( ) ( ) Lineární rovnice s parametrem II. Předpoklady: 2801
|
|
- Marcel Mašek
- před 9 lety
- Počet zobrazení:
Transkript
1 .8. Lineární rovnice s parametrem II Předpoklady: 80 Pedagogická poznámka: Zvládnutí zápisu a obecného postupu (dělení podle hodnot parametru) při řešení parametrických rovnic v této hodině je zásadní podmínkou několika následujících hodin. Proto by Ti, kteří příklady nestihnou a o hodině počítali s problémy, měli dopočítat hodinu doma. Př. : Vyřeš rovnici xp + p 3p 4 + x xp xp + p = 3p 4 + x xp + p = x 4 + 3p xp p 4 x p = p 4 xp + p 3p 4 + x s neznámou x a parametrem p. Chceme vydělit rovnici výrazem p, což může být problém, protože se nesmí dělit nulou. Zjistíme, zda je výraz p někdy roven nule: p = 0 p =. Pokud chceme dělit, musíme p = vyloučit, abychom nedělili nulou. rozvětvení p Můžeme vydělit rovnici výrazem p, protože se určitě nebude rovnat nule: p = Nemůžeme vydělit výrazem p, ale víme, které konkrétní p nás zajímá a můžeme ho x( p ) = p 4 / :( p ) dosadit do rovnice před vydělením. p 4 ( p ) x( ) =. 4 = = p p = 0 za x můžeme dosadit cokoliv K = { } K = p { } p = Pedagogická poznámka: Předchozí příklad je důležitý, protože studenti zjistí, že k hodnotám parametru, které vylučují z dělení, není možné psát rovnou K =. Dalším zajímavým rysem příkladu je jediná hodnota x pro všechna p. Pedagogická poznámka: Následující příklad a příklad 4 jsou sice z hlediska řešení rovnic s parametrem jakoby zbytečné, ale mají obrovský význam pro pochopení podstaty parametrických rovnic. Právě podobným zkoušením studenti poznají, že přehledy na konci příkladů mají svůj význam.
2 Př. : Pomocí závěrečného přehledu předchozího příkladu rozhodni, zda rovnice xp + p 3p 4 + x vyjde, když dosadíme: a) p =, 3 b) p =, c) p =, π Své rozhodnutí ověř dosazením do rovnice. a) p =, 3 Hodnota parametru se nerovná, jde o první řádku přehledu. Hodnotou x má být dvojka, pro dvojici čísel p =, 3 rovnice nevyjde. xp + p( x) = 3p 4 + x 3 + ( 3) = = 5 b) p =, Hodnota parametru se nerovná, jde o první řádku přehledu. Hodnotou x má být dvojka, pro dvojici čísel p =, rovnice vyjde. xp + p( x) = 3p 4 + x + ( ) = = 3 3 = 3 c) p =, π Hodnota parametru se rovná, jde o druhou řádku přehledu. Hodnotou x může být cokoliv, pro dvojici čísel p =, π rovnice vyjde. xp + p 3p 4 + x π + π = π 4π + π = π + π = + π Př. 3: Vyřeš rovnici t 3+ t t t 3+ t t s neznámou x a parametrem t. Chceme vydělit rovnici výrazem t ( 3 + t), ale nesmíme dělit nulou. Kdy je výraz t ( 3 + t) roven nule: t ( 3 + t) = 0 t = 0; t = 3. Pokud chceme dělit, musíme tato čísla vyloučit. rozvětvení na tři větve (vedle sebe se nevejdou proto píšeme pod sebe). 0; 3 t 3 + t, protože se určitě nebude rovnat nule: t můžeme vydělit rovnici výrazem t ( 3+ t) t / : t ( 3+ t) t t ( 3 + t) ( 3+ t) t = 0 nemůžeme dělit, dosadíme
3 t 3+ t t x 0 = 0 můžeme dosadit cokoliv t = 3 nemůžeme dělit, dosadíme t 3+ t t 3( 3 3) x ( 3) = x 0 = 6 nikdy nevyjde K = t 3;0 K = 3 + t t = 0 t = 3 K = Pedagogická poznámka: Častou chybou bývá roznásobení závorek s parametrem na levé straně. Studenti pak pracně zjišťují, jaké hodnoty t mají zakázat. Určitě byste se o tom měli zmínit. Pedagogická poznámka: U předchozího příkladu (a některých následujících) je větvení příkladu napsáno pod sebe. Důvodem je malá šířka tří sloupců vedle sebe. V sešitech přesto doporučuji studentům tři sloupce zachovat. Př. 4: Pomocí závěrečného přehledu předchozího příkladu najdi řešení rovnice t 3+ t t, pro následující hodnoty parametru t: a) t = b) t = 3 c) t = 5 d) t = 0 a) t = Hodnota parametru je různá do 0 i -3, jde o první řádku přehledu. Pro x platí: = =. 