Řešení úloh krajského kola 54. ročníku fyzikální olympiády Kategorie A Autořiúloh:J.Thomas(1),J.Jírů(2),P.Šedivý(3)aM.Kapoun(4)
|
|
- Adam Blažek
- před 5 lety
- Počet zobrazení:
Transkript
1 Řešení úloh krajského kola 54. ročníku fyzikální olympiády Kategorie A Autořiúloh:J.Thomas(),J.Jírů(2),P.Šedivý(3)aM.Kapoun(4).a) Zaveďme vztažnou soustavu Oxy podle obr. R. Pohyb lodí popisují vztahy x = vt, y =0, x 2 = vtsinα, y 2 = vtcosα l 0. Hledáme minimum funkce l 2 =[vt( sinα)] 2 +[l 0 vtcos α] 2 = = v 2 t 2 ( 2sinα+sin 2 α)+l 2 0 2l 0 vtcosα+v 2 t 2 cos 2 α= =2v 2 t 2 ( sinα)+l 2 0 2l 0vtcosα. () Položme d(l 2 ) =4v 2 l 0 cosα ( sinα)t 2l 0 vcosα=0 t= dt 2v( sinα). (2) Protože d2 (l 2 ) dt 2 =4v 2 ( sinα) >0,jednáseominimum. Dosazením z(2) do() určíme minimální vzdálenost obou lodí: l 2 min = 2v2 l 2 0 cos2 α 4v 2 ( sinα) + l2 0 l min = l 0 2v2 l0 2cos2 α 2v 2 ( sinα) = l2 0 cos 2 α 2( sinα) = l 0 Číselněvychází t=90s, l min =460m. y l2 0 cos2 α 2( sinα), sinα. (3) 2 6bodů A O L C x l 0 l E v 3 =2v 2 B Obr. R α L 2 v 2 v3 C 90 α β D v l L 2 L Obr. R2
2 b) VokamžikuvypuštěníčlunuseloďL nacházívbodě Dvevzdálenosti l = l 0 cosα l 0tg αodbodu Caloď L 2 senacházívbodě C.Člunses lodíl 2 setkávbodě E(obr.R2).Protožesečlunpohybujerychlostí2v, platí podle sinové věty sinβ sin(90 α) = 2 sinβ= cosα 2 Jízdačlunubudetrvat t = DE = CE 2v v. Vzdálenost DE určíme pomocí sinové věty: β=24. DE sin(90 α) = CD sin(90 + α β) = CD cos(α β) = l 0 cosα l 0tg α. cos(α β) t = DE 2v = l 0 cosα l 0tg α 2vcos(α β) sin(90 α)= l 0( sinα) 2vcos(α β) =43s. 4body 2
3 2.a) Narezistorujenapětí U U aobvodemprocházíproud I = P U.Odpor rezistoru je R= U U = (U U )U =65Ω. I P b) Obvodem opět prochází proud I. Z fázorového diagramu(obr. R3) určíme napětí na kondenzátoru U C = U 2 U 2. Kondenzátormákapacitanci X C = U C = I 2pfC akapacitu 2body C= I P P = = =46 mf. Obr. R3 2pfU C 2pfU U C 2pfU U2 U 2 5bodů c) Připojíme-ližárovkupřesrezistor,jeproudvobvoduvefázisnapětíma zdroj je zatěžován činným výkonem P= UI = U U P =770W. U C ϕ U I Připojíme-li žárovku přes kondenzátor, platí pro fázové posunutí napětí zdrojeoprotiprouducosϕ= U U.Činnývýkonzdroje U spotřebovává pouze žárovka. P = UI cosϕ=ui U U = U I = P =40W 3
4 3.a) Hlavní maximum prvního řádu vidíme ve směru, jehož odchylka α od optické osysplňujepodmínku bsinα=λ.současněplatítg α= y d.vnašempřípadě dostaneme pro zelené interferenční maximum Pak tg α 2 = y 2 d =0,284 α 2=5,84. b= λ 2 sinα 2 = 546, m sin5,84 =2, m. b) Proodchylku α směru,vekterémvidímemodréhlavnímaximum.řádu, platí sinα = λ b =435, m 2, m =0,279 α =2,59. Vzájemnávzdálenostobouhlavníchmaxim.řáduprovlnovoudélku λ je 2y =2dtg α =223mm. c) Aby se dala rozlišit srovnatelně intenzivní hlavní maxima. řádu pro blízké vlnovédélky λaλ+ λ,musípočet Nštěrbinmřížkysplňovatpodmínku V našem případě tedy musí platit N > λ λ. N > λ 3 λ 4 λ 3 =273. Vzhledem k tomu, že naše mřížka má 500 štěrbin na jednom milimetru, je počet štěrbin, které se nacházejí před zornicí oka, dostatečný k tomu, abychom žluté spektrální čáry rtuti daným spektrometrem rozlišili. 4body 4
