1. Zimní bundu zdražili v obchodě o 22 % a po zdražení stála 5 68 Kč. Kolik korun stála bunda před zdražením? 122 % 5 68 Kč 1 % 44 Kč 100 % 4 400

Více

Microsoft Office. Excel vyhledávací funkce

Microsoft Office. Excel vyhledávací funkce Microsoft Office Excel vyhledávací funkce Karel Dvořák 2011 Vyhledávání v tabulkách Vzhledem ke skutečnosti, že Excel je na mnoha pracovištích používán i jako nástroj pro správu jednoduchých databází,

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3 Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e

Více

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D. Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost

Více

Analýza časových řad. John Watters: Jak se stát milionářem.

Analýza časových řad. John Watters: Jak se stát milionářem. 5.2 Analýza časových řad Nechal jsem si udělat prognózu růstu své firmy od třech nezávislých odborníků. Jejich analýzy se shodovaly snad pouze v jediném - nekřesťanské ceně, kterou jsem za ně zaplatil.

Více

Zadání semestrální práce z předmětu Mechanika 2

Zadání semestrální práce z předmětu Mechanika 2 Zadání semestrální práce z předmětu Mechanika 2 Jméno: VITALI DZIAMIDAU Číslo zadání: 7 U zobrazeného mechanismu definujte rozměry, hmotnosti a silové účinky a postupně proveďte: 1. kinematickou analýzu

Více

Seminární práce Modely produkčních systémů

Seminární práce Modely produkčních systémů Seminární práce Modely produkčních systémů Předmět: 4EK425 Název projektu: Výroba hokejových dresů Jméno: Období: ZS 2007/2008 Číslo cvičení (kurzu): 001 (ST 12.45) OBSAH 1. ZADÁNÍ ÚLOHY... 3 2. URČENÍ

Více

CVIČNÝ TEST 47. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 47. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 47 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 3 IV. Záznamový list 5 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE Sbor chlapců a mužů se pro různé příležitosti

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Vícekriteriální hodnocení variant metody

Vícekriteriální hodnocení variant metody Katedra aplikované matematiky a informatiky Jihočeská Univerzita v Českých Budějovicích, Ekonomická fakulta 2010 Metody vícekriteriální hodnocení variant (VHV) Jak jsme již zmiňovali, VHV obecně neposkytuje

Více

9. Soustavy rovnic DEFINICE SOUSTAVY LINEÁRNÍCH ROVNIC O DVOU NEZNÁMÝCH. Soustava lineárních rovnic o dvou neznámých je:

9. Soustavy rovnic DEFINICE SOUSTAVY LINEÁRNÍCH ROVNIC O DVOU NEZNÁMÝCH. Soustava lineárních rovnic o dvou neznámých je: 9. Soustavy rovnic Správný nadpis této kapitoly by měl znít soustavy lineárních rovnic o dvou neznámých, z důvodu přehlednosti jsem jej zkrátil. Hned v úvodu čtenáře potěším teorie bude tentokrát krátká.

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

3 Bodové odhady a jejich vlastnosti

3 Bodové odhady a jejich vlastnosti 3 Bodové odhady a jejich vlastnosti 3.1 Statistika (Skripta str. 77) Výběr pořizujeme proto, abychom se (více) dověděli o souboru, ze kterého jsme výběr pořídili. Zde se soustředíme na situaci, kdy známe

Více

Cvičení ze statistiky - 3. Filip Děchtěrenko

Cvičení ze statistiky - 3. Filip Děchtěrenko Cvičení ze statistiky - 3 Filip Děchtěrenko Minule bylo.. Dokončili jsme základní statistiky, typy proměnných a začali analýzu kvalitativních dat Tyhle termíny by měly být známé: Histogram, krabicový graf

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

Matematické modelování dopravního proudu

Matematické modelování dopravního proudu Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Lineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x.

Lineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x. Lineární rovnice Rovnice je zápis rovnosti mezi dvěma algebraickými výrazy, které obsahují alespoň jednu proměnnou, kterou nazýváme neznámá. Rovnice má levou stranu L a pravou stranu P. Rovnost pak zapisujeme

Více

ROVNICE, NEROVNICE A JEJICH SOUSTAVY

ROVNICE, NEROVNICE A JEJICH SOUSTAVY Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ ÚLOH ROVNICE, NEROVNICE A JEJICH SOUSTAVY CIFRIK C. Úloha 1 [kvadratická rovnice s kořeny y_1=x_1^2+x_2^2, y_2=x_1^3+x_2^3]

Více