0, t 3+ b) t = 3 Hodnota parametru se rovná -3, jde o třetí řádku přehledu. K =, neexistuje žádné x vyhovující rovnici. c) t = 5 Hodnota parametru je různá do 0 i -3, jde o první řádku přehledu. Pro x platí: ( ) ( ) = = = =. 3 + t d) t = 0 Hodnota parametru se rovná 0, jde o druhou řádku přehledu. K libovolné reálné číslo = R, za x mohu dosadit 3
4 Př. 5: Vyřeš rovnici ( ) ( ) x p = p + p x p p p x( p + )( p ) = p( p + ) Chceme vydělit rovnici výrazem ( p )( p ) ( p + )( p ) roven nule: = + s neznámou x a parametrem p. + a nesmíme dělit nulou. Kdy je výraz p + p = 0 p = ±. Pokud chceme dělit, musíme tato čísla vyloučit. rozvětvení na tři větve (vedle sebe se nevejdou proto píšeme pod sebe). p + p, protože se určitě nebude rovnat p ± můžeme vydělit rovnici výrazem nule: x( p + )( p ) = p( p + ) / : ( p + )( p ) p( p + ) ( p )( p + ) p p K = ( p ) p p = nemůžeme dělit, dosadíme x( p + )( p ) = p( p + ) x( + )( ) = ( + ) x 0 = 0 můžeme dosadit cokoliv p = nemůžeme dělit, dosadíme x( p + )( p ) = p( p + ) x ( + )( ) = ( + ) x 0 = nikdy nevyjde K = p ± p K = p p = p = K = Pedagogická poznámka: Občas se objevuje při řešení tohoto příkladu ještě jedna větev řešení pro hodnotu parametru p = 0. Vypadá takto: ( )( ) ( ) x ( 0 + )( 0 ) = 0( 0 + ) x p + p = p p + dosadím p = V přehledu pak přibude další řádka: 0 p = K = { 0} Není možné říct, že by tento krok byl vyloženě špatně. Je však vyloženě nesmyslný. Hodnota parametru p = 0 není z hlediska řešení příkladu vůbec zajímavá. Výraz p se v rozkladu na pravé straně vyskytuje, ale nikdy s ním nedělíme a jeho hodnota tak může být libovolná. 4
5 Řešení pro p = 0, tak je obsaženo už v prvním řádku přehledu a umožňuje nám určit hodnotu p 0 x daleko rychleji: 0 p = 0 =. Př. 6: Vyřeš rovnici p( xp ) p xp = x xp p = x xp x p + = + x p + = p + = x s neznámou x a parametrem p. Chceme vydělit rovnici výrazem ( p + ) a nesmíme dělit nulou. Výraz ( ) větší než nula můžeme dělit pro všechny hodnoty p. p + p + p + p R K = p + p + je vždy Pedagogická poznámka: V předchozím příkladu jde samozřejmě o to, aby studenti neštěpili řešení a vše zahrnuli najednou. Př. 7: Urči, pro které hodnoty parametru p je řešením rovnice ( ) ( ) kladné číslo. Řešíme rovnici: ( ) ( ) xp + p = x + + xp xp xp p p xp + = x + + xp. p xp + = x + + xp x p p = p Budeme chtít zjistit, kdy je možné výrazem v závorce dělit rozložíme ho na součin: p p ( p )( p ) Chceme vydělit rovnici výrazem ( p )( p ) ( p )( p + ) roven nule: ( p )( p ) p = +. + a nesmíme dělit nulou. Kdy je výraz + = 0 = ;. Pokud chceme dělit, musíme tato čísla vyloučit. rozvětvení na tři větve (vedle sebe se nevejdou proto píšeme pod sebe). ; p p +, protože se určitě nebude p můžeme vydělit rovnici výrazem rovnat nule: x( p )( p + ) = p / :( p )( p + ) p = p p + p + p = nemůžeme dělit, dosadíme K = p + 5
6 x( p )( p + ) = p x( )( + ) = ( ) x 0 = 3 nikdy nevyjde K = p = nemůžeme dělit, dosadíme ( p ) x p p + = p x + = x.0 = 0 můžeme dosadit cokoliv p ; K = p + p = K = p = Nejsme hotoví, zajímá nás, kdy je řešením kladné číslo, projdeme tabulku: p ; x 0 p + řešíme nerovnici 0 p + < 0 p + p + < 0 p < p = K = nevyjde nic, natož kladné číslo p = některá z čísel, která vyšla jsou kladná Rovnice má kladné řešení právě když p ( ; ) { }. Př. 8: Petáková: strana /cvičení a) b) d) strana /cvičení strana /cvičení 3 Shrnutí: Rovnice s parametrem řešíme stejně jako rovnice bez parametru, pouze v okamžiku, kdy provádíme operace, které není možné provést se všemi čísly, rozebereme možné hodnoty parametru a případně rozdělíme řešení. 6
