PPEL_3_cviceni_MATLAB.txt. % zadat 6 hodnot mezi cisly 2 a 8 % linspace (pocatek, konec, pocet bodu)
|
|
- Radim Doležal
- před 6 lety
- Počet zobrazení:
Transkript
1 % % 3. cvičení z předmětu PPEL - MATLAB % % Lenka Šroubová, ZČU, FEL, KTE % lsroubov@kte.zcu.cz % % % Práce s vektory % :2:8 % vektor obsahujici radu cisel od 2 do 8 s krokem 2 % [pocatek : krok : konec] linspace(2,8,6) % jiny zpusob utvareni ciselne rady, potrebujeme-li % zadat 6 hodnot mezi cisly 2 a 8 % linspace (pocatek, konec, pocet bodu) [2:.2:8] % stejny vektor vektor obsahujici radu cisel od 2 do 8 % s krokem.2 vytvoreny jako [pocatek : krok : konec] % nekdy je obtizne zjistit krok a je vhodne vyuzit % funkci linspace (kde se krok urci sam z delky rady) [2:((8-2)/5):8] % stejny vektor vektor obsahujici radu cisel od 2 do 8 % s krokem.2 % krok.2 muze byt zadan i matematickym vyrazem linspace(2,8,4) % utvoreni ciselne rady, potrebujeme-li % zadat 4 hodnoty mezi cisly 2 a 8 % linspace (pocatek, konec, pocet bodu) linspace(,,6) % vytvoreni rady s 6 hodnotami mezi cisly a % slinearnim delenim % linspace (pocatek, konec, pocet bodu) logspace(,,6) % vytvoreni rady s logaritmickym delenim % od ^, tj. od do, tj. ^ v 6 bodech pomoci % funkce logspace, logspace (^, ^, pocet bodu) % podobna funkce jako linspace logspace(,2,6) % vytvoreni rady s logaritmickym delenim % od do ^2 v 6 bodech pomoci % funkce logspace, logspace (^, ^2, pocet bodu) Strana
2 logspace(,3,5) % vytvoreni rady s logaritmickym delenim % od do ^3 v 5 bodech pomoci funkce logspace, % logspace (^, ^3, pocet bodu) a=[:5] % zadání vektoru a a = sum(a) % součet hodnot všech prvků ve vektoru a 5 cumsum(a) % kumulativní součet - součet prvků se všemi předchůdci prod(a) 2 cumprod(a) % součin hodnot všech prvků ve vektoru a % kumulativní součin - součin prvků se všemi předchůdci diff(a) % diference - rozdíly mezi sousedními prvky vektoru a b=[-3,,5,4,9] % zadání vektoru b b = diff(b) % diference - rozdíly mezi sousedními prvky vektoru b c=3+4i; real(c) % zadání komplexního čísla % reálná část komplexního čísla 3 imag(c) % imaginární část komplexního čísla 4 d=conj(c) % komplexně sdružené číslo k číslu c d = i % % Práce s maticemi % A=[,2;3,4] A = % matice A má 2 řádky a 2 sloupce Strana 2
3 A' % transpozice matice A (kdyby A obsahovala komplexní čísla, % vznikla by konjungovaná matice, tj. transponovaná % s komplexními čísly) A.' % prostá transpozice matice A, % u matic s reálnými čísly A.' a A' stejné A*A.' % maticovým násobením matice A a transponované matice A.' % vznikne matice symetrická podle hlavní diagonály 5 25 inv(a) A*inv(A) % inverzní matice k matici A % maticovým násobením matice A a k ní inverzní matice % vznikne matice jednotková... diag(a) % hlavní diagonála matice A 4 det(a) % determinant matice A, jen pro čtvercové matice % výpočet det(a) = *4-2*3 = -2-2 clear A % odstraneni promenne A T=[,2,3;-4,5,-6;9,8,7] T = % matice T T*T.' % maticovým násobením matice T a transponované matice T.' % vznikne matice symetrická podle hlavní diagonály T*inv(T) % maticovým násobením matice T a k ní inverzní matice % vznikne matice jednotková diag(t) % hlavní diagonála matice T Strana 3
