4 Kriteriální matice a hodnocení variant
|
|
- Stanislava Matějková
- před 8 lety
- Počet zobrazení:
Transkript
1 4 Kriteriální matice a hodnocení variant V teorii vícekriteriálního rozhodování pracujeme s kritérii, kterých je obecně k, a s variantami, kterých je obecně p. Hodnotu, které dosahuje varianta i pro j-té kritérium označíme symbolem y ij a budeme ji nazývat kriteriální hodnotou. Nabízí se uspořádat tyto hodnoty do do matice, kterou budeme nazývat kriteriální maticí. Řádky kriteriální matice jsou tvořeny jednotlivými variantami, sloupce kriteriální matice odpovídají jednotlivým kritériím. Obecně tedy kriteriální matice vypadá následovně: y y 2... y k y 2 y y 2k y p y p2... y pk Opět budeme pracovat s příkladem Upíra. Příklad Upír Již známe devět rozhodujících kritérií pro hodnocení obětí upírem:. Vzdálenost od česnekového pole (ČES) maximalizovat 2. Vzdálenost nejbližšího upíra (VUP) maximalizovat. Kvalita prostředí (KPR) maximalizovat 4. Vzdálenost od kostela (KOS) maximalizovat. Krevní skupina (KS) minimalizovat 6. Obranyschopnost (OS) minimalizovat 7. Finanční zázemí (FIN) maximalizovat 8. Vzdálenost od rakve (VOR) minimalizovat 9. Věk (VĚK) minimalizovat Pozn.: Jakým způsobem jsou jednotlivá kritéria hodnocena je uvedeno v předchozí kapitole. Předpokládejme, že jste si vybrali 0 potenciálních obětí, ale jen 6 postoupilo do užšího kola. V následující tabulce jsou shrnuta hodnocení všech obětí:
2 j kriter. ČES VUP KPR KOS KS OS FIN VOR VĚK jednot. m km body km znám. body tis.kč km roky typ kr. max max max max min min max min min Adéla Běla Cecilka Dana Evžen Františka Z takovéto tabulky není těžké sestavit kriteriální matici: S takovouto maticí se pak již velmi snadno pracuje. Důležité ovšem je, udržovat zároveň s kriteriální maticí informaci o tom, jakého typu jsou jednotlivá kritéria. 4. Převod kritérií na stejný typ Pro práci s kriteriální maticí je vhodné, když jsou všechna kritéria stejného typu (minimalizační nebo maximalizační). Převod kriterií na stejný typ není problém, neboť každé minimalizační kritérium lze velmi snadno převést na kritérium maximalizační. a) Stupnice je dána podstatou věci (např. známky ve škole) v takovém případě vezmeme maximální hodnotu, které může být dosaženo (ve škole známka ) a odečteme od ní kriteriální hodnotu. b) Stupnice dána není v takovém případě mezi variantami vyhledáme nejvyšší (nejhorší) hodnotu a od té odečteme hodnotu kriteriální. Tento krok můžeme prezentovat jako úsporu oproti nejhorší variantě. 2
3 V případě Upíra musíme tedy v původní kriteriální matici upravit hodnoty pro páté, šesté, osmé a deváté kritérium. Pro KS se jedná o známky, nejvyšší (nejhorší) hodnota může být známka, transformace tedy bude vypadat tak, že původní kriteriální hodnotu y i nahradíme hodnotou y i. Pro OS je nejvyšší hodnotou jednička, transformace tedy bude vypadat tak, že původní kriteriální hodnotu y i6 nahradíme hodnotou y i6. Pro VOR může být nejvyšší hodnotou desítka (0 km), transformace tedy bude vypadat tak, že původní kriteriální hodnotu y i8 nahradíme hodnotou 0 y i8. Pro VĚK je nejvyšší hodnotou 0, transformace tedy bude vypadat tak, že původní kriteriální hodnotu y i9 nahradíme hodnotou 0 y i9. Upravená kriteriální matice tedy bude vypadat následovně: Dominované a nedominované varianty Varianta se nazývá nedominovanou, pokud k ní neexistuje žádná lepší varianta v tom smyslu, že by bylo možno některou hodnotu (či některé hodnoty) kritérií zlepšit, aniž by se hodnoty jiných kritérií zhoršily. Varianta se nazývá dominovanou, pokud k ní existuje taková varianta, která má všechny hodnoty kritérií alespoň stejně dobré a minimálně jednu hodnotu lepší. Variantu považujeme za optimální, pokud je jedinou nedominovanou variantou ve výběru. Pokud je nedominovaných variant více, vybereme z nich jednu, kterou považujeme za reprezentativní. Tuto variantu nazveme variantou kompromisní. Ukažme si termíny na příkladu Upíra.