2.7.17 Nerovnice s neznámou pod odmocninou
.7.7 Nerovnice s neznámou pod odmocninou Předpoklady: 05, 75 Pedagogická poznámka: Tato hodina patří mezi největší masakry během celého studia. Její obtížnost spočítává hlavně ve dvou věcech: a) Je nutné,
Kvadratická rovnice. - koeficienty a, b, c jsou libovolná reálná čísla, a se nesmí rovnat 0
Kvadratické rovnice Kvadratická rovnice a + b + c = 0 a, b, c R a 0 - koeficienty a, b, c jsou libovolná reálná čísla, a se nesmí rovnat 0 - pokud by koeficient a byl roven nule, jednalo by se o rovnici
. Určete hodnotu neznámé x tak, aby
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 015 Kód uchazeče ID:.................. Varianta: 1 1. Původní cena knihy byla 50 Kč. Pak byla zdražena o 15 %. Jelikož nešla
Jak pracovat s absolutními hodnotami
Jak pracovat s absolutními hodnotami Petr Matyáš 1 Co to je absolutní hodnota Absolutní hodnota čísla a, dále ji budeme označovat výrazem a, je jeho vzdálenost od nuly na ose x, tedy je to vždy číslo kladné.
( ) ( ) ( ) 2.3.11 Soustavy dvou lineárních rovnic o dvou neznámých II. Předpoklady: 2310
..11 Soustavy dvou lineárních rovnic o dvou neznámých II Předpoklady: 10 Pedagogická poznámka: V první části hodiny si studenti zopakuji nejdůležitější metody z minulé hodny. V druhé si pak zkusí méně
JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1
ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1 1. Porovnejte mezi sebou normy zadaných vektorů p =(1,-3), q =(2,-2,2), r =(0,1,2,2). (A) p
4. Lineární nerovnice a jejich soustavy
4. Lineární nerovnice a jejich soustavy 9. ročník 4. Lineární nerovnice a jejich soustavy 5 > 0 ostrá nerovnost 5.0 50 neostrá nerovnost ( používáme pouze čísla) ZNAKY NEROVNOSTI: > je větší než < je menší
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Lineární rovnice
2. Lineární rovnice označuje rovnici o jedné neznámé, ve které neznámá vystupuje pouze v první mocnině. V základním tvaru vypadá následovně: ax + b = 0, a 0 Zde jsou a a b nějaká reálná čísla, tzv. koeficienty
( ) ( ) ( ) 2.9.24 Logaritmické nerovnice I. Předpoklady: 2908, 2917, 2919
.. Logaritmické nerovnice I Předpoklady: 08, 7, Pedagogická poznámka: Pokud mají studenti pracovat samostatně budou potřebovat na všechny příklady minimálně jeden a půl vyučovací hodiny. Pokud není čas,
= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen)
.8.7 Kvadratické rovnice s parametrem Předpoklady: 507, 803 Pedagogická poznámka: Na první pohled asi každého zarazí, že takřka celá hodina je psána jako příklady a studenti by ji měli vypracovat samostatně.
2.3.1 Rovnice v součinovém tvaru
.. Rovnice v součinovém tvaru Předpoklady: 70, 0 Pedagogická poznámka: Hodina obsahuje poměrně dost příkladů (0). I když je někteří stihli vypočítat, mám trochu obavu, zda postup nebyl příliš rychlý. Pokud
KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
ŘEŠENÍ KVADRATICKÝCH A ZLOMKOVÝCH NEROVNIC V ŠESTI BODECH
(Tento text je součástí výkladu k definičním oborům, tam najdete další příklady a pokud chcete část tohoto textu někde použít, můžete čerpat ze stažené kompletní verze definičních oborů ve formátu.doc.)