5 4.a) α) V dynamickém modelu pozitronia se elektron i pozitron pohybují po stejné kruhové trajektorii kolem společného těžiště(obr. R4), přičemž roli dostředivé síly sehrává elektrostatická přitažlivá síla: m e v 2 r = 4pε 0 e 2 4r 2. () Velikostmomentuhybnostisoustavy L=2r m e vje omezena Bohrovou kvantovou podmínkou L n = n h 2p, (2) odkud pro poloměr r kruhové trajektorie vychází r n = ε 0h 2 pm e e 2 n2, takževelikostpozitronia a n =2r n jekvantovánavztahem a n = 2ε 0h 2 pm e e 2 n2 =2a 0 n 2 =, m n 2, kde a 0 =0, mjetzv.bohrůvpoloměratomuvodíku. β) Celková energie pozitronia je E= E k + E p =2 2 m ev 2 + cožpodosazeníz()dá E= 4pε 0 e 2 4r,takže E n = m ee 4 6ε 2 0h 2 n 2= 2 E 0 ( e 2 ), 4pε 0 2r n 2= 6,8eV n 2, e +e Obr. R4 r kde E 0 = 3,6eVjeenergiezákladníhostavuatomuvodíku. b) Absorpce světla je v Bohrově modelu spojena s přechodem pozitronia mezi dvěmapovolenýmienergetickýmistavy E m, E n dlevztahů takže λ mn = c f mn, hf mn = E m E n, λ mn = 6cε2 0h 3 m e e 4 m 2, n > m. n 2 5
6 Vyčísleme nejprve výraz s konstantami. Pak můžeme psát λ mn =83,5nm m 2. n 2 Nyní vyčíslíme možné hodnoty zlomku:.pro m=(lymanovskásérie)ležícelásérievuvoblasti,neboť λ 2 = =245nm. 2.Pro m=2nabízíbalmerovskásériečáryviračástečněiveviditelné, a to dlouhovlnné oblasti optického spektra viz tabulka: n λ(nm) Z toho můžeme soudit, že pozitronium bude pohlcovat pouze světlo červené barvy. 3.Pro m=3avíceužsamyhranysériíležíviroblasti,tedymimoviditelný obor. 4body 6
Balmerova série vodíku
Balmerova série vodíku Josef Navrátil 1, Barbora Pavlíková 2, Pavel Mičulka 3 1 Gymnázium Ivana Olbrachta, pepa.navratil.ez@volny.cz 2 Gymnázium Jeseník, barca@progeo-sys.cz 3 Gymnázium a SOŠ Frýdek Místek,
Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m
Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu
vsinα usinβ = 0 (1) vcosα + ucosβ = v 0 (2) v u = sinβ , poměr drah 2fg v = v 0 sin 2 = 0,058 5 = 5,85 %
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (,, 3, 4, 5, 7), I. Čáp (6).a) Předpokládáme-li impuls třecích sil puků o led vzhledem k velmi krátké době srážky za
Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie C. t 1 = v 1 g = b gt t 2 =2,1s. t + gt ) 2
Řešení úloh. kola 47. ročníku fyzikální olympiády. Kategorie C Autořiúloh:R.Baník(3),I.Čáp(),M.Jarešová(6),J.Jírů()aP.Šedivý(4,5,7).a) Pohybtělesajerovnoměrnězrychlenýsezrychlením g. Je-li v rychlost u
Řešení úloh krajského kola 52. ročníku fyzikální olympiády Kategorie B Autořiúloh:M.Jarešová(1,3),J.Thomas(2),P.Šedivý(4)
Řešení úloh krajského kola 5. ročníku fyzikální olympiády Kategorie utořiúloh:m.jarešová,3),j.thomas),p.šedivý).a) Kdyžjespínačrozepnut,potomjemožnoobvodzobr.překreslitnaobr.. Obr. Celkový odpor obvodu
Základy elektrotechniky
Základy elektrotechniky 5. přednáška Elektrický výkon a energie 1 Základní pojmy Okamžitá hodnota výkonu je deinována: p = u.i [W; V, A] spotřebičová orientace - napětí i proud na impedanci Z mají souhlasný
Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.
Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně
Řešení úloh 1. kola 55. ročníku fyzikální olympiády. Kategorie B
Řešení úloh 1 kola 55 ročníku fyzikální olympiády Kategorie B Autořiúloh:JJírů(1,2),JThomas(3,5,7),MJarešová(4),MKapoun(6) 1a) Během celého děje tvoří vozík s kyvadlem ve vodorovném směru izolovanou soustavu,
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úlohač.III. Název: Mřížkový spektrometr
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úlohač.III Název: Mřížkový spektrometr Vypracoval: Petr Škoda Stud. skup.: F14 Dne: 17.4.2006 Odevzdaldne: Hodnocení:
Balmerova série, určení mřížkové a Rydbergovy konstanty
Balmerova série, určení mřížkové a Rydbergovy konstanty V tomto laboratorním cvičení zkoumáme spektrální čáry 1. řádu vodíku a rtuti pomocí difrakční mřížky (mřížkového spektroskopu). Známé spektrální
s 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m.
Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Označme v a velikost rychlosti atleta, v t velikost rychlosti trenéra. Trenér do prvního setkání ušel dráhu s 1
b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:
Řešení úloh 1. kola 53. ročníku fyzikální olympiády. Kategorie A
Řešení úloh kola 53 ročníku fyzikální olympiády Kategorie A Autořiúloh:JJírů(),MJarešová(2,6),JThomas(4,7),PŠedivý(3,5) a) Vzhledemktomu,že v c,můžemesdostatečnoupřesnostípoužítzákony klasické fyziky Elektrické
Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie B
Řešení úloh kola 9 ročníku fyzikální olympiády Kategorie B Autořiúloh:MJarešová,,,5),PŠedivý3,7)aVKoubek6) a) Označme hvýškunadzemí,kdedojdekesrážcespodní kuličkadopadnenazemrychlostíovelikosti v 0 Hg
Autor: Vladimír Švehla
Bulletin of Applied Mechanics 1, 55 64 (2005) 55 Využití Castiglianovy věty při výpočtu deformací staticky určité případy zatížení tahem a tlakem Autor: Vladimír Švehla České vysoké učení technické, akulta
arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.
Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál
Výsledky úloh. 1. Úpravy výrazů + x 0, 2x 1 2 2, x Funkce. = f) a 2.8. ( ) ( ) 1.6. , klesající pro a ( 0, ) ), rostoucí pro s (, 1)
Výsledky úloh. Úpravy výrazů.. +, + R.., a 0, a b.., a ± b, a b a b a +.. + a +, 0, a.., a 0; ± ; n + a.. a + b 9, > 0.7., a ± b a b m n.8., m 0, n 0, m n.9. a, a > 0 m + n.0., ;0; ;;.., k.. tg, k sin.
KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie B
Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie B Autořiúloh:P.Šedivý(1,2,4,6,7)aM.Jarešová(3,5) 1. a) Má-li být vlákno stále napnuto, nesmí být amplituda kmitů větší než prodloužení vláknavrovnovážnépoloze.zdeplatí
Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3
Balmerova série F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Grepl.F@seznam.cz Abstrakt: Metodou dělených svazků jsme určili lámavý
Projekty - Vybrané kapitoly z matematické fyziky
Projekty - Vybrané kapitoly z matematické fyziky Klára Švarcová klara.svarcova@tiscali.cz 1 Obsah 1 Průlet tělesa skrz Zemi 3 1.1 Zadání................................. 3 1. Řešení.................................
