Vícekriteriální hodnocení variant VHV

Rozměr: px
Začít zobrazení ze stránky:

Download "Vícekriteriální hodnocení variant VHV"

Transkript

1 Vícekriteriální hodnocení variant VHV V lineárním programování jsme se naučili hledat optimální řešení pro úlohy s jedním (maximalizačním nebo minimalizačním) kritériem za předpokladu, že podmínky i účelová funkce byly dány lineárními funkcemi. (V případě, že by funkce byly např. kvadratické, mluvili bychom o kvadratickém programování.) Pro úlohy, v nichž není účelová funkce jediná, ale je jich více, je nutné použít trochu jiné postupy. V takovém případě mluvíme o vícekriteriálním rozhodování. Na první pohled se nabízí možnost nějak vhodně kritéria sečíst, abychom dostali jen jediné kritérium. Pokud bychom však jen tak bohapustě kritéria sečetli, jistě bychom udělali chybu, nemůžeme přeci sčítat jen tak např. milióny korun a známky ze školy. Navíc některá kritéria mohou být důležitější (např. čistý trestní rejstřík pro výběr osoby na post generálního ředitele nejmenované firmy) než jiná (např. výška postavy nebo známka z kreslení) a na tyto skutečnosti je třeba brát zřetel. 3 Metody odhadu vah Důležité pravidlo pro volbu vah: Váhy vždy volíme tak, aby součet vah přes všechna kritéria dával jedničku. Pokud tedy váhy pro i-té kritérium označíme symbolem v i, pro i = 1,..., k, kde k je počet kritérií, pak váhy volíme tak, aby k v i = 1, v i 0. Dalším důležitým pravidlem je, že čím důležitější je kritérium, tím větší váhu musíme kritériu přidělit. Co se týče volby vah, existují dvě možnosti. První, že váhy prostě stanovíme natvrdo tzn. že si řekneme, jak důležitá jsou pro nás jednotlivá kritéria a že např. první kritérium bude mít váhu 0%, druhé 30% a třetí 50%. Zapsáno v matematických symbolech v = (v 1, v, v 3 ) = (0., 0.3, 0.5). Druhou možností je stanovit váhy pomocí některé z následujících čtyř metod. Jednotlivé metody si předvedeme na následujícím příkladu: Příklad Upír Je hluboká noc a vy se právě probouzíte ve své vyhřáté postýlce. Je šero, jen světlo z ulice matně osvětluje místnost. Máte dojem, že se nad vámi sklání postava v temném plášti s nezvykle dlouhými špičáky. Špatný sen, pomyslíte 1