4 Příklad Upír var./krit a a a a a a Z tabulky či kriteriální matice (max. kritéria) vidíme, že: varianta a je dominována variantami a a a 4 varianta a 6 je dominována variantami a, a 2 a a 4 varianta a je nedominovaná, neboť je v kritériu f nejlepší, neexistuje k ní tedy ve všech kritériích alespoň stejně dobrá varianta varianta a 2 je nedominovaná, neboť je v kritériu f 9 nejlepší, neexistuje k ní tedy ve všech kritériích alespoň stejně dobrá varianta varianta a 4 je nedominovaná, neboť je v kritériích f, f a f 7 nejlepší, neexistuje k ní tedy ve všech kritériích alespoň stejně dobrá varianta varianta a je nedominovaná, neboť je v kritériích f 4 a f 6 stejně dobrá jako a a a 2, ale a je lepší podle f, a 2 je lepší podle f 9 a a je lepší podle f 7 množina nedominovaných variant je tedy a, a 2, a, a 4 žádná z těchto variant není optimální a jakoukoliv z nich můžeme zvolit za kompromisní 4. Ideální a bazální varianta Ideální varianta je nejlepší varianta, které lze teoreticky nebo prakticky dosáhnout. relativní nejvyšší hodnota v kriteriální matici pro dané kritérium absolutní nejvyšší teoreticky možná hodnota 4
5 Pro příklad Upíra: kritérium f f 2 f f 4 f f 6 f 7 f 8 f 9 ideální hodnota typ hodnoty rel rel abs rel abs abs rel abs rel Bazální varianta je nejhorší varianta, které lze teoreticky nebo prakticky dosáhnout. relativní nejnižší hodnota v kriteriální matici pro dané kritérium absolutní nejnižší teoreticky možná hodnota Pro příklad Upíra: kritérium f f 2 f f 4 f f 6 f 7 f 8 f 9 bazální hodnota typ hodnoty rel rel abs rel abs abs rel abs rel Pozn.: Nejkratší vzdálenost od kostela, hradu nebo sídla jiného upíra může být 0 km. ideální varianta = (0, 6, 00,, 4,, 0, 0, 20) bazální varianta = (07, 0, 0, 0, 0, 0, 4, 0, 0) 4.4 Grafické zobrazení variant V podstatě existují dva způsoby zobrazení variant hvězdicový a polygonální. Máme-li k kritérií, nakreslíme si v obou případech hvězdu s k paprsky vepsanou do jednotkové kružnice. Z každého paprsku vytvoříme osu pro jedno kritérium, ve středu bude bazální hodnota kritéria a na kružnici bude pro příslušné kritérium ideální hodnota. Na každou osu pak vyneseme lineární měřítko. Variantu pak můžeme zobrazit hvězdicí nebo k-úhlelníkem. V případě polygonálního zobrazení bude ideální variantě odpovídat pravidelný k-úhelník, bazální variantě pak odpovídá střed kružnice. Při polygonálním zobrazení můžeme snadno a rychle určit dominované a nedominované varianty. Pokud celý k-úhelník zobrazující variantu a i leží uvnitř
6 k-úhelníku zobrazující variantu a j, pak varianta a j dominuje variantu a i a naopak varianta a i je dominována variantou a j. Pokud se k-úhelníky protínají, varianty jsou nedominované. 4. Normalizace kriteriální matice Pokud známe ideální a bazální varianty, můžeme snadno znormalizovat kriteriální matici. Všechny hodnoty v kriteriální matici pak budou z intervalu 6
7 < 0, >, ideální hodnota v kriteriální matici pak bude prezentována číslem jedna, bazální hodnotou nula. Důležitou vlastností této normalizované kriteriální matice je skutečnost, že je zcela nezávislá na jednotkách. Označme symbolem D j bazální (dolní) hodnotu pro kritérium j a symbolem H j ideální (horní) hodnotu pro kritérium j. Normalizovaná kriteriální matice (r ij ) vzniká transformací původní kriteriální matice (y ij ) podle vztahu: r ij = y ij D j H j D j. Příklad Upír Máme kriteriální matici pro maximalizační kritéria, přidáme si řádky s ideální a bazální variantou a podle výše uvedeného vztahu sestavíme normalizovanou kriteriální matici. Podle vztahu uvedeném v posledním řádku snadno sestavíme žádanou matici: var./krit a a a a a a H j D j H j D j r ij y i 07 4 y i2 6 y i 00 y i4 y i 4 y i6 y i7 4 6 y i8 0 y i9 20 R =
8 4.6 WSA metoda váženého součtu Při užití této metody pracujeme s váhami jednotlivých kritérií, které jsou buď dány, nebo které jsme již nějakým vhodným způsobem odhadli (metodou pořadí, bodovací metodou, metodou párového srovnávání, metodou kvantitativního párového srovnávání). Máme tedy dány váhy v = (v, v 2,..., v k ) pro k maximalizačních kritérií. Metoda váženého součtu pak maximalizuje vážený součet, tedy k j= v jr ij. Spočítáme proto hodnotu tohoto váženého součtu pro každou variantu a za kompromisní variantu vybereme tu, která bude mít vážený součet nejvyšší. Příklad Upír Použijeme váhy, které jsme dostali metodou párového srovnávání a kriteriální matici z předchozího kroku. v = (0, 0.7, 0.9, 0., 0.0, 0.9, 0.06, 0.7, 0.08) R = Vážený součet pro variantu a je = Podobně spočítáme vážený součet i pro zbývajících variant: var. WSA pořadí a a a a a a
7 Kardinální informace o kritériích (část 1)
7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru
Více6 Ordinální informace o kritériích
6 Ordinální informace o kritériích Ordinální informací o kritériích se rozumí jejich uspořádání podle důležitosti. Předpokládejme dále standardní značení jako v předchozích cvičeních. Existují tři základní
Více4EK201 Matematické modelování. 10. Teorie rozhodování
4EK201 Matematické modelování 10. Teorie rozhodování 10. Rozhodování Rozhodování = proces výběru nějaké možnosti (varianty) podle stanoveného kritéria za účelem dosažení stanovených cílů Rozhodovatel =
VíceOperační výzkum. Vícekriteriální hodnocení variant. Grafická metoda. Metoda váženého součtu.
Operační výzkum Vícekriteriální hodnocení variant. Grafická metoda. Metoda váženého součtu. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu
VíceVÍCEKRITERIÁLNÍ ROZHODOVANÍ
VÍCEKRITERIÁLNÍ ROZHODOVANÍ 1 Obsah Typy modelů vícekriteriálního rozhodování Základní pojmy Typy informací Cíl modelů Užitek, funkce užitku Grafické zobrazení Metody vícekriteriální analýzy variant 2
Více5 Informace o aspiračních úrovních kritérií
5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.
VíceVícekriteriální hodnocení variant VHV
Vícekriteriální hodnocení variant VHV V lineárním programování jsme se naučili hledat optimální řešení pro úlohy s jedním (maximalizačním nebo minimalizačním) kritériem za předpokladu, že podmínky i účelová
VícePostupy při hodnocení variant a výběru nejvhodnějšího řešení. Šimon Kovář Katedra textilních a jednoúčelových strojů
Postupy při hodnocení variant a výběru nejvhodnějšího řešení Šimon Kovář Katedra textilních a jednoúčelových strojů Znáte nějaké postupy hodnocení variant řešení? Vícekriteriální rozhodování Při výběru
VíceJiří Neubauer. Katedra ekonometrie FEM UO Brno
Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,
VíceVícekriteriální programování příklad
Vícekriteriální programování příklad Pražírny kávy vyrábějí dva druhy kávy (Super a Standard) ze dvou druhů kávových bobů KB1 a KB2, které mají smluvně zajištěny v množství 4 t a 6 t. Složení kávy (v procentech)
VíceVícekriteriální hodnocení variant úvod
Vícekriteriální hodnocení variant úvod Jana Klicnarová Katedra aplikované matematiky a informatiky Jihočeská Univerzita v Českých Budějovicích, Ekonomická fakulta 2010 Vícekriteriální hodnocení variant
VíceOperační výzkum. Přiřazovací problém.