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal
Řešení úloh 1. kola 50. ročníku fyzikální olympiády. Kategorie A
Řešení úloh kola 50 ročníku fyzikální olympiády Kategorie A Autořiúloh:JJírů(),PŠedivý(,,5,6,7),úlohajepřevzatazMoskevskéFO a) Zvolme vztažnou soustavu podle obr R Po přestřižení vlákna koná kulička šikmý
BIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 4: Balrmerova série Datum měření: 13. 5. 016 Doba vypracovávání: 7 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK FYZIKÁLNÍ PRAKTIKUM III Úloha číslo: 16 Název: Měření indexu lomu Fraunhoferovou metodou Vypracoval: Ondřej Hlaváč stud. skup.: F dne:
Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie A
Řešení úoh 1 koa 49 ročníku fyzikání oympiády Kategorie A Autořiúoh:JJírů(1),PŠedivý(,,4,5,7),BVybíra(6) 1a) Při vobě směrů proudů pode obrázku sestavíme pode Kirchhoffových zákonů rovnice: R U e1 = R
5.3.6 Ohyb na mřížce. Předpoklady: 5305
5.3.6 Ohy na mřížce Předpoklady: 5305 Optická mřížka = soustava rovnoěžných velmi lízkých štěrin. Realizace: Skleněná destička s rovnoěžnými vrypy, přes vryp světlo neprochází, prochází přes nepoškraaná
λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny
Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává
(1 + v ) (5 bodů) Pozor! Je nutné si uvědomit, že v a f mají opačný směr! Síla působí proti pohybu.
Přijímací zkouška na navazující magisterské studium - 017 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Těleso s hmotností
Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:
Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat
MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM
MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM Difrakce (ohyb) světla je jedním z několika projevů vlnových vlastností světla. Z těchto důvodů světlo při setkání s překážkou nepostupuje dále vždy
Laboratorní práce č. 3: Měření vlnové délky světla
Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 3: Měření vlnové délky světla G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Gymnázium G Hranice Test
= + = + = 105,3 137, ,3 137,8 cos37 46' m 84,5m Spojovací chodba bude dlouhá 84,5 m. 2 (úhel, který spolu svírají síly obou holčiček).
4.4.4 Trigonometrie v praxi Předpoklady: 443 Nejdřív něco jednoduchého na začátek. Př. : vě přímé důlní chodby ústící do stejného místa svírají úhel α = 37 46' mají být spojeny chodbou, spojující bodu
(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2)
Studium difrakčních jevů TEORIE doplněk: Odvození výrazů pro difrakční maxima (popř. minima) na štěrbině, dvojštěrbině a mřížce jsou zpravidla uvedena na středoškolské úrovni, což je založeno na vhodném
Balmerova série vodíku
Balmerova série vodíku Eva Bartáková, SGAGY Kladno, evebartak@centrum.cz Adam Fadrhonc, SSOU a U, Černá za Bory, Pardubice, adam@kve.cz Lukáš Malina, gymn. Christiana Dopplera, Praha, lukas-malina@seznam.cz
7. Gravitační pole a pohyb těles v něm
7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:
Řešení úloh regionálního kola 47. ročníku fyzikální olympiády. Kategorie B Autořiúloh:M.Jarešová(1,2,3)M.CvrčekaP.Šedivý(4)
Řešení úloh regionálního kola 47 ročníku fyzikální olympiády Kategorie B Autořiúloh:MJarešová(1,,3)MCvrčekaPŠedivý(4) 1a) Pro pohyb úlomků platí zákon zachování hybnosti: mv 01 + mv 0 + mv 03 0 Protože
3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY
3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY Modulací nazýváme proces při kterém je jedním signálem přetvář en jiný signál za účelem př enosu informace. Př i amplitudové modulaci dochází k ovlivňování amplitudy nosného
GONIOMETRIE. 1) Doplň tabulky hodnot: 2) Doplň, zda je daná funkce v daném kvadrantu kladná, či záporná: PRACOVNÍ LISTY Matematický seminář.