2 si, otočíte se na druhý bok a v klidu usnínáte, když v tom na krku ucítíte ostrou bolest. Omdlíte. Probouzíte se a přemýšlíte o tom, že takhle blbej sen se vám už léta nezdál. Copak ještě někdo věří na upíry? Ale moment. Něco není v pořádku. Tohle není vaše postel. Ježíši, tohle je přece rakev. Přemýšlíte, co se děje. Na mrtvolu se cítíte docela živě. A pak vám to dojde. To nebyl sen, je ze vás UPÍR. Zazmatkujete a propadnete panice. Opět omdlíte. Když se proberete, vidíte všechno z té lepší stránky. Můj život stejně za moc nestál, pomyslíte si. Teď budu žít navěky. Ale... začínám mít hlad. Čím se živí upíři? Krev, potřebuji krev. Zakousnete psa, který měl právě v úmyslu proběhnout kolem, ale to vás neuspokojí. Chce to něco kvalitnějšího. Chce to výbornou lidskou krev. Do místnosti vstoupí jakýsi shrbený stařík a představí se jako váš sluha. Jste trochu v šoku, ale za chvíli začnete mít jasno. Zatímco stařík uklízí spoušť, kterou způsobila vaše chuť po krvi a na kousky rozcupovaný mrtvý pes, vysvětluje vám pravidla, která platí v říši upírů. Každý upír ovládá území do vzdálenosti 10 km od hradu, na němž sídlí. Zde může vysávat kohokoliv, kdo se mu bude líbit. Okruhy se ale překrývají a pro mladé upíry není vhodné lovit v blízkosti hradů jiných upírů, sic by je to mohlo stát jejich dlouhověký život. Není vhodné se přibližovat k česneku, kostelům, dřevěným kolíkům a stříbrným kulkám. To vše rozhodně upírův zdravotní stav nevylepší. No a co se tak povídá, je lepší si vybírat lidi s kvalitní krví, protože jinak upír ráno pozná, co je to krevní kocovina. Achych ouvej, to bylo informací. Až se mi z toho hlava točí, pomyslíte si. Nu což, chce to udělat dobrý plán. Začnete tím, že si sestavíte seznam kritérií, podle kterého si pak vyberete nejlepší oběť. Nakonec jich vymyslíte devět: 1. Vzdálenost od česnekového pole (ČES) je udávána v metrech a jedná se o vzdálenost obydlí případné oběti od nejbližšího většího zdroje česneku. Čím větší vzdálenost, tím lépe.. Vzdálenost nejbližšího upíra (VUP) je udávána v kilometrech a označuje, jak daleko od místa oběti se nachází nejbližší další upírský hrad. Čím bude dále, tím lépe. 3. Kvalita prostředí (KPR) je hodnocena body na stupnici bodů

3 a označuje, jak kvalitní je životní prostředí oběti, aby byla zajištěna co nejlepší kvalita krve, cílem je co nejvyšší dosažené hodnocení. 4. Vzdálenost od kostela (KOS) je udávána v kilometrech a jedná se o vzdálenost obydlí oběti od nejbližšího kostela nebo jiného svatého místa, kde by hrozilo nebezpečí. Čím dále od takového místa, tím lépe. 5. Krevní skupina (KS) každý upír preferuje jinou krevní skupinu a vybírá si pochopitelně tu nejlepší. Krevní skupina je hodnocena jako ve škole známkou v rozsahu 1 5, čím lepší (nižší hodnota) známka, tím lépe. 6. Obranyschopnost (OS) muži jsou lepšími bojovníky a nejednou byl upír zastrašen silným mužem. Proto je obranyschopnost také důležitým kritériem. Většinou je hodnocení takové, že muži mají 1 a ženy (jako slabší stvoření) 0. Žena je také krásnější a atraktivnější, takže osoby s ohodnocením 0 jsou žádanější. Většinou je toto kritérium pro upíra nejdůležitější. Čím menší hodnota, tím lépe. 7. Finanční zázemí (FIN) dobré finanční zázemí oběti je důležité, neboť upír pak může s majetkem nakládat dle svého uvážení. Hodnoceno je průměrným měsíčním příjmem za poslední rok v Kč, cílem je co nejlepší (nejvyšší) finanční zázemí. 8. Vzdálenost od rakve (VOR) upír pracuje jen v desetikilometrovém okruhu a dál si netroufá jít, nicméně čím blíže bydlí oběť k hradu, tím je méně práce ji naštívit a zakousnout. Vzdálenost je udávána v kilometrech a čím je nižší, tím lépe. 9. Věk (VĚK) je udáván v letech, mladá krev je pochopitelně chutnější a tak čím nižší věk, tím lépe. Pokračování příště 3.1 Metoda pořadí Kritéria seřadíme nejprve podle pořadí od nejdůležitějšího po nejméně důležité. Předpokládejme, že máme k kritérií. Nejdůležitější kritérium ohodnotíme k body (b i = k), druhé nejdůležitější k 1 body (b i = k 1), atd. až poslední (nejméně důležité) jedním bodem (b i = 1). 3