28.ročník. Milý řešiteli!
28.ročník 3.leták Milý řešiteli! Máme tady nový rok a s ním i další sérii KOperníkova Korespondenčního Semináře. Chtěli bychom Ti v tomto roce popřát jen to nejlepší, hodně vyřešených matematických úloh
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004
PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)
A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly
Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková
2.3.8 Lineární rovnice s více neznámými II
..8 Lineární rovnice s více neznámými II Předpoklady: 07 Tato hodina má dva cíle: Procvičit si řešení rovnic se dvěma neznámými z minulé hodiny. Zkusit vyřešit dodržováním pravidel a pochopením základů
Matice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami.
Maticové operace Definice Skalár Představme si nějakou množinu, jejíž prvky lze sčítat a násobit. Pěkným vzorem jsou čísla, která už známe od mala. Prvky takové množiny nazýváme skaláry. Matice Matice
( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled
řijímcí řízení k. r. / Kompletní znění testových otázek - mtemtický přehled Koš Znění otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo otzníku? 8?. Které číslo
2.8.5 Lineární nerovnice s parametrem
2.8.5 Lineární nerovnice s prmetrem Předpokldy: 2208, 2802 Pedgogická poznámk: Pokud v tom necháte studenty vykoupt (což je, zdá se, jediné rozumné řešení) zere tto látk tk jednu půl vyučovcí hodiny (první
VM 2. Dělitelnost přir. čísel násobek, dělitel, znaky dělitelnosti.notebook. September 21, 2015. 1. Vzdělávací oblast: Matematika a její aplikace
Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název
1.3.7 Řešení slovních úloh pomocí Vennových diagramů II
1.3.7 Řešení slovních úloh pomocí Vennových diagramů II Předpoklady: 010306 Pedagogická poznámka: Ideální je, pokud tato hodina vyjde na cvičení. Postup žáků je totiž velmi individuální a dělají velké
( ) ( ) Vzorce pro dvojnásobný úhel. π z hodnot goniometrických funkcí. Předpoklady: Začneme příkladem.
Vzorce pro dvojnásobný úhel Předpoklady: 0 Začneme příkladem Př : Pomocí součtových vzorců odvoď vzorec pro sin x sin x sin x + x sin x cos x + cos x sin x sin x cos x Př : Pomocí součtových vzorců odvoď
( ) ( ) Lineární nerovnice II. Předpoklady: Jak je to s problémem z minulé hodiny? Získali jsme dvě řešení nerovnice x < 3 :
.. Lineární nerovnice II Předpoklady: 00 Jak je to s problémem z minulé hodiny? Získali jsme dvě řešení nerovnice x < : Správné řešení. x < / + x 0 < + x / < x K = ( ; ) Test možné správnosti: x = :
Kódy pro detekci a opravu chyb. INP 2008 FIT VUT v Brně
Kódy pro detekci a opravu chyb INP 2008 FIT VUT v Brně 1 Princip kódování 0 1 0 vstupní data kodér Tady potřebujeme informaci zabezpečit, utajit apod. Zakódovaná data: 000 111 000 Může dojít k poruše,
1. ÚPRAVY ALGEBRAICKÝCH VÝRAZŮ V REÁLNÉM OBORU 1.1. ZLOMKY A ABSOLUTNÍ HODNOTA
1. ÚPRAVY ALGEBRAICKÝCH VÝRAZŮ V REÁLNÉM OBORU 1.1. ZLOMKY A ABSOLUTNÍ HODNOTA V této kpitole se ozvíte: co rozumíme lgebrickým výrzem; jk jsou efinovány zlomky jké záklní operce s nimi prováíme; jk je
Nerovnice a nerovnice v součinovém nebo v podílovém tvaru
Variace 1 Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz
4.2.14 Regulace napětí a proudu reostatem a potenciometrem
4.2.14 Regulace napětí a proudu reostatem a potenciometrem Předpoklady: 4205, 4207, 4210 Nejde o dva, ale pouze o jeden druh součástky (reostat) ve dvou různých zapojeních (jako reostat a jako potenciometr).
Obsah. Dětský pohled Lillian Alnev 117 Jak mohu pomoci? Joanne Friday 121 Skutečné já Glen Schneider 125 Praxe s přítelem Elmar Vogt 129
Obsah ÚVOD DÍTĚ V NAŠEM NITRU 7 ČÁST PRVNÍ UČENÍ O LÉČBĚ A UZDRAVENÍ 1. Energie uvědomění 15 2. Jsme našimi předky i našimi dětmi 23 3. Prvotní strach, prvotní touha 33 4. Jak dýchat, chodit a nechat věci
Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar
Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné
( x) ( ) ( ) { } Vzorce pro dvojnásobný úhel II. Předpoklady: Urči definiční obor výrazů a zjednoduš je. 2. x x x
9 Vzorce pro dvojnásobný úhel II Předpoklady: 08 Př : Urči definiční obor výrazů a zjednoduš je a) ( sin cos ) sin x + cos x sin x x + x sin x b) cos x + cos x + sin x + cos x sin x a) x R sin x + cos
Ten objekt (veličina), který se může svobodně měnit se nazývá nezávislý.
@001 1. Základní pojmy Funkce funkční? Oč jde? Třeba: jak moc se oblečeme, závisí na venkovní teplotě, jak moc se oblečeme, závisí na našem mládí (stáří) jak jsme staří, závisí na čase jak moc zaplatíme
A B = A A B P A B C = P A P B P C = =
9..8 Nezávislé jevy II Předpoklady: 907 Jsou-li nezávislé jevy a. Jsou nezávislé i jevy a? Z obrázku je vidět, že platí: ( ) ( ) = ( ( ) ) ( ( ) ) = ( ) ( ) P P P P P = použijeme nezávislost jevů, : P
2.1.8 Lineární funkce I
2.1.8 Lineární funkce I Předpoklady: 2104, 2105 Př. 1: Celková kapacita přehradní nádrže Orlík je v nádrži 500000000 m. Každou sekundu přiteče do přehrady 780000000 m. Na začátku povodní bylo 4000 m. Odtok
1.4.6 Negace složených výroků I
1.4.6 Negace složených výroků I Předpoklady: 010405 Pedagogická poznámka: Dlouho jsem se v počátcích své praxe snažil probrat negace za jednu hodinu. Tvorba negací je skvělým procvičováním schopnosti dodržovat
2.1.9 Lineární funkce II
.1.9 Lineární funkce II Předpoklad: 108 Pedagogická poznámka: Je třeba postupovat tak, ab na příklad 6, kde se poprvé kreslí graf lineárních funkcí, zblo minimálně 10 minut. Př. 1: Přiřaď k jednotlivým
Slovní úlohy I
..1 Slovní úlohy I Předpoklady: 0008 Pedagogická poznámka: Slovní úlohy jsou problém, hlavně pro to, že neexistuje jednoznačný algoritmus na jejich řešení. Této první hodiny se však problémy netýkají,
3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90
ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy
MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň
MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň Obsahové, časové a organizační vymezení Předmět Matematika se vyučuje jako samostatný předmět v 6. až 8. ročníku 4 hodiny týdně, v 9. ročníku 3
Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )
LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava
Kód uchazeče ID:... Varianta: 14
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 14 1. V lednu byla zaměstnancům zvýšena mzda o 16 % prosincové mzdy. Následně
Nerovnice v součinovém tvaru, kvadratické nerovnice
Nerovnice v součinovém tvaru, kvadratické nerovnice Příklad: Pro která x R je součin x x 5 kladný? Řešení: Víme, že součin je kladný, mají-li oba činitelé stejné znaménko. Tedy aby platilo x x 5 0, musí
( ) ( )( ) ( x )( ) ( )( ) Nerovnice v součinovém tvaru II. Předpoklady: Př.
.. Nerovnice v součinovém tvaru II Předpoklady: 0 Př. 1: Řeš nerovnici x x 0. Problém: Na levé straně není součin musíme ho nejdříve vytvořit: x x x x x x x x x x + 0. ( ( ( = = + řešíme nerovnici: ( (
Odhad ve fyzice a v životě
Odhad ve fyzice a v životě VOJTĚCH ŽÁK Katedra didaktiky fyziky, Matematicko-fyzikální fakulta UK, Praha Gymnázium Praha 6, Nad Alejí 195 Úvod Součástí fyzikálního vzdělávání by mělo být i rozvíjení dovednosti
Obr. 1 Schéma rozměrového obvodu pro zadání A - L
Zadání programů z předmětu 347-32/3 - Základy strojnictví ( ZS ), kombinovaná forma studia, FS Str. 1 PROGRAM č. 3 - VÝPOČET ROZMĚROVÉHO OBVODU Podle individuálního zadání z tabulek proveďte výpočet rozměrového
2.9.4 Exponenciální rovnice I
9 Eponenciální rovnice I Předpoklady: 90 Pedagogická poznámka: Eponenciální rovnice a nerovnice jsou roztaženy do celkem sedmi hodin zejména proto, že jsou brány jako nácvik výběru metody Nejprve si v
13. Soustava lineárních rovnic a matice
@9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky
Predispozice pro výuku IKT (2015/2016)
Konzervatoř P. J. Vejvanovského Kroměříž Predispozice pro výuku IKT (15/16) Základní algoritmy pro počítání s celými a racionálními čísly Adam Šiška 1 Sčítání dvou kladných celých čísel Problém: Jsou dána
Řešení elektronických obvodů Autor: Josef Sedlák
Řešení elektronických obvodů Autor: Josef Sedlák 1. Zdroje elektrické energie a) Zdroje z hlediska průběhu zatěžovací charakteristiky b) Charakter zdroje c) Přenos výkonu ze zdroje do zátěže 2. Řešení
Voltův článek, ampérmetr, voltmetr, ohmmetr
Úloha č. 1b Voltův článek, ampérmetr, voltmetr, ohmmetr Úkoly měření: 1. Sestrojte Voltův článek. 2. Seznamte se s multimetry a jejich zapojováním do obvodu. 3. Sestavte obvod pro určení vnitřního odporu
Autor: Tomáš Galbička www.nasprtej.cz Téma: Názvosloví komplexních sloučenin Ročník: 2.
Názvosloví komplexních sloučenin Co je třeba znát? Koncovky u oxidačních čísel: I -ný III -itý V -ičný/-ečný VII -istý II -natý IV -ičitý VI -ový VIII -ičelý Ligandy Ligand = částice (atom, molekula, iont),
2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou
.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 40, 4, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli (nejlépe tak, aby se zápis mohl otočit nebo jinak schovat
METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání
METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Práce s
7.3.9 Směrnicový tvar rovnice přímky
7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:
Kvadratické nerovnice Předpoklady: Př. 1: Úvaha: Pedagogická poznámka:
..10 Kvadratické nerovnice Předpoklady: 01, 0, 0, 07 Př. 1: Vyřeš nerovnici 0. 0 - mohu rozložit na součin není to nic nového + 1 0 ( )( ) Hledám nulové body: 0 ( ) = = ( ) ( ; 1) ( 1; ) ( ; ) ( ) - -
Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...
Polynomy Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Základní vlastnosti polynomů 2 1.1 Teorie........................................... 2 1.1.1 Zavedení polynomů................................
STUDIUM FOTOEFEKTU A STANOVENÍ PLANCKOVY KONSTANTY. 1) Na základě měření vnějšího fotoefektu stanovte velikost Planckovy konstanty h.
Úkol měření: 1) Na základě měření vnějšího fotoefektu stanovte velikost Planckovy konstanty h. 2) Určete mezní kmitočet a výstupní práci materiálu fotokatody použité fotonky. Porovnejte tuto hodnotu s
Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.
[] Definice determinantu BI-LIN, determinant, 9, P Olšák [2] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A 0 pro singulární matici, det A 0 pro regulární matici používá
Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková
VY_42_INOVACE_MA1_01-36 Název školy Základní škola Benešov, Jiráskova 888 Číslo projektu CZ.1.07/1.4.00/21.1278 Název projektu Pojďte s námi Číslo a název šablony klíčové aktivity IV/2 Inovace a zkvalitnění
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Číslo a proměnná Gradovaný řetězec úloh Téma: soustava rovnic, parametry Autor: Stanislav Trávníček
0. Lineární rekurence Martin Mareš, 2010-07-04
0 Lineární rekurence Martin Mareš, 2010-07-04 V tomto krátkém textu se budeme zabývat lineárními rekurencemi, tj posloupnostmi definovanými rekurentní rovnicí typu A n+k = c 0 A n + c 1 A n+1 + + c k 1
Základy matematiky kombinované studium 714 0365/06
Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické
2 Spojité modely rozhodování
2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A
Lineární rovnice pro učební obory
Variace 1 Lineární rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice
. Určete hodnotu neznámé x tak, aby
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 206 Kód uchazeče ID:.................. Varianta: 2 Příklad. (3b) Binární operace je definovaná jako a b = a+b a b. Určete hodnotu
Variace. Lineární rovnice
Variace 1 Lineární rovnice Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice Rovnice je
M R 8 P % 8 P5 8 P& & %
ážení zákazníci dovolujeme si ás upozornit že na tuto ukázku knihy se vztahují autorská práva tzv. copyright. To znamená že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího (aby ètenáø
Office 2013. podrobný průvodce. Tomáš Šimek
Office 2013 podrobný průvodce Tomáš Šimek Seznámení se společnými postupy při práci s dokumenty Office Popis základních a pokročilejších postupů při práci s Wordem, Excelem, PowerPointem a OneNote Možnosti
7.3.9 Směrnicový tvar rovnice přímky
739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná
9. Úvod do teorie PDR
9. Úvod do teorie PDR A. Základní poznatky o soustavách ODR1 Diferenciální rovnici nazveme parciální, jestliže neznámá funkce závisí na dvou či více proměnných (příslušná rovnice tedy obsahuje parciální
(1) Řešení. z toho F 2 = F1S2. 3, 09 m/s =. 3, 1 m/s. (Proč se zde nemusí převádět jednotky?)
() Která kapalina se více odlišuje od ideální kapaliny, voda nebo olej? Zdůvodněte Popište princip hydraulického lisu 3 Do nádob A, B, C (viz tabule), které mají stejný obsah S dna, je nalita voda do stejné
Problémy konstrukce a implementace modelů strukturální analýzy
Problémy konstrukce a implementace modelů strukturální analýzy Modely strukturální analýzy jsou určitou třídou lineárních modelů, tzn. že všechny obsažené funkce uvnitř těchto modelů mají lineární tvar.
8. Geometrie vrací úder (sepsal Pavel Klavík)
8. Geometrie vrací úder (sepsal Pavel Klavík) Když s geometrickými problémy pořádně nezametete, ony vám to vrátí! Ale když užzametat,takurčitěnepodkoberecamístosmetákupoužijtepřímku.vtéto přednášce nás
Komplexní číslo. Klíčové pojmy: Komplexní číslo, reálná část, imaginární část, algebraické počty s komplexním číslem
Komplexní číslo Cíl kapitoly: seznámení s použitím komplexního čísla v pythonu Klíčové pojmy: Komplexní číslo, reálná část, imaginární část, algebraické počty s komplexním číslem Komplexní číslo Opakování
x y +30x, 12x+30 18y 18y 18x+54
MA Řešené příklady 3 c phabala 00 MA: Řešené příklady Funkce více proměnných: Extrémy.Najděteaklasifikujtelokálníextrémyfunkce f(x,y)=x 3 +9xy +5x +7y..Najděteaklasifikujtelokálníextrémyfunkce f(x,y,z)=x
4.3.8 Vzorce pro součet goniometrických funkcí. π π. π π π π. π π. π π. Předpoklady: 4306
..8 Vzorce pro součet goniometrických funkcí Předpoklady: 06 Vzorce pro součet goniometrických funkcí: sin + sin y = sin cos sin sin y = cos sin cos + cos y = cos cos cos cos y = sin sin Na první pohled
Práce s čísly. Klíčové pojmy: Základní matematické operace, zápis složitějších příkladů, mocniny, odmocniny, zkrácené operátory
Práce s čísly Cílem kapitoly je seznámit žáky se základy práce s čísly v programu python. Klíčové pojmy: Základní matematické operace, zápis složitějších příkladů, mocniny, odmocniny, zkrácené operátory
6.1.2 Operace s komplexními čísly
6.. Operace s komplexními čísly Předpoklady: 60 Komplexním číslem nazýváme výraz ve tvaru a + bi, kde a, b jsou reálná čísla a i je číslo, pro něž platí i =. V komplexním čísle a + bi se nazývá: číslo
Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012
Algebra - třetí díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Dělitelnost 2 Grupy zbytkových tříd 3 Jedna z
Téma je podrobně zpracováno ve skriptech [1], kapitola
Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6. Základní aproximační úlohu lze popsat následovně: Jsou dány body [x 0, y 0 ], [x 1, y 1 ],..., [x n, y n
1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
1.5.7 Prvočísla a složená čísla
17 Prvočísla a složená čísla Předpolady: 103, 106 Dnes bez alulačy Číslo 1 je dělitelné čísly 1,, 3,, 6 a 1 Množinu, terou tvoří právě tato čísla, nazýváme D 1 množina dělitelů čísla 1, značíme ( ) Platí:
Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)
Mária adloňová Fajn MATIKA (nejen) na přijímačky 50 řešených příkladů (vorek) 0 Mgr. Mária adloňová FajnMATIKA (nejen) na přijímačky 50 řešených příkladů (reklamní vorek) Mgr. Mária adloňová, 0 Vydavatel
Edita Kolářová ÚSTAV MATEMATIKY
Přípravný kurs z matematik Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik 1 Obsah 1 Přehled použité smbolik 3 Základní pojm matematické logik a teorie množin 4.1 Element matematické logik.........................
Vektory a matice. Matice a operace s nimi. Hodnost matice. Determinanty. . p.1/12
Vektory a matice Lineární (ne-)závislost vektorů n zê Matice a operace s nimi Hodnost matice Determinanty. p.1/12 Lineární (ne-)závislost vektorů zê n Příklad 9.1.1 Rozhodněte, zda jsou uvedené vektory
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1
Lineární algebra 10. přednáška: Ortogonalita II Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text byl vytvořen
3. Matice a determinanty
. Matice a determinanty Teorie matic a determinantů představuje úvod do lineární algebry. Nejrozsáhlejší aplikace mají matice a determinanty při řešení systémů lineárních rovnic. Pojem determinantu zavedl
KALENDÁŘOVÉ ÚLOHY PRO TALENTY, vč. metodického listu. doc. PhDr. Marta Volfová, CSc.
KALENDÁŘOVÉ ÚLOHY PRO TALENTY, vč. metodického listu doc. PhDr. Marta Volfová, CSc. Centrum talentů M&F&I, Univerzita Hradec Králové, 2010 Kalendářové úlohy jsou zahaleny určitou tajemností a přitahují
ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647
ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 Název vzdělávacího materiálu: Anotace: Vzdělávací oblast: VY_32_INOVACE_ARITMETIKA+ALGEBRA17 Rovnice
Slovní úlohy v učivu matematiky 1. stupně základní školy
Slovní úlohy v učivu matematiky 1. stupně základní školy V každé matematické úloze jde o to, abychom dokázali platnost (pravdivost) nějakého výroku. Podle toho, o jaký výrok jde, máme různé druhy úloh.
Kombinatorický předpis
Gravitace : Kombinatorický předpis Petr Neudek 1 Kombinatorický předpis Kombinatorický předpis je rozšířením Teorie pravděpodobnosti kapitola Kombinatorický strom. Její praktický význam je zřejmý právě
Funkce zadané implicitně
Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf
Digitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_3_09 ŠVP Podnikání RVP 64-41-L/51
4a) Racionální čísla a početní operace s nimi
Racionální čísla a početní operace s nimi Množinu racionálních čísel získáme z množiny čísel celých, jejím rozšířením o čísla desetinná s ukončeným des. rozvojem nebo periodická a zlomky, které lze na
4.2.18 Kirchhoffovy zákony
4.2.18 Kirchhoffovy zákony Předpoklady: 4207, 4210 Už umíme vyřešit složité sítě odporů s jedním zdrojem. Jak zjistit proudy v následujícím obvodu? U 1 Problém: V obvodu jsou dva zdroje. Jak to ovlivní
Dělitelnost přirozených čísel. Násobek a dělitel
Dělitelnost přirozených čísel Násobek a dělitel VY_42_INOVACE_ČER_10 1. Autor: Mgr. Soňa Černá 2. Datum vytvoření: 2.1.2012 3. Ročník: 6. 4. Vzdělávací oblast: Matematika 5. Vzdělávací obor: Matematika
3. Středoškolská stereometrie v anaglyfech
3. Středoškolská stereometrie v anaglyfech V předchozích dvou kapitolách jsme zjistili, jak se zobrazují tělesa ve středovém promítání a hlavně v lineární perspektivě, a jak pomocí těchto promítání vytvořit
Šablona 10 VY_32_INOVACE_0106_0110 Rovnice s absolutní hodnotou
Šablona 10 VY_32_INOVACE_0106_0110 Rovnice s absolutní hodnotou 1 Identifikační údaje školy Číslo projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace VÝUKOVÝ MATERIÁL
Soustava 2 lineárních rovnic o 2 neznámých 3 metody: Metoda sčítací
Soustava 2 lineárních rovnic o 2 neznámých 3 metody: a Sčítací b Dosazovací c Substituce Metoda sčítací Cílem sčítací metody je sečíst 2 rovnice tak, aby se eliminovala odstranila jedna neznámá! Vždy se