/ 9 GONIOMETRIE ) Doplň tabulk hodnot: α ( ) 0 0 5 60 90 0 5 50 80 α (ra sin α cos α tg α cotg α α ( ) 0 5 0 70 00 5 0 60 α (ra sin α cos α tg α cotg α ) Doplň, zda je daná funkce v daném kvadrantu kladná,
Řešení úloh celostátního kola 59. ročníku fyzikální olympiády. Úlohy navrhl J. Thomas
Řešení úlo celostátnío kola 59. ročníku fyzikální olympiády Úloy navrl J. Tomas 1.a) Rovnice rozpadu je 38 94Pu 4 He + 34 9U; Q E r [ m 38 94Pu ) m 4 He ) m 34 9U )] c 9,17 1 13 J 5,71 MeV. body b) K dosažení
Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky
Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky Úkol : 1. Určete mřížkovou konstantu d optické mřížky a porovnejte s hodnotou udávanou výrobcem. 2. Určete vlnovou délku λ jednotlivých
Goniometrie a trigonometrie
Goniometrie a trigonometrie Vzorce pro goniometrické funkce Nyní si řekneme něco o velmi důležitých vlastnostech a odvodíme si také některé velmi důležité vzorce pro výpočty s goniometrickými funkcemi.
Úloha 3: Mřížkový spektrometr
Petra Suková, 2.ročník, F-14 1 Úloha 3: Mřížkový spektrometr 1 Zadání 1. Seřiďte spektrometr pro kolmý dopad světla(rovina optické mřížky je kolmá k ose kolimátoru) pomocí bočního osvětlení nitkového kříže.
l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky
Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení
Petr Šafařík 21,5. 99,1kPa 61% Astrofyzika Druhý Třetí
1 Petr Šafařík Astrofyzika Druhý Třetí 1,5 11 99,1kPa 61% Fyzikální praktika 11 Měření tloušt ky tenkých vrstev Tolanského metodou Průchod světla planparalelní deskou a hranolem Petr Šafařík 0. listopadu
3.4.2 Rovnováha Rovnováha u centrální rovinné silové soustavy nastává v případě, že výsledná síla nahrazující soustavu je rovna nule. Tedy. Obr.17.
Obr.17. F F 1x = F.cos α1,..., Fnx = F. cos 1y = F.sin α1,..., Fny = F. sin α α n n. Původní soustava je nyní nahrazena děma soustavami sil ve směru osy x a ve směru osy y. Tutu soustavu nahradíme dvěma
Zeemanův jev. 1 Úvod (1)
Zeemanův jev Tereza Gerguri (Gymnázium Slovanské náměstí, Brno) Stanislav Marek (Gymnázium Slovanské náměstí, Brno) Michal Schulz (Gymnázium Komenského, Havířov) Abstrakt Cílem našeho experimentu je dokázat
Z toho se η využije na zajištění funkcí automobilu a na překonání odporu vzduchu. l 100 km. 2 body b) Hledáme minimum funkce θ = 1.
Řešení úoh. koa 59. ročníku fyzikání oympiády. Kategorie A Autor úoh: J. Thomas.a) Na dráze vt bude zapotřebí objem paiva V θ θv t. Při jeho spáení se získá tepo Q mh ρv H ρθvh t. Z toho se η využije na
Fyzikální korespondenční seminář UK MFF 22. II. S
Fzikální korespondenční seminář UK MFF http://fkosmffcunicz II S ročník, úloha II S Young a vlnová povaha světla (5 bodů; průměr,50; řešilo 6 studentů) a) Jaký tvar interferenčních proužků na stínítku
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má
Příloha-výpočet motoru
Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ
Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor).