4 5 7 det(t) -2 % determinant matice T PPEL_3_cviceni_MATLAB.txt A=[:5;5:-:;2:2:;5:-3:3;5:5:25] A = size(a) 5 5 diag(a) % zadání matice A (5 řádek, 5 sloupců) % zjištění rozměru matice A % 5 řádek, 5 sloupců % diagonála matice A A*A.' % maticovým násobením matice A a transponované matice A.' % vznikne matice symetrická podle hlavní diagonály inv(a) % inverzní matice k matici A Warning: Matrix is singular to working precision. Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf det(a) % determinant matice A B =.* rand(6,6) B = % matice 6x6 náhodných prvků % z intervalu od do, každý prvek % matice je vynásobený číslem Strana 4
5 % % zaokrouhlování % C = floor(b) C = PPEL_3_cviceni_MATLAB.txt % zaokrouhlení prvků matice B na nejbližší nižší % celé číslo, zaokrouhlení dolů D = ceil(b) % zaokrouhlení prvků matice B na nejbližší vyšší % celé číslo, zaokrouhlení nahoru D = D-C % odečtení prvků matice C od prvků matice D E = round(b) % zaokrouhlení prvků matice B na celé číslo E = size(e) % zjištění rozměru matice E 6 6 % % relační operátory == < <= > >= ~= % a=3;b=5; a<b a<=3 % středník za příkazem zabraní % výpisu výsledku na obrazovku % 3<5 je pravda % 3<=3 je pravda a>b a>=b % 3>5 je nepravda % 3>=5 je nepravda Strana 5
6 a==b a~=b % 3=5 je nepravda % 3 nerovná se 5 je pravda == % = je pravda ~= % nerovná se je nepravda E % matice E zadána již dříve, zde pro připomenutí E = M=magic(6) % "magická" matice - magický čtverec % soucet prvku na diagonale je stejny jako % soucet prvku v jednotlivych sloupcich matice M = M==E % porovnání prvků na stejných pozicích ( pravda, nepravda) M>E % porovnání prvků na stejných pozicích ( pravda, nepravda) M>=E % porovnání prvků na stejných pozicích ( pravda, nepravda) M<E % porovnání prvků na stejných pozicích ( pravda, nepravda) Strana 6
7 M<=E % porovnání prvků na stejných pozicích ( pravda, nepravda) E==2 % porovnání prvků s číslem 2 ( pravda, nepravda) E<5 % porovnání prvků s číslem 5 ( pravda, nepravda) E> % porovnání prvků s číslem (neplatí pro žádný prvek) E> % porovnání prvků s číslem (3 prvky v matici E jsou nulové) E E = % matice E zadána již dříve, zde pro připomenutí all(e) % test, zdali jsou vsechny prvky ve vektoru nenulove % ( pravda, nepravda) % vraci, kdyz jsou vsechny prvky ve vektoru (sloupci) nenulove all(e,) % test, zdali jsou vsechny prvky ve sloupci matice nenulove Strana 7
8 all(e,2) PPEL_3_cviceni_MATLAB.txt % test, zdali jsou vsechny prvky v radku matice nenulove all(e,3) % test, zdali jsou prvky matice nenulove any(e) % test, zdali je nektery prvek ve vektoru nenulovy % ( pravda, nepravda) % vraci, kdyz je nektery prvek ve vektoru (sloupci) nenulovy any(e,) % test, zdali je nektery prvek ve sloupci matice nenulovy any(e,2) % test, zdali je nektery prvek v radku matice nenulovy any(e,3) % test, zdali je nektery prvek v matici nenulovy E(:,4)=[;;;;;] % nahrazeni 4. sloupce matice E vektorem nul E = all(e) % test, zdali jsou vsechny prvky ve vektoru nenulove % vraci, kdyz jsou vsechny prvky ve vektoru (sloupci) nenulove % stejny vysledek jako pred nahrazenim 4. sloupce any(e) % test, zdali je nektery prvek ve vektoru nenulovy % vraci, kdyz je nektery prvek ve vektoru (sloupci) nenulovy % nyni 4. sloupec nulovy isreal(e) % test na reálná čísla, vrací, když v matici není Strana 8