Operační výzkum Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ..7/2.2./28.326
VíceOperační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování.
Operační výzkum Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu
Vícefakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
VíceMetody výběru variant
Metody výběru variant Používají se pro výběr v případě více variant řešení stejného problému Lze vybírat dle jednoho nebo více kritérií V případě více kritérií mohou mít všechna stejnou důležitost nebo
VíceLDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
VíceVzorový příklad na rozhodování BPH_ZMAN
Vzorový příklad na rozhodování BPH_ZMAN Základní charakteristiky a značení symbol verbální vyjádření interval C g g-tý cíl g = 1,.. s V i i-tá varianta i = 1,.. m K j j-té kriterium j = 1,.. n v j x ij
Více7. přednáška Systémová analýza a modelování. Přiřazovací problém
Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů
VíceVýběr lokality pro bydlení v Brně
Mendelova univerzita v Brně Provozně ekonomická fakulta Výběr lokality pro bydlení v Brně Projekt do předmětu Optimalizační metody Martin Horák Brno 5 Mendelova univerzita v Brně Provozně ekonomická fakulta
Více4EK213 LINEÁRNÍ MODELY
4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 Mgr. Sekničková Jana, Ph.D. 2. PŘEDNÁŠKA MATEMATICKÝ MODEL ÚLOHY LP Mgr. Sekničková Jana, Ph.D. 2 OSNOVA PŘEDNÁŠKY Obecná formulace MM Množina
VíceVektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Více2 Spojité modely rozhodování
2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A
VíceRozhodovací procesy 8
Rozhodovací procesy 8 Rozhodování za jistoty Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 VIII rozhodování 1 Rozhodování za jistoty Cíl přednášky 8: Rozhodovací analýza Stanovení
VíceMULTIKRITERIÁLNÍ ROZHODOVÁNÍ KOMPLEXNÍ HODNOCENÍ ALTERNATIV
PŘEDNÁŠKA 6 MULTIKRITERIÁLNÍ ROZHODOVÁNÍ KOMPLEXNÍ HODNOCENÍ ALTERNATIV Multikriteriální rozhodování Možnosti řešení podle toho, jaká je množina alternativ pokud množina alternativ X je zadaná implicitně
VíceTeorie her a ekonomické rozhodování. 2. Maticové hry
Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru
VíceVícekriteriální rozhodování za jistoty
Kapitola 1 Vícekriteriální rozhodování za jistoty Při řešení rozhodovacích problémů se často setkáváme s případy, kdy optimální rozhodnutí musí vyhovovat více než jednomu kritériu. Zadaná kritéria mohou
Více4EK201 Matematické modelování. 2. Lineární programování
4EK201 Matematické modelování 2. Lineární programování 2.1 Podstata operačního výzkumu Operační výzkum (výzkum operací) Operational research, operations research, management science Soubor disciplín zaměřených
VíceParametrické programování
Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou
VíceMetody, jak stanovit správné váhy
Metody, jak stanovit správné váhy ING. BARBORA UZDAŘOVÁ RE-MEDICAL S.R.O 10.11.2016, OSTRAVA ebf 2016 Ekonomická výhodnost Obsah u Metoda pořadí u Bodovací metoda u Metoda alokace 100 bodů u Metoda párového
VíceSocio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů
Klub regionalistů 11.11.2010 Projekt SGS SP/2010 Socio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů Jiří Adamovský Lucie Holešinská Katedra regionální a environmentální ekonomiky
Více12. Lineární programování
. Lineární programování. Lineární programování Úloha lineárního programování (lineární optimalizace) je jedním ze základních problémů teorie optimalizace. Našim cílem je nalézt maximum (resp. minimum)
VíceJednokriteriální rozhodování za rizika a nejistoty
Kapitola Jednokriteriální rozhodování za rizika a nejistoty U jednokriteriálních úloh je vždy pouze jedno kritérium optimality, a to buď maximalizační nebo minimalizační. Varianty rozhodování jsou zadány.
VíceTeorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Lukáš Havrlant Univerzita Palackého 10. ledna 2014 Primární zdroj Jiří Adámek: Foundations of Coding. Strany 137 160. Na webu ke stažení, heslo:
VíceVícekriteriální rozhodování za jistoty
1 Část I Vícekriteriální rozhodování za jistoty Při řešení rozhodovacích problémů se často setkáváme s případy, kdy optimální rozhodnutí musí vyhovovat více než jednomu kritériu. Zadaná kritéria mohou
VícePřiřazovací problém. Přednáška č. 7
Přiřazovací problém Přednáška č. 7 Přiřazovací problém je jednou podtřídou logistických úloh. Typickým problémem může být nejkratší převoz materiálu od dodavatelů ke spotřebitelům. spotřebitelé a i dodavatelé
Víceminimalizaci vzdálenosti od ideální varianty
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Metody vícekriteriálního rozhodování založené na minimalizaci vzdálenosti od ideální
VíceTeorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry)
Teorie her a ekonomické rozhodování 3. Dvoumaticové hry (Bimaticové hry) 3.1 Neantagonistický konflikt Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada
VíceMatematické modelování dopravního proudu
Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení
Více2. Numerické výpočty. 1. Numerická derivace funkce
2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž
Více4EK213 Lineární modely. 12. Dopravní problém výchozí řešení
4EK213 Lineární modely 12. Dopravní problém výchozí řešení 12. Distribuční úlohy LP Úlohy výrobního plánování (alokace zdrojů) Úlohy finančního plánování (optimalizace portfolia) Úlohy reklamního plánování
Více3. ANTAGONISTICKÉ HRY
3. ANTAGONISTICKÉ HRY ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku,
VíceVEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A
VEKTORY Vektorem se rozumí množina všech orientovaných úseček, které mají stejnou velikost, směr a orientaci, což vidíme na obr. 1. Jedna konkrétní orientovaná úsečka se nazývá umístění vektoru na obr.
VíceOperační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.
Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty
Více5. Lokální, vázané a globální extrémy
5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,
VíceZápadočeská univerzita v Plzni. Fakulta aplikovaných věd. Ivana Kozlová. Modely analýzy obalu dat
Západočeská univerzita v Plzni Fakulta aplikovaných věd SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU MATEMATICKÉ MODELOVÁNÍ Ivana Kozlová Modely analýzy obalu dat Plzeň 2010 Obsah 1 Efektivnost a její hodnocení 2 2 Základní
Více4EK213 LINEÁRNÍ MODELY
4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 3. přednáška SIMPLEXOVÁ METODA I. OSNOVA PŘEDNÁŠKY Standardní tvar MM Základní věta LP Princip simplexové metody Výchozí řešení SM Zlepšení řešení
VíceOperační výzkum. Teorie her. Řešení maticových her převodem na úlohu LP.
Operační výzkum Řešení maticových her převodem na úlohu LP. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu
VíceIng. Alena Šafrová Drášilová, Ph.D.
Rozhodování Ing. Alena Šafrová Drášilová, Ph.D. Rozhodování??? video Obsah typy rozhodování principy rozhodování rozhodovací fáze základní pojmy hodnotícího procesu rozhodovací podmínky rozhodování v podmínkách
VíceLineární algebra : Změna báze
Lineární algebra : Změna báze (13. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 8. dubna 2014, 10:47 1 2 13.1 Matice přechodu Definice 1. Nechť X = (x 1,..., x n ) a Y = (y 1,...,
Více(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
Vícee-mail: RadkaZahradnikova@seznam.cz 1. července 2010
Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení
Více4EK311 Operační výzkum. 5. Teorie grafů
4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,
VíceRozhodování. Ing. Alena Šafrová Drášilová, Ph.D.
Rozhodování Ing. Alena Šafrová Drášilová, Ph.D. Rozhodování??? video Obsah typy rozhodování principy rozhodování rozhodovací fáze základní pojmy hodnotícího procesu rozhodovací podmínky rozhodování v podmínkách
VíceMatice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
VíceDigitální učební materiál
Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_42_INOVACE_M.2.01 Integrovaná střední škola
VíceANTAGONISTICKE HRY 172
5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí
VíceLayout pracoviště a řízení Rozvrhování pracovníků
Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Layout pracoviště a řízení Rozvrhování pracovníků Jan Vavruška Technická univerzita
VíceIB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
VícePopisná statistika. Komentované řešení pomocí MS Excel
Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,
VíceDotaz se souhrny a dotaz křížový
Téma 3.1. Dotaz se souhrny a dotaz křížový Pomocí dotazů lze také vytvářet skupinové výpočty (skupinové sumarizace). Tyto přehledy lze tvořit dvěma způsoby: 1. ponecháme původní strukturu Výběrového dotazu
VíceEkonomická formulace. Matematický model
Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest
Víceení spolehlivosti elektrických sítís
VŠB - TU Ostrava Fakulta elektrotechniky a informatiky Katedra elektroenergetiky, Katedra informatiky Inteligentní metody pro zvýšen ení spolehlivosti elektrických sítís (Program MCA8 pro výpočet metodami
VíceHEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO
HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO Heuristické algoritmy jsou speciálními algoritmy, které byly vyvinuty pro obtížné úlohy, jejichž řešení je obtížné získat v rozumném čase. Mezi
VícePříklady modelů lineárního programování
Příklady modelů lineárního programování Příklad 1 Optimalizace výroby konzerv. Podnik vyrábí nějaký výrobek, který prodává v 1 kg a 2 kg konzervách, přičemž se řídí podle následujících velmi zjednodušených
VíceLinearní algebra příklady
Linearní algebra příklady 6. listopadu 008 9:56 Značení: E jednotková matice, E ij matice mající v pozici (i, j jedničku a jinak nuly. [...]... lineární obal dané soustavy vektorů. Popište pomocí maticového
VíceOperace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
Více5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
VíceDeterminant matice řádu 5 budeme počítat opakovaným použitím rozvoje determinantu podle vybraného řádku nebo sloupce. Aby byl náš výpočet
Řešené příklady z lineární algebry - část 2 Příklad 2.: Určete determinant matice A: A = 4 4. Řešení: Determinant matice řádu budeme počítat opakovaným použitím rozvoje determinantu podle vybraného řádku
VícePříklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11
Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:
VícePojem a úkoly statistiky
Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby
VíceZáklady popisné statistiky
Základy popisné statistiky Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 26 Obsah 1 Základy statistického zpracování dat 2
VíceDiplomová práce. Heuristické metody pro vícekriteriální analýzu
Diplomová práce Heuristické metody pro vícekriteriální analýzu vypracoval: Jaroslav Smrž vedoucí práce: doc. RNDr. Jindřich Klapka, CSc. obor: Inženýrská informatika a automatizace specializace: Informatika
Více6. Lineární nezávislost a báze p. 1/18
6. Lineární nezávislost a báze 6. Lineární nezávislost a báze p. 1/18 6. Lineární nezávislost a báze p. 2/18 Lineární nezávislost a báze 1. Závislé a nezávislé vektory 2. Lineární kombinace a závislost
VíceVektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
VícePříloha Vzdělávacího manuálu pro hodnocení dopadů regulace (RIA)
Vyhodnocení variant Příloha Vzdělávacího manuálu pro hodnocení dopadů regulace (RIA) Metody Pro vyhodnocení identifikovaných přínosů a nákladů variant existují různé metody, z nichž k nejpoužívanějším
VíceGrafické řešení rovnic a jejich soustav
.. Grafické řešení rovnic a jejich soustav Předpoklady: 003 Pedagogická poznámka: V této hodině kreslíme na čtverečkovaný papír tak, aby jeden čtvereček představovala vzdálenost. Př. : Vyřeš graficky soustavu
VíceModely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT
PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová
VíceTéma 14 Multikriteriální metody hodnocení variant
Téma 14 Multikriteriální metody hodnocení variant Ing. Vlastimil Vala, CSc. Předmět : Ekonomická efektivnost LH Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio
Více4EK213 Lineární modely. 4. Simplexová metoda - závěr
4EK213 Lineární modely 4. Simplexová metoda - závěr 4. Simplexová metoda - závěr Konečnost simplexové metody Degenerace Modifikace pravidla pro volbu vstupující proměnné Blandovo pravidlo Kontrola výpočtu
Více19. Druhý rozklad lineární transformace
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Úmluva. Všude P = C. Vpřednášce o vlastních vektorech jsme se seznámili s diagonalizovatelnými
VíceVolba zobrazení (Direct Current, Scaling) - FFT 1D, FFT 2D
Volba zobrazení (Direct Current, Scaling) - FFT 1D, FFT 2D Jiří Stančík Fakulta chemická, Vysoké učení technické v Brně Purkyňova 118, 61200 Brno e-mail: HTUxcstancik@fch.vutbr.czUTH Úkolem této práce
Více2. Bodové a intervalové rozložení četností
. Bodové a intervalové rozložení četností (Jak získat informace z datového souboru?) Po prostudování této kapitoly budete umět: konstruovat diagramy znázorňující rozložení četností vytvářet tabulky četností
Více2 ) 4, Φ 1 (1 0,005)
Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje
Více[1] LU rozklad A = L U
[1] LU rozklad A = L U někdy je třeba prohodit sloupce/řádky a) lurozklad, 8, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p. d. 4/2010 Terminologie BI-LIN, lurozklad,
Více11. Soustava lineárních rovnic - adiční metoda
@127 11. Soustava lineárních rovnic - adiční metoda Adiční neboli sčítací metoda spočívá ve dvou vlastnostech řešení soustavy rovnic: vynásobením libovolné rovnice nenulovým číslem se řešení nezmění, součtem
VícePearsonův korelační koeficient
I I.I Pearsonův korelační koeficient Úvod Předpokládejme, že náhodně vybereme n objektů (nebo osob) ze zkoumané populace. Často se stává, že na každém z objektů měříme ne pouze jednu, ale několik kvantitativních
Více1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
VíceMULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE
OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 PŘEDNÁŠKA 5 MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 Multiriteriální rozhodování
VíceČást 2 - Řešené příklady do cvičení
Moravská vysoká škola Olomouc, o.p.s., Ústav informatiky a aplikované matematiky METODY MULTIKRITERIÁLNÍHO ROZHODOVANÍ PRO MANAŽERY Část 2 - Řešené příklady do cvičení Prof. Dr. Ing. Miroslav Pokorný PhDr.
VíceProtokol č. 1. Tloušťková struktura. Zadání:
Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále
VíceKOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
Více1 Řešení soustav lineárních rovnic
1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty
VíceINVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška
Více1 Co jsou lineární kódy
1 Žádný záznam informace a žádný přenos dat není absolutně odolný vůči chybám. Někdy je riziko poškození zanedbatelné, v mnoha případech je však zaznamenaná a přenášená informace jištěna přidáním dat,
VíceOperační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry.
Operační výzkum Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky
VíceVícekriteriální metody hodnocení
Cíl kapitol Vícekriteriální metod hodnocení Jana Soukopová Předchozí uvedené obecné finanční a nákladově-výstupové metod hodnocení veřejných projektů patří mezi klasické metod rozhodování, kde rozhodující
VíceÚstav technicko-technologický. Obhajoba diplomové práce
Vysoká škola technická a ekonomická v Českých Budějovicích Ústav technicko-technologický Obhajoba diplomové práce Téma: Optimalizace skladového hospodářství ve výrobním podniku KOH-I-NOOR Mladá Vožice
VíceV roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech:
Příklad 1 V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech: Skupina Počet ženichů Počet nevěst 15-19 let 11 30 20-24 let 166 272 25-29 let 191
VíceAlgoritmus pro generování normálních magických čtverců
1.1 Úvod Algoritmus pro generování normálních magických čtverců Naprogramoval jsem v Matlabu funkci, která dokáže vypočítat magický čtverec libovolného přípustného rozměru. Za pomocí tří algoritmů, které
VíceSimplexová metoda. Simplexová tabulka: Záhlaví (účelová funkce) A ~ b r βi. z j c j. z r
Simplexová metoda Simplexová metoda, je jedním ze způsobů, jak řešit úlohy lineárního programování. Tato metoda vede k cíly, nelezení optimálního řešení, během konečného počtu kroků, pokud se při prvním
Více