Rezistor: Pasivní elektrotechnická součástka, jejíž hlavní vlastností je schopnost bránit průchodu elektrickému proudu. Tuto vlastnost nazýváme elektrický odpor. Do obvodu se zařazuje za účelem snížení
Relativistická kinematika
Relativistická kinematika 1 Formalismus čtyřhybnosti Pro řešení relativistických kinematických úloh lze často s výhodou použít formalismus čtyřhybnosti. Čtyřhybnost je čtyřvektor, který v sobě zahrnuje
Magnetické pole drátu ve tvaru V
Magnetické pole drátu ve tvaru V K prvním úspěchům získaným Ampèrem při využívání magnetických jevů patří výpočet indukce magnetického pole B, vytvořeného elektrickým proudem procházejícím vodiči. Srovnáme
β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:
GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového
Podpora rozvoje praktické výchovy ve fyzice a chemii
VLNOVÁ DÉLKA A FREKVENCE SVĚTLA 1) Vypočítejte frekvenci fialového světla, je-li jeho vlnová délka 390 nm. Rychlost světla ve vakuu je 3 10 8 m s 1. = 390 nm = 390 10 9 m c = 3 10 8 m s 1 f=? (Hz) Pro
Teoretické úlohy celostátního kola 53. ročníku FO
rozevřete, až se prsty narovnají, a znovu rychle tyč uchopte. Tuto dobu změříte stopkami velmi obtížně. Poměrně přesně dokážete zjistit, kam se posunulo na tyči místo úchopu. Vzdálenost obou míst, v nichž
Řešení úloh celostátního kola 47. ročníku fyzikální olympiády. Autor úloh: P. Šedivý. x l F G
Řešení úloh celostátního kola 47 ročníku fyzikální olypiády Autor úloh: P Šedivý 1 a) Úlohu budee řešit z hlediska pozorovatele ve vztažné soustavě otáčející se spolu s vychýlenou tyčí okolo svislé osy
Řešení úloh krajského kola 58. ročníku fyzikální olympiády Kategorie B Autor úloh: J. Thomas
Řešení úlo kajskéo kola 58 očníku fyzikální olympiády Kategoie B Auto úlo: J Tomas a) Doba letu střely od okamžiku výstřelu do zásau označíme t V okamžiku výstřelu se usa nacází ve vzdálenosti s měřené
zbytkové plyny (ve velmi vysokém vakuu: plyny vzniklé rozkladem těchto látek, nebo jejich syntézou Vakuová fyzika 1 1 / 43
Měření parciálních tlaků V měřeném prostoru se zpravidla nachází: zbytkové plyny (ve velmi vysokém vakuu: H 2, CO, Ar, N 2, O 2, CO 2, uhlovodíky, He) vodní pára páry organických materiálů, nacházejících
KMS cvičení 6. Ondřej Marek
KMS cvičení 6 Ondřej Marek NETLUMENÝ ODDAJNÝ SYSTÉM S DOF analytické řešení k k Systém se stupni volnosti popisují pohybové rovnice: x m m x m x + k + k x k x = m x k x + k x = k x m x k x x m k x x m
Laboratorní úloha č. 7 Difrakce na mikro-objektech
Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového
FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy
FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární
Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44
Kótované promítání Konstruktivní geometrie - LI Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Obsah 1 Polohové úlohy 2 Spád přímky a roviny Konstruktivní geometrie - LI () Kótované promítání
7 Analytické vyjádření shodnosti
7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING
VZÁJEMNÉ SILOVÉ PŮSOBENÍ VODIČŮ S PROUDEM A MAGNETICKÉ POLE
Příklady: 1A. Jakou silou působí homogenní magnetické pole na přímý vodič o délce 15 cm, kterým prochází proud 4 A, a svírá s vektorem magnetické indukce úhel 60? Velikost vektoru magnetické indukce je
prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010
Věty o přírustku funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické
1. Řešená konstrukce Statické řešení Výpočet průhybové čáry Dynamika Vlastní netlumené kmitání...
. Řešená konstrukce.... Statické řešení.... Výpočet průhybové čáry... 5. Dynamika.... Vlastní netlumené kmitání..... Jacobiho metoda rovinné rotace... 4.. Popis algoritmu... 4. Vynucené kmitání... 5 4.
Přechodné děje 2. řádu v časové oblasti
Přechodné děje 2. řádu v časové oblasti EO2 Přednáška 8 Pavel Máša - Přechodné děje 2. řádu ÚVODEM Na předchozích přednáškách jsme se seznámili s obecným postupem řešení přechodných dějů, jmenovitě pak
Měření výkonu jednofázového proudu
Měření výkonu jednofázového proudu Návod k laboratornímu cvičení Úkol: a) eznámit se s měřením činného výkonu zátěže elektrodynamickým wattmetrem se dvěma možnými způsoby zapojení napěťové cívky wattmetru.