4 V případě, že by některá kritéria byla stejně důležitá, obodujeme je příslušným průměrem. Váhu příslušného kritéria pak dostaneme podle vztahu v i = b i / k b i. k b i je součtem bodů rozdělených mezi jednotlivá kritéria. Pro tento součet platí k b i = k(k + 1)/. Ukažme si nyní tuto metodu na příkladu Upíra. Nejprve očíslujeme jednotlivá kritéria a přidělíme jim index i = 1,..., 9. Pak kritéria seřadíme podle pořadí. Nakonec každému kritériu přiřadíme 1 až 9 bodů (b i ) tak, aby nejdůležitější kritérium dostalo 9 bodů,..., a nejméně důležité dostalo jeden bod. kritérium i pořadí b i v i = b i / 9 b i ČES /45 = 0.0 VUP /45 = 0.17 KPR /45 = 0.17 KOS /45 = 0.09 KS /45 = 0.07 OS /45 = 0.0 FIN 7 8 /45 = 0.04 VOR /45 = 0.13 VĚK /45 = 0.11 součet 45 1 Snadno si můžeme ověřit, že pro devět kritérií (k = 9) součet všech bodů ve sloupci b i se rovná k(k+1) = 9 10 = Bodovací metoda Výpočet vah je při použití této metody identický s postupem uvedeným v předchozí metodě, jediný rozdíl je v přidělení bodů b i. Opět platí pravidlo, že čím důležitější je některé kritérium, tím vyšší dostane počet bodů. Každé kritérium v této metodě ohodnotíme body z nějakého předem daného intervalu, např. b i < 0, 10 >. Váhu příslušného kritéria pak dostaneme podle vztahu v i = b i / k b i. 4

5 Pro příklad Generálního ředitele určíme váhy následovně: kritérium i b i v i = b i / 9 b i ČES 1 1 1/53 = VUP 9 9/53 = KPR 3 9 9/53 = KOS 4 4 4/53 = KS 5 4 4/53 = OS /53 = FIN 7 3 3/53 = VOR 8 8 8/53 = VĚK 9 5 5/53 = součet Metoda párového srovnávání (Fullerova metoda) Tato metoda bývá nazývána Fullerovou metodou proto, že při její aplikaci sestavujeme váhy pomocí tzv. Fullerova trojúhelníku. Princip párového srovnávání je takový, že vždy porovnáváme dvě kritéria a z každé takové dvojice kritérií vybereme to důležitější. Srovnáváme-li každá dvě kritéria z celkového počtu k kritérií, vybíráme všechny kombinace dvou prvků z k. Celkový počet porovnání je tedy roven N = ( ) k = k(k 1)(k )! = k(k 1).!(k )! Pro větší přehlednost při srovnávání sestavujeme tzv. Fullerův trojúhelník. Trojúhelník má vždy k 1 dvojřádků. V prvním řádku jsou všechny kombinace pro porovnání s prvním kritériem, v druhém kombinace pro porovnání s druhým kritériem, kromě té, která je v předchozím řádku, v každém dalším řádku jsou kombinace pro porovnání s dalším kritériem, které nejsou v předchozích řádcích. Každý řádek má tedy o 1 člen méně, než řádek předchozí. 5

6 k 1 k k k 3 k 3 k 3 k k 1 k k k k 1 k 1 k k Označme symbolem n i počet zakroužkovaných i, konkrétně tedy počet zakroužkovaných jedniček označíme n 1, apod. Váhy potom spočítáme podle vztahu v i = n i P k n i = n i N. Ukažme si metodu na příkladu Upíra. Nejprve sestavíme Fullerův trojůhelník a pak v každé dvojici zakroužkujeme kritérium, které nám připadá důležitější

7 Počet porovnání N = ( ) 9 = 9 8 = 36. i n i v i = n i /N 1 0 0/36 = /36 = /36 = /36 = /36 = /36 = /36 = /36 = /36 = 0.08 součet Kvantitativní párové srovnávání (Saatyho metoda) Saatyho metoda patří mezi nejčastěji používané metody pro volbu vah, používá se např. v postupu AHP. Srovnávají se opět vždy páry kritérií (stejně jako v předchozím případě) a hodnocení se ukládá do tzv. Saatyho matice S = (s ij ) podle následujícího systému: (s ij ) = 1 i a j jsou rovnocenná 3 i je slabě preferováno před j 5 i je silně preferováno před j 7 i je velmi silně preferováno před j 9 i je absolutně preferováno před j Hodnoty,4,6 a 8 jsou ponechány pro hodnocení mezistupňů. Je zřejmé, že s ii = 1, neboť kritérium je rovnocenné samo se sebou. Navíc musí platit, že s ji = 1/s ij pro všechna i. Hodnota s ij představuje přibližný poměr vah kritéria i a j, v matematickém zápisu s ij v i /v j. 7

8 Předpokládejme, že skutečný poměr vah je v i /v j, my tento poměr odhadujeme hodnotou s ij a chceme, aby se toto s ij v i /v j. Minimalizujeme tedy součet čtverců rozdílu F = k k za podmínky: k v i = 1 ( s ij v ) i min v j co nejméně lišilo od To je ale problém kvadratického programování a při výpočtech by mohlo dojít k potížím. Pro snadnější výpočet se používá metoda geometrického průměru, neboli metoda nejmenších logaritmických čtverců. Jde o minimalizaci kvadratické formy F = k (ln s ij (ln v i ln v j )) min j>i za podmínky: k v i = 1 Řešením je geometrický průměr řádků matice S: v i = [ ] 1/k k s ij pro i = 1,..., k. [ ] 1/k k k s ij Problémem ovšem je, že matice S musí být uspokojivě konzistentní, tzn. σ < 0.1 pro k = 3 σ < 0. pro k = 4, 5, 6, 7 σ < 0.3 pro k > 7 kde σ je odhad rozptylu. Platí σ = F/d, kde F je hodnota výše uvedené kvadratické formy a d = k(k 1) (k 1) = (k 1)(k ), což je počet srovnání snížený o počet lineárně nezávislých váhových parametrů. 8

9 Samotná metoda je velmi jednoduchá a zahrnuje následujících 5 kroků. Nejprve vyplníme Saatyho matici: 1. Na diagonále budou jedničky (s ii = 1).. s ij < 0, 9 >, pokud i je preferováno před j. 3. s ji = 1/s ij Pro každé i spočítáme hodnotu s i = k s ij. Pro každé i spočítáme hodnotu R i = (s i ) 1/k = k s i. Dále spočítáme k R i. Nakonec určíme váhy kritérií podle vztahu v i = R i. kp R i Pro ilustraci metody použijeme příklad Upíra, tentokrát ovšem budeme uvažovat pouze prvních 5 kritérií. s ij f1 f f3 f4 f5 s i = 5 s ij R i = (s i ) 1/5 v i = R i / 5 R i f1 1 1/5 1/5 1/3 1/ 1/ f f f4 3 1/4 1/4 1 3/ f5 1/5 1/5 1/ 1 1/ součet

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

Socio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů

Socio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů Klub regionalistů 11.11.2010 Projekt SGS SP/2010 Socio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů Jiří Adamovský Lucie Holešinská Katedra regionální a environmentální ekonomiky

Více

5 Informace o aspiračních úrovních kritérií

5 Informace o aspiračních úrovních kritérií 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

Operační výzkum. Přiřazovací problém.

Operační výzkum. Přiřazovací problém. Operační výzkum Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ..7/2.2./28.326

Více

Vícekriteriální rozhodování za jistoty

Vícekriteriální rozhodování za jistoty Kapitola 1 Vícekriteriální rozhodování za jistoty Při řešení rozhodovacích problémů se často setkáváme s případy, kdy optimální rozhodnutí musí vyhovovat více než jednomu kritériu. Zadaná kritéria mohou

Více

Vícekriteriální rozhodování za jistoty

Vícekriteriální rozhodování za jistoty 1 Část I Vícekriteriální rozhodování za jistoty Při řešení rozhodovacích problémů se často setkáváme s případy, kdy optimální rozhodnutí musí vyhovovat více než jednomu kritériu. Zadaná kritéria mohou

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot.

Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot. Průměr Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot. Co je to průměr # Průměrem se rozumí klasický aritmetický průměr sledovaných hodnot. Můžeme si pro

Více

Z X 5 0 4 H o d n o c e n í v l i v ů n a ž i v o t n í p r o s t ř e d í. Vybrané metody posuzování dopadu záměrů na životní

Z X 5 0 4 H o d n o c e n í v l i v ů n a ž i v o t n í p r o s t ř e d í. Vybrané metody posuzování dopadu záměrů na životní Z X 5 0 4 H o d n o c e n í v l i v ů n a ž i v o t n í p r o s t ř e d í Vybrané metody posuzování dopadu záměrů na životní prostředí. ř Posuzování dopadu (impaktu) posuzované činnosti na životní prostředí

Více

Výběr lokality pro bydlení v Brně

Výběr lokality pro bydlení v Brně Mendelova univerzita v Brně Provozně ekonomická fakulta Výběr lokality pro bydlení v Brně Projekt do předmětu Optimalizační metody Martin Horák Brno 5 Mendelova univerzita v Brně Provozně ekonomická fakulta

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry)

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry) Teorie her a ekonomické rozhodování 3. Dvoumaticové hry (Bimaticové hry) 3.1 Neantagonistický konflikt Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada

Více

7. přednáška Systémová analýza a modelování. Přiřazovací problém

7. přednáška Systémová analýza a modelování. Přiřazovací problém Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů

Více

Matematické metody rozhodování

Matematické metody rozhodování Matematické metody rozhodování Roman Hájek, Klára Hrůzová, Tomáš Konečný, Markéta Krmelová, Martin Trnečka 20. března 2010 Rozhodovacíproblém: Výběrideálníhonotebooku. ID Notebook Váha Design Baterie Procesor

Více

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu. Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech:

V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech: Příklad 1 V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech: Skupina Počet ženichů Počet nevěst 15-19 let 11 30 20-24 let 166 272 25-29 let 191

Více

Ekonomická formulace. Matematický model

Ekonomická formulace. Matematický model Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

Přiřazovací problém. Přednáška č. 7

Přiřazovací problém. Přednáška č. 7 Přiřazovací problém Přednáška č. 7 Přiřazovací problém je jednou podtřídou logistických úloh. Typickým problémem může být nejkratší převoz materiálu od dodavatelů ke spotřebitelům. spotřebitelé a i dodavatelé

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

14. Exponenciální a logaritmické rovnice

14. Exponenciální a logaritmické rovnice @148 14. Exponenciální a logaritmické rovnice Rovnicím, které obsahují exponencielu resp. logaritmus, říkáme exponenciální resp. logaritmické rovnice. Při řešení exponenciálních a logaritmických rovnic

Více

Příklady modelů lineárního programování

Příklady modelů lineárního programování Příklady modelů lineárního programování Příklad 1 Optimalizace výroby konzerv. Podnik vyrábí nějaký výrobek, který prodává v 1 kg a 2 kg konzervách, přičemž se řídí podle následujících velmi zjednodušených

Více

Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany

Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany 3 Metoda nejmenších čtverců 3 Metoda nejmenších čtverců Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany 73-80. Jedná se o třetí možnou metodu aproximace,

Více

Microsoft Office. Excel vyhledávací funkce

Microsoft Office. Excel vyhledávací funkce Microsoft Office Excel vyhledávací funkce Karel Dvořák 2011 Vyhledávání v tabulkách Vzhledem ke skutečnosti, že Excel je na mnoha pracovištích používán i jako nástroj pro správu jednoduchých databází,

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Seminární práce Modely produkčních systémů

Seminární práce Modely produkčních systémů Seminární práce Modely produkčních systémů Předmět: 4EK425 Název projektu: Výroba hokejových dresů Jméno: Období: ZS 2007/2008 Číslo cvičení (kurzu): 001 (ST 12.45) OBSAH 1. ZADÁNÍ ÚLOHY... 3 2. URČENÍ

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

9. Soustavy rovnic DEFINICE SOUSTAVY LINEÁRNÍCH ROVNIC O DVOU NEZNÁMÝCH. Soustava lineárních rovnic o dvou neznámých je:

9. Soustavy rovnic DEFINICE SOUSTAVY LINEÁRNÍCH ROVNIC O DVOU NEZNÁMÝCH. Soustava lineárních rovnic o dvou neznámých je: 9. Soustavy rovnic Správný nadpis této kapitoly by měl znít soustavy lineárních rovnic o dvou neznámých, z důvodu přehlednosti jsem jej zkrátil. Hned v úvodu čtenáře potěším teorie bude tentokrát krátká.

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování.

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační výzkum Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chb v této presentaci mě prosím upozorněte. Děkuji. Tto slid berte pouze jako doplňkový materiál není v nich

Více

Matematické modelování dopravního proudu

Matematické modelování dopravního proudu Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel 2007. Výpočet budeme demonstrovat

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení 2. intermezzo - Tucet dalších příkladů. Příklad 1: Čtyři studenti jisté vysoké školy skládají zkoušku z matematiky. Kolik existuje případů, že každý z nich bude mít jinou známku? Počítejte s čtyřstupňovou

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

BAKALÁŘSKÁ PRÁCE. Realizace metody AHP v prostředí tabulkového kalkulátoru. Univerzita Pardubice Fakulta ekonomicko-správní

BAKALÁŘSKÁ PRÁCE. Realizace metody AHP v prostředí tabulkového kalkulátoru. Univerzita Pardubice Fakulta ekonomicko-správní Univerzita Pardubice Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky BAKALÁŘSKÁ PRÁCE Realizace metody AHP v prostředí tabulkového kalkulátoru Autor: Jaroslav Shejbal Vedoucí práce:

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Vícekriteriální hodnocení variant metody

Vícekriteriální hodnocení variant metody Katedra aplikované matematiky a informatiky Jihočeská Univerzita v Českých Budějovicích, Ekonomická fakulta 2010 Metody vícekriteriální hodnocení variant (VHV) Jak jsme již zmiňovali, VHV obecně neposkytuje

Více

Že tuto definici znáte, ale stále přesně nevíte, jak funkci chápat? Ukážeme si konkrétní příklad. 1 2 3 4 5 Definiční obor (množina A)

Že tuto definici znáte, ale stále přesně nevíte, jak funkci chápat? Ukážeme si konkrétní příklad. 1 2 3 4 5 Definiční obor (množina A) Funkce úvod Co je funkce Funkce je předpis, který číslu z množiny A přiřazuje právě jedno číslo z množiny B. Množina A je definiční obor funkce a množina B je obor hodnot funkce. Že tuto definici znáte,

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

Trojčlenka přímá úměra. Trojčlenka přímá úměra. Trojčlenka nepřímá úměra. Trojčlenka nepřímá úměra. Matematická vsuvka I.

Trojčlenka přímá úměra. Trojčlenka přímá úměra. Trojčlenka nepřímá úměra. Trojčlenka nepřímá úměra. Matematická vsuvka I. Matematická vsuvka I. trojčlenka Trojčlenka přímá úměra Pokud platí, že čím více tím více, jedná se o přímou úměru. Čím více kopáčů bude kopat, tím více toho vykopají. Čím déle necháme čerpadlo čerpat,

Více

Obr. P1.1 Zadání úlohy v MS Excel

Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel. Výpočet budeme demonstrovat

Více

Cvičení ze statistiky - 3. Filip Děchtěrenko

Cvičení ze statistiky - 3. Filip Děchtěrenko Cvičení ze statistiky - 3 Filip Děchtěrenko Minule bylo.. Dokončili jsme základní statistiky, typy proměnných a začali analýzu kvalitativních dat Tyhle termíny by měly být známé: Histogram, krabicový graf

Více

Korpus fikčních narativů

Korpus fikčních narativů 1 Korpus fikčních narativů prózy z 20. let Dvojí domov (1926) Vigilie (1928) Zeměžluč oddíl (1931) Letnice (1932) prózy z 30. let Děravý plášť (1934) Hranice stínu (1935) Modrá a zlatá (1938) Tvář pod

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116.

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. Cykly a pole Tato část sbírky je tvořena dalšími úlohami na práci s cykly. Na rozdíl od předchozího oddílu se zde již v řešeních úloh objevuje více cyklů, ať už prováděných po sobě nebo vnořených do sebe.

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Matematická statistika

Matematická statistika Matematická statistika Daniel Husek Gymnázium Rožnov pod Radhoštěm, 8. A8 Dne 12. 12. 2010 v Rožnově pod Radhoštěm Osnova Strana 1) Úvod 3 2) Historie matematické statistiky 4 3) Základní pojmy matematické

Více

DIPLOMOVÁ PRÁCE. AHP - její silné a slabé stránky

DIPLOMOVÁ PRÁCE. AHP - její silné a slabé stránky UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE AHP - její silné a slabé stránky Vedoucí diplomové práce: Doc. RNDr. Jana Talašová,

Více

VÝBĚR NEJVHODNĚJŠÍ HOSPODY

VÝBĚR NEJVHODNĚJŠÍ HOSPODY VÝBĚR NEJVHODNĚJŠÍ HOSPODY Matematická teorie rozhodování Vypracovali: Michal Hausner Lukáš Héža Daniel Koryčanský Petr Kovalčík Tomáš Talášek I. Přípravné práce V 18:00 chceme z kolejí Bedřicha Václavka

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b.

MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. MS EXCEL 2010 ÚLOHY ÚLOHA Č.1 Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. Do buněk B2 a B3 očekávám zadání hodnot. Buňky B6:B13 a D6:D13

Více

Postup při řešení matematicko-fyzikálně-technické úlohy

Postup při řešení matematicko-fyzikálně-technické úlohy Postup při řešení matematicko-fyzikálně-technické úlohy Michal Kolesa Žádná část této publikace NESMÍ být jakkoliv reprodukována BEZ SOUHLASU autora! Poslední úpravy: 3.7.2010 Úvod Matematicko-fyzikálně-technické

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více

5 Minimální kostry, Hladový algoritmus

5 Minimální kostry, Hladový algoritmus 5 Minimální kostry, Hladový algoritmus Kromě teoretických hrátek mají kostry grafů (Oddíl 4.4) následující důležité praktické použití: Dříve jsme uvažovali spojení v grafech cestami jdoucími z jednoho

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Optimalizace trasy při revizích elektrospotřebičů

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Optimalizace trasy při revizích elektrospotřebičů VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Hlavní specializace: Ekonometrie a operační výzkum Název diplomové práce Optimalizace trasy při revizích elektrospotřebičů Diplomant: Vedoucí

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury 1 / 34 Obsah přednášky Základní řídící struktury posloupnost příkazů podmínka cyklus s podmínkou na začátku cyklus s podmínkou na konci cyklus s pevným počtem opakování Jednoduchá

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

Stanovení hustoty pevných a kapalných látek

Stanovení hustoty pevných a kapalných látek 55 Kapitola 9 Stanovení hustoty pevných a kapalných látek 9.1 Úvod Hustota látky ρ je hmotnost její objemové jednotky, definované vztahem: ρ = dm dv, kde dm = hmotnost objemového elementu dv. Pro homogenní

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

SYSTÉMOVÁ METODOLOGIE (VIII) Operační výzkum. Ak. rok 2011/2012 vbp 1

SYSTÉMOVÁ METODOLOGIE (VIII) Operační výzkum. Ak. rok 2011/2012 vbp 1 SYSTÉMOVÁ METODOLOGIE (VIII) Operační výzkum Ak. rok 2011/2012 vbp 1 DEFINICE Operační výzkum je prostředek pro nalezení optimálního řešení daného problému při respektování celé řady různorodých omezení,

Více

Lineární programování

Lineární programování 24.9.205 Lineární programování Radim Farana Podklady pro výuku pro akademický rok 203/204 Obsah Úloha lineárního programování. Formulace úlohy lineárního programování. Typické úlohy lineárního programování.

Více

Pracoviště pro vývoj FPGA karet

Pracoviště pro vývoj FPGA karet Pracoviště pro vývoj FPGA karet Martin Bodlák 1 Úvod do problematiky COMPASS je mezinárodní experiment z oboru fyziky elementárních částic běžící na urychlovači SPS (Super Proton Synchotron) v CERN (Ženeva,

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Indexy, analýza HDP, neaditivnost

Indexy, analýza HDP, neaditivnost Indexy, analýza HDP, neaditivnost 1.) ŘETĚZOVÉ A BAZICKÉ INDEXY 1999 2000 2001 2002 Objem vkladů (mld. Kč) 80,8 83,7 91,5 79,4 a) určete bazické indexy objemu vkladů (1999=100) Rok 1999=100 báze. Pro rok

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ 7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní

Více

STATISTICA Téma 7. Testy na základě více než 2 výběrů

STATISTICA Téma 7. Testy na základě více než 2 výběrů STATISTICA Téma 7. Testy na základě více než 2 výběrů 1) Test na homoskedasticitu Nalezneme jej v několika submenu. Omezme se na submenu Základní statistiky a tabulky základního menu Statistika. V něm

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gmnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

I. kolo kategorie Z7

I. kolo kategorie Z7 60. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Součin číslic libovolného vícemístného čísla je vždy menší než toto číslo. Pokud počítáme součin číslic daného vícemístného čísla, potom součin

Více

Excel mini úvod do kontingenčních tabulek

Excel mini úvod do kontingenčních tabulek UK FHS Řízení a supervize v sociálních a zdravotnických organizacích (ZS 2005+) Kvantitativní metody výzkumu v praxi Excel mini úvod do kontingenčních tabulek (nepovinnáčást pro KMVP) Jiří Šafr jiri.safratseznam.cz

Více

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012 Algebra - třetí díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Dělitelnost 2 Grupy zbytkových tříd 3 Jedna z

Více

Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém

Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém Obsah přednášky Mgr. Květuše Sýkorová Optimalizace Lineární programování Distribuční úlohy Okružní problém KI Př UJEP Ústí nad Labem Nederivační metody Metody 1D optimalizace Derivační metody Optimalizace

Více

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM CÍLE KAPITOLY Využívat pokročilé možnosti formátování, jako je podmíněné formátování, používat vlastní formát čísel a umět pracovat s listy. Používat

Více

Hodnocení kvality logistických procesů

Hodnocení kvality logistických procesů Téma 5. Hodnocení kvality logistických procesů Kvalitu logistických procesů nelze vyjádřit absolutně (nelze ji měřit přímo), nýbrž relativně porovnáním Hodnoty těchto znaků někdo buď předem stanovil (norma,

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

4.1 Metoda horizontální a vertikální finanční analýzy

4.1 Metoda horizontální a vertikální finanční analýzy 4. Extenzívní ukazatelé finanční analýzy 4.1 Metoda horizontální a vertikální finanční analýzy 4.1.1 Horizontální analýza (analýza vývojových trendů -AVT) AVT = časové změny ukazatelů (nejen absolutních)

Více

Návod na používání Digitálního povodňového plánu povodňové komise

Návod na používání Digitálního povodňového plánu povodňové komise Návod na používání Digitálního povodňového plánu povodňové komise Obsah: 1. Spuštění programu 2. Změny údajů v povodňových komisích 3. Další možnost editace změn u osob 4. Zápis nových členů povodňových

Více