9 % žádné komplexní číslo E(:,4)=[4;9;;4;8;] % nahrazeni 4. sloupce matice E puvodnim vektorem E = a=[:7,6:-:] % zadání vektoru a a = length(a) % zjištění počtu prvků ve vektoru 3 all(a) % test, zdali jsou vsechny prvky ve vektoru nenulove % vraci, kdyz jsou vsechny prvky ve vektoru nenulove any(a) % test, zdali je nektery prvek ve vektoru nenulovy % vraci, kdyz je nektery prvek ve vektoru nenulovy isprime(a) % test na prvočísla, vrací, když prvek % ve vektoru je prvočíslo a(:3)=[2:-:9] % nahrazení.až 3.prvku vektoru čísly od 2 do 9 a = a(4:5)=[-6,-3] % přidání 4. a 5. prvku do vektoru a a = maximum=max(a) maximum = 2 minimum=min(a) minimum = -6 % do proměnné maximum se uloží prvek s max. velikostí % do proměnné minimum se uloží nejmenší prvek [maximum,index]=max(a) % do proměnné maximum se uloží největší prvek, maximum = % do proměnné index se uloží jeho pozice ve vektoru a 2 index = [minimum,index]=min(a) % do proměnné minimum se uloží nejmenší prvek, minimum = % do proměnné index se uloží jeho pozice ve vektoru a -6 index = 4 b=sort(a) % setřídění prvků podle velikosti b = Strana 9
10 2 c=b(end:-:) PPEL_3_cviceni_MATLAB.txt % obrácení pořadí prvků ve vektoru b c = prumer=mean(a) prumer = 4.8 % průměr ze všech prvků ve vektoru str_hod=median(a) % střední hodnota % pro lichý počet prvků ve vektoru při seřazení % je to prostřední prvek, str_hod = % pro sudý počet je to průměr z velikosti dvou členů 5 % nejblíže středu seřazeného vektoru odch=std(a) % směrodatná odchylka odch = s=sum(a) % součet prvků ve vektoru s = 72 p=prod(a) % součin prvků ve vektoru p = e+ E % matice E zadána již dříve, zde pro připomenutí E = F=sort(E) % setřídění prvků ve sloupcích matice E podle velikosti F = [F,index]=sort(E) % do proměnné F se uloží seřazené prvky matice E % podle velikosti ve sloupcích do proměnné index se % uloží jejich poloha v příslušném sloupci matice E F = index = G=sortrows(E) % setřídění řádků matice E podle velikosti. prvku G = Strana
11 [G,ind]=sortrows(E) G = ind = % do proměnné G se uloží seřazené řádky matice E % podle velikosti. prvku, do proměnné ind se % uloží jejich poloha v matici E % % některé funkce např. sin, cos, exp, log, log % funkce se aplikují se na celý vektor (matici) % v=[-,-,,,] % zadání vektoru v v = - - o=sqrt(v) % druhá odmocnina z prvků vktoru v o = i +.i p=log(v) % přirozený logaritmus (v matematice ln) Warning: Log of zero. p = i i -Inf q=log(v) Warning: Log of zero. % logaritmus se základem (v matematice log) q = i i -Inf. r=exp(v) % exponenciální funkce (v matematice e) r =.e+4 * s=log(r) % přirozený logaritmus (v matematice ln) s = % z prvků vektoru r (výsledkem opět vektor v) - - % % některé funkce pro komplexní čísla % w=[,i,3+4i] % zadání vektoru w s komplexními čísly w =. +.i i Strana
12 real(w) % reálné části komplexních čísel (prvků vektoru w) 3 imag(w) % imaginární části komplexních čísel (prvků vektoru w) 4 abs(w) % absolutní hodnota, modul (prvků vektoru w) 5 angle(w) % argument (úhel, fáze) prvků vektoru w (v radiánech) angle(w)*8/pi % argument (úhel, fáze) prvků vektoru w, převedený na stupně [z,index]=sort(w) % do proměnné z se uloží prvky vektoru w setříděné % podle velikosti,do proměnné index se uloží pozice % ve vektoru w, pro komplexní čísla je třídění prováděno % primárně dle absolutní hodnoty, sekundárně dle úhlu z =. +.i i index = 2 3 u=log(w) u = % přirozený logaritmus (i pro komplexní čísla) +.578i i exp(u) % exponenciální funkce (výsledkem opět vektor w) 6.232e-7 + i i isreal(w) % test na reálná čísla % % Graf % x=[:(2*pi/99):2*pi]; % zadání vektoru x od do 2*pi ve bodech, % tj. s krokem 2*pi/99 x=linspace(,2*pi,); % jiný způsob zadání vektoru x od do 2*pi % ve bodech y=sin(x); plot(x,y) % v proměnné y je hodnot funkce sin(x) % vykreslení dvourozměrného grafu funkce sin(x) plot(x,sin(x),x,cos(x)) % vykreslení dvourozměrného grafu funkci sin(x),cos(x) legend('sin','cos') % legenda ke grafu x=linspace(-2*pi,2*pi,5); % zadání vektoru x od -2*pi do 2*pi % ve 5 bodech y=(sin(x)).^2; % v proměnné y je 5 hodnot funkce (sin(x)).^2 % jedná se o umocnění vektoru - nematicová operace.^ % násobí se stejnolehlé prvky ve vektorech % odpovídá operaci sin(x).*sin(x) Strana 2
13 plot(x,y) diary off % vykreslení dvourozměrného grafu funkce (sin(x)).^2 % prerusi ukladani do textoveho souboru Strana 3
PPEL_4_cviceni_MATLAB.txt. % 4. cvičení z předmětu PPEL - MATLAB. % Lenka Šroubová, ZČU, FEL, KTE %
%------------------------------------- % 4. cvičení z předmětu PPEL - MATLAB %------------------------------------- % Lenka Šroubová, ZČU, FEL, KTE % e-mail: lsroubov@kte.zcu.cz %-------------------------------------
KTE / PPEL Počítačová podpora v elektrotechnice
KTE / PPEL Počítačová podpora v elektrotechnice Ing. Lenka Šroubová, Ph.D. email: lsroubov@kte.zcu.cz http://home.zcu.cz/~lsroubov 3. 10. 2012 Základy práce s výpočetními systémy opakování a pokračování
% vyhledání prvku s max. velikostí v jednotlivých sloupcích matice X
%------------------------------------- % 4. cvičení z předmětu PPEL - MATLAB %------------------------------------- % Lenka Šroubová, ZČU, FEL, KTE % e-mail: lsroubov@kte.zcu.cz %-------------------------------------
více křivek v jednom grafu hold on přidrží aktuální graf v grafickém okně, lze nakreslit více grafů do jednoho grafického okna postupně hold off
více křivek v jednom grafu hold on přidrží aktuální graf v grafickém okně, lze nakreslit více grafů do jednoho grafického okna postupně hold off vypnutí, konec možnosti kreslit více grafů do jednoho grafického
Univerzitní licence MATLABu. Pište mail na: se žádostí o nejnovější licenci MATLABu.
Univerzitní licence MATLABu Pište mail na: operator@service.zcu.cz se žádostí o nejnovější licenci MATLABu. * násobení maticové K = L = 1 2 5 6 3 4 7 8 Příklad: M = K * L N = L * K (2,2) = (2,2) * (2,2)
II. Úlohy na vložené cykly a podprogramy
II. Úlohy na vložené cykly a podprogramy Společné zadání pro příklady 1. - 10. začíná jednou ze dvou možností popisu vstupních dat. Je dána posloupnost (neboli řada) N reálných (resp. celočíselných) hodnot.
při vykreslování křivky je důležitá velikost kroku, příp. počet prvků, ve vektoru t (na ose x). t = linspace(0,2*pi,500); y = sin(t); t =
při vykreslování křivky je důležitá velikost kroku, příp. počet prvků, ve vektoru t (na ose x). t = linspace(0,2*pi,500); y = sin(t); t = linspace(0,2*pi,5); plot(t,y,'b') y = sin(t); plot(t,y,'c') při
X37SGS Signály a systémy
X7SGS Signály a systémy Matlab minihelp (poslední změna: 0. září 2008) 1 Základní maticové operace Vytvoření matice (vektoru) a výběr konkrétního prvku matice vytvoření matice (vektoru) oddělovač sloupců
cyklus s daným počtem opakování cyklus s podmínkou na začátku (cyklus bez udání počtu opakování)
Řídící příkazy: if podmíněný příkaz switch přepínač for while cyklus s daným počtem opakování cyklus s podmínkou na začátku (cyklus bez udání počtu opakování) if logický_výraz příkaz; příkaz; příkaz; Podmínka
MS EXCEL_vybrané matematické funkce
MS EXCEL_vybrané matematické funkce Vybrané základní matematické funkce ABS absolutní hodnota čísla CELÁ.ČÁST - zaokrouhlení čísla na nejbližší menší celé číslo EXP - vrátí e umocněné na hodnotu argumentu
Příklad elektrický obvod se stejnosměrným zdrojem napětí
Příklad elektrický obvod se stejnosměrným zdrojem napětí Určete proudy 18, 23, 4, 5, 67 v obvodu na obr., je-li dáno: 1 = 1 Ω, 2 = 2 Ω, 3 = 3 Ω, 4 = 5 Ω, 5 = 3 Ω, 6 = 2 Ω, 7 = 4 Ω, 8 = 4,5 Ω, U = 6 V.
Příklad: Řešte soustavu lineárních algebraických rovnic 10x 1 + 5x 2 +70x 3 + 5x 4 + 5x 5 = 275 2x 1 + 7x 2 + 6x 3 + 9x 4 + 6x 5 = 100 8x 1 + 9x 2 +
Příklad: Řešte soustavu lineárních algebraických rovnic 1x 1 + 5x 2 +7x 3 + 5x 4 + 5x 5 = 275 2x 1 + 7x 2 + 6x 3 + 9x 4 + 6x 5 = 1 A * x = b 8x 1 + 9x 2 + x 3 +45x 4 +22x 5 = 319 3x 1 +12x 2 + 6x 3 + 8x
while cyklus s podmínkou na začátku cyklus bez udání počtu opakování while podmínka příkazy; příkazy; příkazy; end; % další pokračování programu
while cyklus s podmínkou na začátku cyklus bez udání počtu opakování while podmínka příkazy; příkazy; příkazy; end; % další pokračování programu podmínka je libovolný logický výraz s logickou hodnotou
Základy matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
Základy algoritmizace a programování
Základy algoritmizace a programování Práce s maticemi Přednáška 9 23. listopadu 2009 Pole: vektory a matice Vektor (jednorozměrné pole) deklarace statická int v1[5]; dynamická int * v2; + přidělení paměti:
pi Ludolfovo číslo π = 3,14159 e Eulerovo číslo e = 2,71828 (lze spočítat jako exp(1)), např. je v Octave, v MATLABu tato konstanta e není
realmax maximální použitelné reálné kladné číslo realmin minimální použitelné reálné kladné číslo (v absolutní hodnotě, tj. číslo nejblíž k nule které lze použít) 0 pi Ludolfovo číslo π = 3,14159 e Eulerovo
KTE / PPEL Počítačová podpora v elektrotechnice
24. 9. 2014 KTE / PPEL Počítačová podpora v elektrotechnice Ing. Lenka Šroubová, Ph.D. email: lsroubov@kte.zcu.cz ICQ: 361057825 http://home.zcu.cz/~lsroubov tel.: +420 377 634 623 Místnost: EK602 Katedra
Operace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
Matematika 3. Úloha 1. Úloha 2. Úloha 3
Matematika 3 Úloha 1 Co lze říci o funkci imaginární část komplexního čísla která každému komplexnímu číslu q přiřazuje číslo Im(q)? a. Je to funkce mnohoznačná. b. Je to reálná funkce komplexní proměnné.
Operace s vektory a maticemi + Funkce
+ Funkce 9. března 2010 Operátory Operátory Aritmetické: Operátory Operátory Aritmetické: maticové + (sčítání), (odčítání), (násobení), / (dělení matematicky je maticové delení násobení inverzní maticí),
Základy maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
Čtvercové matice. Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců
Determinant matice Čtvercové matice Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců Determinant je zobrazení, které přiřadí každé čtvercové matici A skalár (reálné číslo).