Fyzika II, FMMI. 1. Elektrostatické pole
Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých
ÚLOHY OPTIMÁLNEHO RIADENIA. Viera Kleinová Slovenská technická univerzita Katedra matematiky a deskriptívnej geometrie
Slovenská technická univerzita Katedra matematiky a deskriptívnej geometrie Objem krabice je: V (h) = (a 2h)(b 2h)h. Objem krabice je: V (h) = (a 2h)(b 2h)h. Objem krabice pre h = 10mm je: V (10) = 526300mm
Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f
Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,
Lineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
Základy stavby výrobních strojů Tvářecí stroje I KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ
KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ URČEN ENÍ PRÁCE KLIKOVÉHO LISU URČEN ENÍ SETRVAČNÍKU KLIKOVÉHO LISU KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ KLIKOVÁ HŘÍDEL OJNICE KLIKOVÁ HŘÍDEL BERAN LOŽISKOVÁ TĚLESA
Řešení úloh 1. kola 54. ročníku fyzikální olympiády. Kategorie A
Řešení úloh 1. kola 54. ročníku fyzikální olympiády. Kategorie A Autořiúloh:J.Jírů(1),M.Jarešová(),J.Thomas(4),P.Šedivý(3,5,6), M. Kapoun(7) 1.a) Pravidelný šestiúhelník o straně a lze složit ze šesti
Odvození rovnice pro optimální aerodynamické zatížení axiální stupně
1 Tato Příloha 801 je sočástí článk 19 Návrh axiálních a diagonálních stpňů lopatkových strojů, http://wwwtransformacni-technologiecz/navrh-axialnicha-diagonalnich-stpn-lopatkovych-strojhtml Odvození rovnice
Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky
Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky 1. Vysvětlete pojmy kulová a rovinná vlnoplocha. 2. Pomocí Hyugensova principu vysvětlete konstrukci tvaru vlnoplochy v libovolném budoucím
2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY
2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY Příklad 2.1: V obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete fázorový
Úlohy krajského kola kategorie A
62. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dáno 21 různých celých čísel takových, že součet libovolných jedenácti z nich je větší než součet deseti ostatních čísel. a) Dokažte,
Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy
Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky
1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.
1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci
POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III
POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III FOTOELEKTRICKÝ JEV OBJEV ATOMOVÉHO JÁDRA 1911 Rutherford některé radioaktivní prvky vyzařují částice α, jde o kladné částice s nábojem 2e a hmotností 4 vodíkových
MĚŘENÍ PLANCKOVY KONSTANTY
Úloha č. 14a MĚŘENÍ PLANCKOVY KONSTANTY ÚKOL MĚŘENÍ: 1. Změřte napětí U min, při kterém se právě rozsvítí červená, žlutá, zelená a modrá LED. Napětí na LED regulujte potenciometrem. 2. Nakreslete graf
Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,
Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()
Matematika I: Aplikované úlohy
Matematika I: Aplikované úlohy Zuzana Morávková Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava 260. Řy 283 - Pálkař Zadání Pálkař odpálí míč pod úhlem α = 30 a rychlostí
Přijímací zkouška na navazující magisterské studium 2015
Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční
Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)
1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht
rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y =
Cíle Přehled základních typů diferenciálních rovnic prvního řádu zakončíme pojednáním o lineárních rovnicích, které patří v praktických úlohách k nejfrekventovanějším. Ukážeme například, že jejich řešení
8.1. Separovatelné rovnice
8. Metody řešení diferenciálních rovnic 1. řádu Cíle V předchozí kapitole jsme poznali separovaný tvar diferenciální rovnice, který bezprostředně umožňuje nalézt řešení integrací. Eistuje široká skupina
c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky
Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda
Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.
U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek
ELEKTROMAGNETICKÉ POLE
ELEKTROMAGNETICKÉ POLE 1. Magnetická síla působící na náboj v magnetickém poli Fyzikové Lorentz a Ampér zjistili, že silové působení magnetického pole na náboj Q, závisí na: 1. velikosti náboje Q, 2. relativní
Theory Česky (Czech Republic)
Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider
Fyzika pro chemiky II
Fyzika pro chemiky II P. Klang, J. Novák, R. Štoudek, Ústav fyziky kondenzovaných látek, PřF MU Brno 18. února 2004 1 Optika 1. Rovinná elektromagnetická vlna o frekvenci f = 5.45 10 14 Hz polarizovaná
TROJFÁZOVÁ SOUSTAVA ZÁKLADNÍ POJMY
TROJFÁOÁ SOSTAA základní obrat ve výrobě a užití elektrické energie nesporné výhody při výrobě, přenosu a přeměně elektrické energie na mechanickou Trojfázová symetrická soustava napětí: tři zdroje harmonického
Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz
. STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad.: V elektrickém obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete