Lineární a adaptivní zpracování dat. 8. Kumulační zvýrazňování signálů v šumu 2
|
|
- Dominika Šmídová
- před 7 lety
- Počet zobrazení:
Transkript
1 Lneární a adaptvní zpracování dat 8. Kumulační zvýrazňování sgnálů v šumu 2 Danel Schwarz Investce do rozvoe vzdělávání
2 Opakování Kumulační zpracování sgnálů co to e, k čemu to e? Prncp metody? Nutné podmínky pro úspěch metody? Jak zabezpečt koherenc repetc? Jakou velčnou vyadřueme úspěch kumulačního zpracování? Jaký e vztah pro tuto velčnu? Co se děe př nesplnění podmínek? Jak ověřt, že realzace šumu v ednotlvých repetcích nesou korelovány? Kumulace s rovnoměrným vaham a pevným oknem prncp, dynamka K?
3 Kumulace s pevným oknem + / - Pevné okno vyhovue, de l o ednorázové získání očštěného repetčního sgnálu. Po zpracování M repetc e nutno vynulovat regstry (pamět) kumulačních kanálů. M M = 30 M K P K U V plné kvaltě e sgnál k dspozc pouze ednou za M repetc. Sledování pomalých změn v sgnálu e omezeno.
4 Kumulace s klouzavým oknem Po přetí M repetc nedode k nulování kumulačních kanálů. V regstrech/pamětích e vždy zahrnuto posledních M repetc. a = M 0,, = 0,,..., M M y (, M ) max = M ( kt ). ( ) ( ) x lt = 0, = 0,,2,...
5 Kumulace s klouzavým oknem Po přetí M repetc nedode k nulování kumulačních kanálů. V regstrech/pamětích e vždy zahrnuto posledních M repetc. a = M 0,, = 0,,..., M M y (, M ) max = M ( kt ). ( ) ( ) x lt = 0, = 0,,2,...
6 Kumulace s klouzavým oknem Po přetí M repetc nedode k nulování kumulačních kanálů. V regstrech e vždy zahrnuto posledních M repetc.
7 Kumulace s klouzavým oknem Po přetí M repetc nedode k nulování kumulačních kanálů. V regstrech e vždy zahrnuto posledních M repetc. Zlepšení SNR M 2M 3M Počet opakování
8 Exponencální kumulace Význam předchozích repetc e tím menší, čím sou starší. Postupné zapomínání starších hodnot.
9 Exponencální kumulace Význam předchozích repetc e tím menší, čím sou starší. Postupné zapomínání starších hodnot. Jde nám stále o vyhlazování prováděné v repetčních časových řadách!
10 Exponencální kumulace Význam předchozích repetc e tím menší, čím sou starší. Postupné zapomínání starších hodnot. a ( 0, ), 0,,2,... =, = y [ ] ( kt ) =. ( ) ( ) x lt = 0, = 0,,2,...
11 Exponencální kumulace Význam předchozích repetc e tím menší, čím sou starší. Postupné zapomínání starších hodnot. + a = = =?... = 0 = 0
12 Exponencální kumulace Význam předchozích repetc e tím menší, čím sou starší. Postupné zapomínání starších hodnot. + a = = = = 0 = 0
13 Exponencální kumulace Průměrné zlepšení poměru sgnálu k šumu: a a K U + = + + = = + + = = 0 2 0
14 Exponencální kumulace a a K U + = + + = = + + = = = + = = = = a 0 0 Výsledná ampltuda sgnálu zlepšení SNR závsí na zpětnovazebním koefcentu.
15 Exponencální kumulace Výsledná ampltuda sgnálu zlepšení SNR závsí na zpětnovazebním koefcentu...?...
16 Exponencální kumulace Výsledná ampltuda sgnálu zlepšení SNR závsí na zpětnovazebním koefcentu. Čím blíže e >, tím vyšší sou oba parametry, ale tím déle trvá přblížení k ustálenému stavu.
17 Exponencální kumulace Výsledná ampltuda sgnálu zlepšení SNR závsí na zpětnovazebním koefcentu. Čím blíže e >, tím vyšší sou oba parametry, ale tím déle trvá přblížení k ustálenému stavu. Rovnoměrná kumulace s klouzavým oknem slouží ako normál M = + = M M +
18 7. cvčení. Na předloženém repetčním sgnálu odhalte tvar repetce pomocí kumulace s klouzavým oknem a rovnoměrným váham a dále pomocí kumulace s exponencálním váham. Volte různá a srovnete výsledné průběhy repetc. 2. Vykreslete pomocí Matlabu srovnání dynamckých vlastností exponencální kumulace pro = a rovnoměrné kumulace s klouzavým oknem pro M=00. Určete počet repetc, které sou nutné k tomu, aby zlepšení poměru sgnálu k šumu bylo stené u metody s klouzavým oknem a u metody s exponencálním váham. 3. Vyhlazenou časovou řadu z příkladu č. zperodzute a přdete šum (dodá učtel). Ověřte, zda na výslednou směs budou fungovat kumulační technky a pokud ano, tak prostřednctvím lbovolné metody vypočtěte znovu ednu vyhlazenou repetc časové řady.
19 7. cvčení. příklad
20 7. cvčení. příklad
21 7. cvčení 2. příklad
22 7. cvčení 2. příklad
23 7. cvčení 3. příklad Předložený soubor nose.mat obsahue tř časové řady předtavuící různé typy rušení: whtenose, colornose, generalnose
24 7. cvčení 3. příklad generalnose e sce generován centrovaným procesem (střední hodnota celé řady e nula), ale už ze samotného průběhu se dá usoudt na nestaconartu této řady. Přestože tato rušvá složka vypadá ako nemenší, bude eí vlv na výsledek kumulačního zvýraznění sgnálu v šumu nehorší, vz autokorelační funkce všech rušvých složek
25 7. cvčení 3. příklad
26 7. cvčení 3. příklad
27 7. cvčení 3. příklad
28 7. cvčení 3. příklad
Vícekriteriální rozhodování. Typy kritérií
Vícekrterální rozhodování Zabývá se hodnocením varant podle několka krtérí, přčemž varanta hodnocená podle ednoho krtéra zpravdla nebývá nelépe hodnocená podle krtéra ného. Metody vícekrterálního rozhodování
SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ
bstrakt SIMULCE ŘÍZENÍ PNEUMTICKÉHO SERVOPOHONU POMOCÍ PROGRMU MTL SIMULINK Petr NOSKIEVIČ Petr JÁNIŠ Katedra automatzační technky a řízení Fakulta stroní VŠ-TU Ostrava Příspěvek popsue sestavení matematckého
Číslicové zpracování a analýza signálů (BCZA) Spektrální analýza signálů
Číslcové zpracování a analýza sgnálů (BCZA) Spektrální analýza sgnálů 5. Spektrální analýza sgnálů 5. Spektrální analýza determnstckých sgnálů 5.. Dskrétní spektrální analýza perodckých sgnálů 5..2 Dskrétní
ANALÝZA ROZPTYLU (Analysis of Variance ANOVA)
NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než
ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2
ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB Vladmír Hanta 1 Ivan Gros 2 Vysoká škola chemcko-technologcká Praha 1 Ústav počítačové a řídcí technky 2 Ústav
MODELOVÁNÍ A SIMULACE
MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký
Cvičení 13 Vícekriteriální hodnocení variant a vícekriteriální programování
Cvčení 3 Vícekrterální hodnocení varant a vícekrterální programování Vícekrterální rozhodování ) vícekrterální hodnocení varant konkrétní výčet, seznam varant ) vícekrterální programování varanty ve formě
Využití logistické regrese pro hodnocení omaku
Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost
Úloha syntézy čtyřčlenného rovinného mechanismu
Úloha syntézy čtyřčlenného rovnného mechansmu Zracoval: Jaroslav Beran Pracovště: Techncká unverzta v Lberc katedra textlních a ednoúčelových stroů Tento materál vznkl ako součást roektu In-TECH 2, který
Přednášky část 4 Analýza provozních zatížení a hypotézy kumulace poškození, příklady. Milan Růžička
Přednášky část 4 Analýza provozních zatížení a hypotézy kumulace poškození, příklady Mlan Růžčka mechanka.fs.cvut.cz mlan.ruzcka@fs.cvut.cz Analýza dynamckých zatížení Harmoncké zatížení x(t) přes soubor
SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.
SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí
REGRESNÍ ANALÝZA. 13. cvičení
REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká
Chemické reaktory. Chemické reaktory. Mikrokinetika a Makrokinetika. Rychlost vzniku složky reakcí. Rychlost reakce
» Počet fází» homogenní» heteogenní (víefázové)» Chemká eake» nekatalytké» katalytké» boeaktoy (fementoy)» Chaakte toku» deálně míhané» s pístovým tokem» s nedokonalým míháním Mkoknetka a Makoknetka» Výměna
Nerovnovážná termodynamika
erovnovážná termodynamka Fázový prostor Dmenze 6 Bod ve ázovém prostoru ( phase pont ) ednoznačně určue dynamku systému pohybue se Soubor podmnožna ázového prostoru Hustota bodů ve ázovém prostoru: rakce
ů š š ů Ú ů š É š š ů ť É Ž ů Í ó ň š š É Ú š Ů Ž Í š ů ňš Í ů ů š Š Š ó ů Í Ž Č š š š Č Č š Ů Í Í Í Í š š š Ž Ů š Š ů Ů Í Š Š š Č Ž ů Ž š Ú ó É Ž É Ú Ž Í š Í Ú ů Ú š Ú š Ú ů Ž Ú ů Ž š š š ů Í Ů š Ů Ú
Dopravní plánování a modelování (11 DOPM )
Department of Appled Mathematcs Faculty of ransportaton Scences Czech echncal Unversty n Prague Dopravní plánování a modelování (11 DOPM ) Lekce 5: FSM: rp dstrbuton Prof. Ing. Ondře Přbyl, Ph.D. Ing.
Metody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce
. meznárodní konference Řízení a modelování fnančních rzk Ostrava VŠB-TU Ostrava, Ekonomcká fakulta, katedra Fnancí 8. - 9. září 200 Metody vícekrterálního hodnocení varant a ech využtí př výběru produktu
ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN
ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší
9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese
cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování
Teorie her a ekonomické rozhodování. 10. Rozhodování při jistotě, riziku a neurčitosti
Teore her a ekonomcké rozhodování 10. Rozhodování př stotě, rzku a neurčtost 10.1 Jednokrterální dskrétní model Jednokrterální model rozhodování: f a ) max a Aa, a,..., a ( 1 2 f krterální funkce (zsk,
ČASOVÁ KOORDINACE SPOJŮ VEŘEJNÉ HROMADNÉ DOPRAVY NA ÚSECÍCH DOPRAVNÍ SÍTĚ
ČASOVÁ KOORDINACE SPOJŮ VEŘEJNÉ HROMADNÉ DOPRAVY NA ÚSECÍCH DOPRAVNÍ SÍTĚ THE TIME COORDINATION OF PUBLIC MASS TRANSPORT ON SECTIONS OF THE TRANSPORT NETWORK Petr Kozel 1 Anotace: Předložený příspěvek
Digitální přenosové systémy a účastnické přípojky ADSL
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechncká LABORATORNÍ ÚLOHA Č. 2 Dgtální přenosové systémy a účastncké přípojky ADSL Vypracoval: Jan HLÍDEK & Lukáš TULACH V rámc předmětu: Telekomunkační
Spojité regulátory - 1 -
Spojté regulátory - 1 - SPOJIÉ EGULÁOY Nespojté regulátory mají většnou jednoduchou konstrukc a jsou levné, ale jsou nevhodné tím, že neudržují regulovanou velčnu přesně na žádané hodnotě, neboť regulovaná
MĚRENÍ V ELEKTROTECHNICE
EAICKÉ OKHY ĚENÍ V ELEKOECHNICE. řesnost měření. Chyby analogových a číslcových měřcích přístrojů. Chyby nepřímých a opakovaných měření. rmární etalon napětí. Zdroje referenčních napětí. rmární etalon
1. Úvod. Cílem teorie her je popsat situaci, která nás zajímá, jako hru. Klasickým případem
Kvaternon 2/204, 79 98 79 MATICOVÉ HRY V INŽENÝRSTVÍ JAROSLAV HRDINA a PETR VAŠÍK Abstrakt. Následuící text pokrývá eden z cyklů přednášek předmětu Aplkovaná algebra pro nženýry (0AA) na FSI VUT. Text
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d
Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím
Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů
Agregace - úvod 1 Agregace vzáemné spoování destablzovaných částc ve větší cely, případně ech adheze na povrchu ných materálů Částce mohou agregovat, poud vyazuí adhezní schopnost a poud e umožněno ech
Bořka Leitla Bolometrie na tokamaku GOLEM
Posudek vedoucího bakalářské práce Bořka Letla Bolometre na tokamaku GOLEM Vedoucí práce: Ing. Vojtěch Svoboda, CSc Bořek Letl vpracoval svoj bakalářskou prác na tokamaku GOLEM, jehož rozvoj je závslý
11MAMY LS 2017/2018. Úvod do Matlabu. 21. února Skupina 01. reseni2.m a tak dále + M souborem zadané funkce z příkladu 3 + souborem skupina.