Operátory pro maticové operace (operace s celými maticemi) * násobení maticové Pro čísla platí: 2*2
* násobení maticové Pro čísla platí: Pro matice - násobení inverzní maticí inv inverzní matice A -1 k dané matici A je taková matice, která po vynásobení s původní maticí dá jednotkovou matici. Inverzní
. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0
Příklad 1 Určete definiční obor funkce: a) = b) = c) = d) = e) = 9 f) = Řešení 1a Máme určit definiční obor funkce =. Výraz je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy
otočení matice o 180
A=[,2,3;4,5,6] A = 2 3 4 5 6 rot90(a) 3 6 2 5 4 otočení matice o 90 (proti směru hodinových ručiček) A.' prostá transpozice 4 2 5 3 6 rot90(rot90(a)) 6 5 4 3 2 otočení matice o 80 rot90(rot90(rot90(a)))
Kapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
Úvod do práce s Matlabem
Úvod do práce s Matlabem 1 Reálná čísla 1.1 Zadávání čísel Reálná čísla zadáváme s desetinnou tečkou (.), čísla lze také zadávat v exponenciálním tvaru například číslo 0.000014 zadáme takto 1.4e-5, číslo
AVDAT Vektory a matice
AVDAT Vektory a matice Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Vektory x = x 1 x 2. x p y = y 1 y 2. y p Řádkový vektor dostaneme transpozicí sloupcového vektoru x
Matematika I pracovní listy
Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny
Doňar B., Zaplatílek K.: MATLAB - tvorba uživatelských aplikací, BEN - technická literatura, Praha, (ISBN:
http://portal.zcu.cz > Portál ZČU > Courseware (sem lze i přímo: http://courseware.zcu.cz) > Předměty po fakultách > Fakulta elektrotechnická > Katedra teoretické elektrotechniky > PPEL Doňar B., Zaplatílek
Seminář z MATLABU. Jiří Krejsa. A2/710 krejsa@fme.vutbr.cz
Seminář z MATLABU Jiří Krejsa A2/710 krejsa@fme.vutbr.cz Obsah kurzu Posluchači se seznámí se základy systému Matlab, vědeckotechnickými výpočty, programováním v Matlabu včetně pokročilých technik, vizualizací
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Algoritmizace a programování
Algoritmizace a programování Výrazy Operátory Výrazy Verze pro akademický rok 2012/2013 1 Operace, operátory Unární jeden operand, operátor se zapisuje ve většině případů před operand, v některých případech
Systém je citlivý na velikost písmen CASE SENSITIVE rozeznává malá velká písmena, např. PROM=1; PROm=1; PRom=1; Prom=1; prom=1; - 5 různých proměnných
Systém je citlivý na velikost písmen CASE SENSITIVE rozeznává malá velká písmena, např. PROM=1; PROm=1; PRom=1; Prom=1; prom=1; - 5 různých proměnných jakési nádoby na hodnoty jsou různých typů při běžné
MATrixLABoratory letný semester 2004/2005
1Prostedie, stručný popis okien Command Window příkazové okno pro zadávání příkazů v jazyku Matlabu. Workspace zde se zobrazuje obsah paměti; je možné jednotlivé proměnné editovat. Command History dříve
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................
plot() vytváří dvou-dimenzionální grafy, mnoho různých kombinací vstupních argumentů, nejjednodušší formou je plot(y), plot(x,y).
plot() vytváří dvou-dimenzionální grafy, mnoho různých kombinací vstupních argumentů, nejjednodušší formou je plot(y), plot(x,y). plot(y) vykreslí hodnoty vektoru y v závislosti na jejich indexu (pořadí
Logické operace. Datový typ bool. Relační operátory. Logické operátory. IAJCE Přednáška č. 3. může nabýt hodnot: o true o false
Logické operace Datový typ bool může nabýt hodnot: o true o false Relační operátory pravda, 1, nepravda, 0, hodnoty všech primitivních datových typů (int, double ) jsou uspořádané lze je porovnávat binární
. Poté hodnoty z intervalu [ 1 4, 1 2. ] nahraďte hodnotami přirozeného logaritmu.
1. Spočítejte objemy krychlí s délkami stran a = 2 cm, 3 cm a 4 cm. 2. Vytvořte vektor funkčních hodnot funkce sin(x) v bodech 0, π 4, π 2,..., 2π. 3. Vygenerujte posloupnost u čísel 2, 1.8,... délky 20.