11MAMY LS 2017/2018 Cvičení č. 2: 21. 2. 2018 Úvod do Matlabu. Jan Přikryl 21. února 2018 Po skupinách, na které jste se doufám rozdělili samostatně včera, vyřešte tak, jak nejlépe svedete, níže uvedená
9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně
9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky
Simulační metody hromadné obsluhy
Smulační metody hromadné osluhy Systém m a model vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělt fyzckou neo myšlenkovou hrancí Model Zjednodušený, astraktní nástroj používaný pro
NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT
NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT J. Tuma Summary: The paper deals wth dfferentaton and ntegraton of sampled tme sgnals n the frequency doman usng the FFT and
Stanovení nejistot výsledků zkoušky přesnosti/kalibrace vodorovných a svislých lineárních délkoměrů. Štěpánková, M.; Pročková, D.; Landsmann, M.
Stanovení nestot výsledků zkošky přesnost/kalbrace vodorovných a svslých lneárních délkoměrů. Štěpánková, M.; Pročková, D.; Landsmann, M. Klíčová slova: zdro nestoty, standardní nestota, rozšířená nestota,
Aplikované chemické procesy
Aplkované chemcké pocesy Blance eaktoů Chemcký eakto Základní ysy chemckého sou učovány těmto faktoy: způsob přvádění výchozích látek a odvádění poduktů, způsob povádění eakce (kontnuální nebo dskontnuální)
8. STATISTICKÝ SOUBOR SE DVĚMA ARGUMENTY
8. STATISTICKÝ SOUBOR SE DVĚMA ARGUMETY Stattcký oubor e dvěma argument Průvodce tudem Vužeme znalotí z předchozí kaptol, která poednávala o tattckém ouboru edním argumentem a rozšíříme e. Předpokládané
EKONOMICKO-MATEMATICKÉ METODY
. přednáška EKONOMICKO-MATEMATICKÉ METODY Ekonomcko matematcké metody (též se užívá název operační analýza) sou metody s matematckým základem, využívané především v ekonomcké oblast, v oblast řízení a
Posuzování dynamiky pohybu drážních vozidel ze záznamu jejich jízdy
Posuzování dynamky pohybu drážních vozdel ze záznamu jejch jízdy Ing. Jaromír Šroký, Ph.D. ŠB-Techncká unverzta Ostrava, Fakulta strojní, Insttut dopravy, tel: +40 597 34 375, jaromr.sroky@vsb.cz Úvod
Základy počítačové grafiky
Základy počítačové gafky Pezentace přednášek Ústav počítačové gafky a multmédí Téma přednášky Radozta Motto Světlo se šíří podle fyzkálních zákonů! Př ealstcké zobazení vtuálních počítačových scén e poto
PROBLEMATIKA INTELIGENTNÍHO AUTOMATICKÉHO
PROBLEMATIKA INTELIGENTNÍHO AUTOMATICKÉHO MAPOVÁNÍ WEBOVÝCH STRÁNEK ŘIMNÁČ MARTIN 1, ŠUSTA RICHARD 2, ŽIVNŮSTKA JIŘÍ 3 Katedra řídcí technky, ČVUT-FEL, Techncká 2, Praha 6, tel. +42 224 357 359, fax. +
Pružnost a plasticita II
Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Kresa Ph.D. Katera stavební mechank Řešení nosných stěn metoou sítí 3 Řešení stěn metoou sítí metoa sítí (metoa konečných ferencí) těnová
- Pokud máme na množině V zvoleno pevné očíslování vrcholů, můžeme váhovou funkci jednoznačně popsat. Symbolem ( i)
DSM2 C 8 Problém neratší cesty Ohodnocený orientoaný graf: - Definice: Ohodnoceným orientoaným grafem na množině rcholů V = { 1, 2,, n} nazýáme obet G = V, w, de zobrazení w : V V R { } se nazýá áhoá funce
Evaluation of Interferograms Using a Fourier-Transform Method
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra fzk Vhodnocování nterferogramů metodou Fourerov transformace Evaluaton of Interferograms Usng a Fourer-Transform Method dplomová práce Studní
DOBA DOZVUKU V MÍSTNOSTI
DOBA DOZVUKU V MÍSTNOSTI 1. Úvod Po zapnutí zdroje zvuku v místnost trvá jstou krátkou dobu (řádově vteřny až zlomky vteřn), než dojde k ustálení zvukového pole. Často je v takových případech možné skutečné
4 Parametry jízdy kolejových vozidel
4 Parametry jízdy kolejových vozdel Př zkoumání jízdy železnčních vozdel zjšťujeme většnou tř základní charakterstcké parametry jejch pohybu. Těmto charakterstkam jsou: a) průběh rychlost vozdel - tachogram,
Rekonstrukce křivek a ploch metodou postupné evoluce
Rekonstrukce křivek a ploch metodou postupné evoluce Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz Přehled Evoluce křivek princip evoluce použití evoluce křivky ve
4EK211 Základy ekonometrie
4EK211 Základy ekonometre Specální případy použtí MNČ Cvčení 8 Zuzana Dlouhá Specální případy použtí MNČ cvčení 1 7 = ekonometrcký model, který byl lneární v proměnných v parametrech MNČ můžeme použít,
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE MASARYKŮV ÚSTAV VYŠŠÍCH STUDIÍ. Katedra inženýrské pedagogiky BAKALÁŘSKÁ PRÁCE
ČESKÉ VYSOKÉ ČENÍ TEHNKÉ V PZE MSYKŮV ÚSTV VYŠŠÍH STDÍ Katedra inženýrské pedagogiky KÁŘSKÁ PÁE Praha 9 c. Pavel Řezníček ČESKÉ VYSOKÉ ČENÍ TEHNKÉ V PZE MSYKŮV ÚSTV VYŠŠÍH STDÍ Katedra inženýrské pedagogiky
26/04/2016. PROGRAM PŘEDNÁŠEK letní 2015/2016
133 BK5C BETONOVÉ KONSTRUKCE 5C Číslo Datum PROGRAM PŘEDNÁŠEK letní 2015/2016 Téma přednášk 1 23.2. Prncp předpjatého betonu, hstore, materál Poznámk 2 1.3. Technologe předem předpjatého betonu Výklad
HUDEBNÍ EFEKT DISTORTION VYUŽÍVAJÍCÍ ZPRACOVÁNÍ PŘÍRŮSTKŮ SIGNÁLŮ ČASOVĚ
HUDEBÍ EFEKT DISTORTIO VYUŽÍVAJÍCÍ ZPRACOVÁÍ PŘÍRŮSTKŮ SIGÁLŮ ČASOVĚ VARIATÍM SYSTÉMEM Ing. Jaromír Mačák Ústav telekomunkací, FEKT VUT, Purkyňova 118, Brno Emal: xmacak04@stud.feec.vutbr.cz Hudební efekt
Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny
0.05 0.0 0.05 0.0 0.005 Nomnální napětí v pásnc Std Mean 40 60 80 00 0 40 60 Std Téma 5: Parametrcká rozdělení pravděpodobnost spojté náhodné velčn Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí
Aplikace simulačních metod ve spolehlivosti
XXVI. ASR '2001 Semnar, Instruments and Control, Ostrava, Aprl 26-27, 2001 Paper 40 Aplkace smulačních metod ve spolehlvost MARTINEK, Vlastml Ing., Ústav automatzace a nformatky, FSI VUT v Brně, Techncká
A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21
Příklad 1 Soutěž o nelepší akost výrobků obeslali čtyři výrobci A, B, C, D celkem 26 výrobky. Porota sestavila toto pořadí (uveden pouze původ výrobku od nelepšího k nehoršímu): Pořadí 1 2 3 4 5 6 7 8
4EK211 Základy ekonometrie
4EK211 Základy ekonometre Specální případy použtí MNČ Cvčení 9 Zuzana Dlouhá Specální případy použtí MNČ cvčení 1 8 = ekonometrcký model, který byl lneární v proměnných v parametrech MNČ můžeme použít,
27 Systémy s více vstupy a výstupy
7 Systémy s více vstupy a výstupy Mchael Šebek Automatcké řízení 017 4-5-17 Stavový model MIMO systému Automatcké řízení - Kybernetka a robotka Má obecně m vstupů p výstupů x () t = Ax() t + Bu() t y()
LOGICKÉ OBVODY J I Ř Í K A L O U S E K
LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
STŘÍDAVÝ ELEKTRICKÝ PROUD Výkon střídavého proudu TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
STŘÍDAVÝ ELEKTRKÝ PROD Výkon střídavého proudu TENTO PROJEKT JE SPOLFNANOVÁN EVROPSKÝM SOÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPBLKY. VÝKON A PRÁE STŘÍDAVÉHO PROD = L - nebo - L Pokud strany troúhelníku
1. Nejkratší cesta v grafu
08. Nekratší cesty. Úloha obchodního cestuícího. Heurstky a aproxmační algortmy. Metoda dynamckého programování. Problém batohu. Pseudopolynomální algortmy 1. Nekratší cesta v grafu - sled e lbovolná posloupnost
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina
3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních
Rovinný svazek sil. Lze odvodit z obecného prostorového svazku sil vyloučením jedné dimenze. =F i. =F ix. F 2x. e 2. = F 1x. F ix. n Fi sin i.
Rovnný svazek sl Lze odvodt z obecného prostorového svazku sl vloučením edné dmenze = cos cos =sn e 2 = cos = sn = e 1 e 2 e 1 Určení výslednce r n r = =1 r e 1 r e 2 =...e 1...e 2 : r = n = n =1 =1 n
SEMESTRÁLNÍ PRÁCE Z X37SAS Zadání č. 7
SEMESTRÁLNÍ PRÁCE Z X37SAS Zadání č. 7 Daniel Tureček St-lichý týden, 9:15 Zadání Určete periodu signálu s(k), určete stejnosměrnou složku, výkon, autokorelační funkci. Záznam signálu je v souboru persig2.
MANAŽERSKÉ ROZHODOVÁNÍ
MANAŽERSKÉ ROZHODOVÁNÍ Téma 14 POSUZOVÁNÍ A HODNOCENÍ VARIANT doc. Ing. Monka MOTYČKOVÁ (Grasseová), Ph.D. Unverzta obrany Fakulta ekonomka a managementu Katedra voenského managementu a taktky Kouncova
Mechatronické systémy s elektronicky komutovanými motory
Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current
ŘÍZENÍ OTÁČEK ASYNCHRONNÍHO MOTORU
ŘÍZENÍ OTÁČEK AYNCHONNÍHO MOTOU BEZ POUŽITÍ MECHANICKÉHO ČIDLA YCHLOTI Petr Kadaník ČVUT FEL Praha, Techncká 2, Praha 6 Katedra elektrckých pohonů a trakce e-mal: kadank@feld.cvut.cz ANOTACE V tomto příspěvku
2. Najděte funkce, které vedou s těmto soustavám normálních rovnic
Zadání. Sestavte soustavu normálních rovnc ro funkce b b a) b + + b) b b +. Najděte funkce, které vedou s těmto soustavám normálních rovnc nb a) nb. Z dat v tabulce 99 4 4 b) určete a) rovnc regresní funkce
Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První
Numercká matematka 1 Parabolcké rovnce Budeme se zabývat rovncí t = D u x (1) tato rovnce určuje chování funkce u(t, x), která závsí na dvou proměnných. První proměnná t mívá význam času, druhá x bývá
7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ
7. ZÁKADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7.. SPOJITÉ SYSTÉMY Téměř všechny fyzálně realzovatelné spojté lneární systémy (romě systémů s dopravním zpožděním lze vytvořt z prvů tří typů: proporconálních členů
Tepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má
Tepelná kapacta C x = C V = ( ) dq ( ) du Dulong-Pettovo pravdlo: U = 3kT N C V = 3kN x V = T ( ) ds x Tepelná kapacta mřížky Osclátor s kvantovanou energí E n = ( n + 2) hν má střední hodnotu energe (po
Metoda konečných prvků. Robert Zemčík
Metod konečných prvků Robert Zemčík Zápdočeská unverzt v Plzn 2014 1 Rovnce mtemtcké teore pružnost Předpokládáme homogenní, zotropní lneární mterál, mlé deformce. Jednoosá nptost Cuchyho podmínky rovnováhy
8 ANALÝZA ČASOVÝCH ŘAD SEZÓNNÍ SLOŽKA
8 ANALÝZA ČASOVÝCH ŘAD SEZÓNNÍ SLOŽKA RYCHLÝ NÁHLED KAPITOLY Následující kapitolou pokračujeme v tématu analýza časových řad a blíže se budeme zabývat problematikou jich pravidelné kolísavost, která je
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOS A SAISIKA Regulární systém hustot Vychází se z: -,, P - pravděpodobnostní prostor -, R neprázdná množna parametrů - X X 1,, náhodný vektor s sdruženou hustotou X n nebo s sdruženou pravděpodobnostní
u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo
Metoda sítí základní schémata h... krok sítě ve směru x, tj. h = x x q... krok sítě ve směru y, tj. q = y j y j τ... krok ve směru t, tj. τ = j... hodnota přblžného řešení v uzlu (x,y j ) (Possonova rovnce)
Highspeed Synchronous Motor Torque Control
. Regulace momentu vysokootáčkového synchronního motoru Jaroslav Novák, Martn Novák, ČVUT v Praze, Fakulta strojní, Zdeněk Čeřovský, ČVUT v Praze, Fakulta elektrotechncká Hghspeed Synchronous Motor Torque
Aplikace Li-Ma metody na scintigrafické vyšetření příštítných tělísek. P. Karhan, P. Fiala, J. Ptáček
Aplkace L-Ma metody na scntgrafcké vyšetření příštítných tělísek P. Karhan, P. Fala, J. Ptáček Vyšetření příštítných tělísek dagnostka hyperparatyreózy: lokalzace tkáně příštítných tělísek neexstence radofarmaka
ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)
Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.
Logické obvody Kombinační a sekvenční stavební bloky
MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY Část důležtá něco jen pro zájemce (Označeno???) Logcké obvody Kombnační a sekvenční stavební bloky České vysoké učení techncké Fakulta
popsat činnost základních zapojení převodníků U-f a f-u samostatně změřit zadanou úlohu
7. Převodníky - f, f - Čas ke studu: 5 mnut Cíl Po prostudování tohoto odstavce budete umět popsat čnnost základních zapojení převodníků -f a f- samostatně změřt zadanou úlohu Výklad 7.. Převodníky - f
Obsah přednášky 1. Bayesův teorém 6. Naivní Bayesovský klasifikátor (NBK)
Obsah přednášky 1. Bayesův teorém 2. Brutální Bayesovský klasfkátor (BBK) 3. Mamální aposterorní pravděpodobnost (MA) 4. Optmální Bayesovský klasfkátor (OBK) 5. Gbbsův alortmus (GA) 6. Navní Bayesovský
ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl
ČVUT FEL X16FIM Fnanční Management Semestrální projekt Téma: Optmalzace zásobování teplem Vypracoval: Marek Handl Datum: květen 2008 Formulace úlohy Pro novou výstavbu 100 bytových jednotek je třeba zvolt
0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí
Program Sorpce1.m psaný v prostředí Matlabu slouží k vyhlazování naměřených sorpčních křivek a výpočtu difuzních koeficientů. Kromě standardního Matlabu vyžaduje ještě Matlab Signal Processing Toolbox
Flexibilní ovládání jediným stisknutím tlačítka
37 39 40 41 Ttanum Trend Prvky vntřní výbavy Zavazadlový prostor Síť pro oddělení zavazadlového prostoru (za 2. řadou sedadel) Mříž pro oddělení zavazadlového prostoru (za 1. řadou sedadel) Oboustranná
Neřešené příklady k procvičení
Vysoká škola báňská - Techncká unverzta Ostrava Fakulta elektrotechnky a nformatky Katedra aplkované matematky Neřešené příklady k procvčení Lenka Šmonová Ostrava, 2006 Následující sbírka neřešených příkladů
3 Základní modely reaktorů
3 Základní modely reaktorů Rovnce popsující chování reakční směs v reaktoru (v čase a prostoru) vycházejí z blančních rovnc pro hmotu, energ a hybnost. Blanc lze formulovat pro extenzvní velčnu B v obecném
1 Elektrotechnika 1. 9:00 hod. G 0, 25
A 9: hod. Elektrotechnka a) Napětí stejnosměrného zdroje naprázdno je = 5 V. Př proudu A je svorkové napětí V. Vytvořte napěťový a proudový model tohoto reálného zdroje. b) Pomocí přepočtu napěťových zdrojů
Dopravní plánování a modelování (11 DOPM )
Department of Appled Mathematcs Faculty of Transportaton cences Czech Techncal Unversty n Prague Dopravní plánování a modelování (11 DOPM ) Lekce 4: FM: Trp generaton Doc. Ing. Ondře Přbyl, Ph.D. Ing.
POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ
POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ ELEKTRICKÝ POTENCIÁL Elektrcká potencální energe Newtonův zákon pro gravtační sílu mm F = G r 1 2 2 Coulombův zákon pro elektrostatckou sílu QQ F = k r 1 2
Reprezentace přirozených čísel ve Fibonacciho soustavě František Maňák, FJFI ČVUT, 2005
Reprezentace přirozených čísel ve ibonacciho soustavě rantiše Maňá, JI ČVUT, 2005 Úvod Ja víme, přirozená čísla lze vyádřit různými způsoby Nečastěi zápisu čísel používáme soustavu desítovou, ale umíme
Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
Struktura a architektura počítačů
Struktura a archtektura počítačů Logcké obvody - sekvenční Formy popsu, konečný automat Příklady návrhu České vysoké učení techncké Fakulta elektrotechncká Ver..2 J. Zděnek 24 Logcký sekvenční obvod Logcký
Staré mapy TEMAP - elearning
Staré mapy TEMAP - elearnng Modul 4 Kartometrcké analýzy Ing. Markéta Potůčková, Ph.D., 2013 Přírodovědecká fakulta UK v Praze Katedra aplkované geonformatky a kartografe Kartometre a kartometrcké vlastnost
INŽENÝRSKÁ MECHANIKA 2005
INŽENÝRSKÁ MECHANIKA 2005 NÁRODNÍ KONFERENCE s meznárodní ú astí Svratka, eská republka, 9. - 12. kv tna 2005 SIMULATION OF STABILITY LOSS OF VON MISSES TRUSS IN THE STATE OF UNSYMMETRICAL STRESS P. Frantík
Časové řady, typy trendových funkcí a odhady trendů
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces
Časové řady, typy trendových funkcí a odhady trendů
Časové řady, typy trendových funkcí a odhady trendů Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Jiří Neubauer (Katedra ekonometrie UO Brno) Časové
9 PŘEDNÁŠKA 9: Heisenbergovy relace neurčitosti, důsledky. Tunelový jev. Shrnutí probrané látky, příprava na zkoušku.
9 PŘEDNÁŠKA 9: Hesenbergovy relace neurčtost, důsledky. Tunelový jev. Shrnutí probrané látky, příprava na zkoušku. Hesenbergovy relace neurčtost(tnqu.5., SKM) Jednoduchý pohled na věc: Vždy exstuje určtá
Předpokládáme vlny, které jsou časově nestabilní z hlediska fáze. Jako model zvolíme vlnu kdy se fáze mění skokem, ale je konstantní během doby
. Koherence.. Časová koherence.. Souvslost časově proměnného sgnálu se spektrální závslostí.3. nterference nemonochromatckého záření.4. Fourerova spektroskope.5. Prostorová koherence. Koherence Koherence
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY BAKALÁŘSKÁ PRÁCE. 2013 Radka Luštincová
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY BAKALÁŘSKÁ PRÁCE 2013 Radka Luštncová VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Název bakalářské práce: Aplkace řezných
Měření optických vlastností materiálů
E Měření optických vlastností materiálů Úkoly : 1. Určete spektrální propustnost vybraných materiálů různých typů stavebních skel a optických filtrů pomocí spektrofotometru 2. Určete spektrální odrazivost
P i= Od každého obrázku sady odečteme průměrný obraz (provedeme centrování dat): (2)
METODA PCA A JEJÍ IMPLEMENTACE V JAZYCE C++ Lukáš Frtsch, Ing. ČVUT v Praze, Fakulta elektrotechncká, Katedra radoelektronky Abstrakt Metoda PCA (Prncpal Coponent Analyss- analýza hlavních koponent) ůže