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální
KTE / PPEL Počítačová podpora v elektrotechnice
KTE / PPEL Počítačová podpora v elektrotechnice 22.12.2010 Ing. Lenka Šroubová, Ph.D. email: lsroubov@kte.zcu.cz http://home.zcu.cz/~lsroubov Příklad: Obvod RLC v sérii R=200 Ω L=0,5 H C=5. 10-6 F U 0
Kreslení grafů v Matlabu
Kreslení grafů v Matlabu Pavel Provinský 3. října 2013 Instrukce: Projděte si všechny příklady. Každý příklad se snažte pochopit. Pak vymyslete a naprogramujte příklad podobný. Tím se ujistíte, že příkladu
Operace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
Kapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
LabView jako programovací jazyk II
LabView jako programovací jazyk II - Popis jednotlivých funkcí palety Function II.část - Funkce Numeric, Array, Cluster Ing. Martin Bušek, Ph.D. Práce s daty typu NUMERIC Numerické funkce obsahuje funkce
VĚTY Z LINEÁRNÍ ALGEBRY
VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru
Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29
Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010
HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s
Základy algoritmizace a programování
Základy algoritmizace a programování Příklady v MATLABu Přednáška 10 30. listopadu 2009 Řídící instrukce if else C Matlab if ( podmínka ) { } else { } Podmíněný příkaz if podmínka elseif podmínka2... else
HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s
Matematika (KMI/PMATE)
Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její
Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
- transpozice (odlišuje se od překlopení pro komplexní čísla) - překlopení matice pole podle hlavní diagonály, např.: A.' ans =
'.' - transpozice (odlišuje se od překlopení pro komplexní čísla) - překlopení matice pole podle hlavní diagonály, např.: A.' 1 4 2 5 3-6 {} - uzavírají (obklopují) struktury (složené proměnné) - v případě
1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x
1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.
Číselné vektory, matice, determinanty
Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny
Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n
[1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem
FUNKCE 2. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika
FUNKCE 2 Autor: Mgr. Dana Kaprálová Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového
Matematika I (KMI/PMATE)
Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce
11MAMY LS 2017/2018. Úvod do Matlabu. 21. února Skupina 01. reseni2.m a tak dále + M souborem zadané funkce z příkladu 3 + souborem skupina.
11MAMY LS 2017/2018 Cvičení č. 2: 21. 2. 2018 Úvod do Matlabu. Jan Přikryl 21. února 2018 Po skupinách, na které jste se doufám rozdělili samostatně včera, vyřešte tak, jak nejlépe svedete, níže uvedená
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Determinant matice řádu 5 budeme počítat opakovaným použitím rozvoje determinantu podle vybraného řádku nebo sloupce. Aby byl náš výpočet
Řešené příklady z lineární algebry - část 2 Příklad 2.: Určete determinant matice A: A = 4 4. Řešení: Determinant matice řádu budeme počítat opakovaným použitím rozvoje determinantu podle vybraného řádku
Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném rušení ) Muhammada ibn Músá al-chvárizmího (790? - 850?, Chiva, Bagdád),
1 LINEÁRNÍ ALGEBRA 1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
Numerické metody a programování
Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským
0.1 Funkce a její vlastnosti
0.1 Funkce a její vlastnosti Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost (m) čas (t) výše úrokové sazby v bance (i) cena
(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
matice([[1,1,0,0,0],[1,1,1,0,0],[0,1,1,0,0],[0,0,0,1,1],[0,0,0,1,1]],1). matice([[1,1,1],[1,1,0],[1,0,1]],2).
% Zápočtový program % souvislost grafu % popis algoritmu a postupu % Program využívá algoritmu na násobení matic sousednosti A. % Příslušná mocnina n matice A určuje z kterých do kterých % vrcholů se lze
2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC
.6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom
Příklady k prvnímu testu - Matlab
Příklady k prvnímu testu - Matlab March 13, 2013 Instrukce: Projděte si všechny příklady. Každý příklad se snažte pochopit. Pak vymyslete a naprogramujte příklad podobný. Tím se ujistíte, že příkladu rozumíte.
P 1 = P 1 1 = P 1, P 1 2 =
1 Výpočet inverzní matice Věta 1 Necht P U elementární matice vzniklá el úpravou U Pak je P U regulární Důkaz: Protože elementární úprava U je invertovatelná, existuje el úprava U, která vrací změny U
Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat
Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních
Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.
Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní
MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10
1 MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET 2 koncepce/slides: Jan Picek přednášející: Jiří Veselý KAP, tel. 485352290, budova H konzul. hodiny: dle úmluvy e-mail: jvesely@karlin.mff.cuni.cz
AVDAT Klasický lineární model, metoda nejmenších
AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Základy fyzikální geodézie 3/19 Legendreovy přidružené funkce
Zdrojem většiny příkladů je sbírka úloh 1. cvičení ( ) 2. cvičení ( )
Příklady řešené na cvičení LA II - LS 1/13 Zdrojem většiny příkladů je sbírka úloh http://kam.mff.cuni.cz/~sbirka/ 1. cvičení (..13) 1. Rozhodněte, které z následujících operací jsou skalárním součinem
8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
0.1 Úvod do matematické analýzy
Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost
NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Doba řešení: 3 hodiny
NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Závěrečná zkouška verze cvičná 9.1.2013 Doba řešení: 3 hodiny Přednášející: L. Barto, J. Tůma Křestní jméno: Příjmení: Instrukce Neotvírejte
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního
Kapitola 1: Reálné funkce 1/13
Kapitola 1: Reálné funkce 1/13 Číselné množiny 2/13 N = {1, 2, 3, 4,... }... přirozená čísla N 0 = N {0} = {0, 1, 2, 3, 4,... } Z = {..., 2, 1, 0, 1, 2, 3, 4,... }... celá čísla Q = { p q p, q Z}... racionální
Numerické metody a programování. Lekce 4
Numerické metody a programování Lekce 4 Linarní algebra soustava lineárních algebraických rovnic a 11 a 12 x 2 a 1, N x N = b 1 a 21 a 22 x 2 a 2, N x N = b 2 a M,1 a M,2 x 2 a M,N x N = b M zkráceně A
7. Funkce jedné reálné proměnné, základní pojmy
, základní pojmy POJEM FUNKCE JEDNÉ PROMĚNNÉ Reálná funkce f jedné reálné proměnné je funkce (zobrazení) f: X Y, kde X, Y R. Jde o zvláštní případ obecného pojmu funkce definovaného v přednášce. Poznámka:
[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici
[1] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A = 0 pro singulární matici, det A 0 pro regulární matici používá se při řešení lineárních soustav... a v mnoha dalších aplikacích
Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie
Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat 3.1 Matematické principy vícerozměrných metod statistické analýzy
Příklad: Součet náhodných čísel ve vektoru s počtem prvků, které zadá uživatel, pomocí sum() a pomocí cyklu for. Ověříme, že příliš výpisů na
Příklad: Součet náhodných čísel ve vektoru s počtem prvků, které zadá uživatel, pomocí sum() a pomocí cyklu for. Ověříme, že příliš výpisů na obrazovku zpomaluje tím, že zobrazíme okno (proužek) o stavu
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T DUBNA 07 : 9. dubna 07 D : 830 P P P : 30 M. M. : 30 : 8,8 M. :, % S : -7,5 M. P : -,5 :,4 Zopakujte si základní informace ke zkoušce: n Test obsahuje 30 úloh a
Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy
1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2017-2018 Vybrané kapitoly z matematiky 2017-2018 1 / 19 Základní informace předmět: 714-0513, 5 kreditů přednáší: Radek Kučera kontakt: radek.kucera@vsb.cz,
Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer
Přednáška MATEMATIKA č. 3 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 21. 10. 2010 Uvažujme neprázdnou množinu přirozených čísel M = {1, 2,..., n}. Z kombinatoriky
Modelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
Funkce arcsin. Některé dosud probírané funkce můžeme spojit do dvojic: 4 - je číslo, které když dám na druhou tak vyjde 4.
.. Funkce arcsin Některé dosud probírané funkce můžeme spojit do dvojic: Kvadratická funkce Druhá odmocnina y =, 0; ) y = - je číslo, které když dám na druhou tak vyjde - - - - - - y = y = Eponenciální
Uzavřené a otevřené množiny
Teorie: Uzavřené a otevřené množiny 2. cvičení DEFINICE Nechť M R n. Bod x M nazveme vnitřním bodem množiny M, pokud existuje r > 0 tak, že B(x, r) M. Množinu všech vnitřních bodů značíme Int M. Dále,
Lineární algebra. Matice, operace s maticemi
Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM
KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM CÍLE KAPITOLY Využívat pokročilé možnosti formátování, jako je podmíněné formátování, používat vlastní formát čísel a umět pracovat s listy. Používat
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice