Klasifikace a rozpoznávání. Umělé neuronové sítě a Support Vector Machines

Rozměr: px
Začít zobrazení ze stránky:

Download "Klasifikace a rozpoznávání. Umělé neuronové sítě a Support Vector Machines"

Transkript

1 Klasifiace a rozpoznávání Umělé neuronové sítě a Support Vector Machines

2 x 1 x 2 w 1 w 2 Lineární lasifiátory a y = f ( w T x+b) Σ f(.) y b Nevýhoda: pouze lineární rozhodovací hranice Možné řešení: Použít jiný než lineární lasifiátor (např. GMM) Nelineární transformace vstupních vetorů: Ale jaou transformaci použít? Postavit hierarchii lineárních lasifiátorů

3 Hierarchie lineárních lasifiátorů w 11 a 1 Σ f(.) h x 1 1 w 12 w 21 x 2 a 2 Σ f(.) h 2 w 22 b 1 w 31 w 32 Σ f(.) y b 3 a 3 b 2 Napřed natrénujeme modrý a zelený lasifiátor ta aby oddělily aždý cluster modrých dat od zbytu. Potřebujeme supervizi: Které modré data patří do terého clusteru? Pa natrénujeme červený lasifiátor na pravděpodobnostních výstupech modrého a zeleného lasifiátoru x 2 h 2 x 1 h 1

4 Neuronové sítě pro lasifiaci w 11 a 1 Σ f(.) h x 1 1 w 12 w 21 x 2 a 2 Σ f(.) h 2 w 22 b 1 b 2 w 31 w 32 a 3 Σ f(.) y b 3 Taovýto hierarchicý lasifiátor můžeme trénovat jao cele bez nutnosti předchozí supervize. Jedná se o jednoduchou neuronovou síť (Neural Networ) pro binární lasifiační problém Klasifiátory v první vrstvě se mají samy naučit jaé clustery je v datech třeba identifiovat, aby finální lineární lasifiátor mohl oddělit třídy. lze vidět jao nelineární transformaci do prostoru, de jsou třídy dobře lineárně separovatelné. představují tzv. srytou vrstvu

5 Neuron a jeho matematicý model x 1 x 2 w 1 a w Σ f(.) y 2 b Zjednodušená abstrace fyzicého neuronu, inspirace v přírodě Zdroj ilustrace: wiipedia

6 Trénování neuronové sítě Uvažujme jednoduchý případ binárního lasifiátoru. Stejně jao u logisticé regrese použijeme jao objetivní funci pravděpodobnost, že všechny trénovací vstupní vetory x n jsou rozpoznány správně: Kde y n je pravděpodobnost třidy C 1 prediovaná výstupem neuronové sítě pro vzor x n. t je vetor oretních identit tříd: t n = 1 resp. t n = 0, poud x n paří do třídy C 1 resp. C2. Opět se nám bude lepe pracovat se (záporným) logaritmem této objetivní funce, tedy vzájemnou entropii: Opět budeme parametry (váhy neuronové sítě) optimalizovat pomoci metody gradient descend: w new = w old ε E(w)

7 Dosazením pa dostaneme Zpětné šíření chyby Potřebujeme vypočítat gradient chyby: (zde jsou vzorce jen pro jeden vzor trénovacích dat) E=[ E w 1 E E w 2 w K ]T Nejprve určíme gradient vah mezi srytou a výstupní vrstvou: h 1 h 2 w 31 w 32 a 3 Σ f(.) y b 3 E w E a E = y a 3 3, j y a3 w3, j 3 E w E = y 3, j y a 3 E = a 3 = a w 3 3, j Řetězové pravidlo: chyba E je složená funce závislá na váze w m,j přes ativaci a 3 a výstup y ( t ln y + (1 t) ln(1 y) ) f ( a ) 3, j y J = δ 3 w3, h = δ 3h w = 1 Zde předpoládáme, že všechny ativační funce jsou logisticé sigmoidy f(a) = σ(a) a víme,ze derivace σ (a) = σ(a) (1-σ(a)) = y (1 - y). a j = 1 t y t y y(1 y) = ( y t) = δ 3 Tazvaná chyba na výstupu

8 Zpětné šíření chyby II Nyní určíme gradient vah mezi vstupní a srytou vrstvou: E E y a3 h a = w, n y a3 h a w,n Opět řetězové pravidlo: chyba E je složená funce závislá na váze wj,n přes ativaci a j a výstup h j první vrstvy a dále přes ativaci a 3 a výstup druhé vrstvy Podobným výpočtem jao pro výstupní vrstvu a využitím už spočítaného δ 3 : E a E w,n E = a 3 E = a a h 3 a w h a,n = δ w h (1 h ) = δ 3 = δ x n 3, w 11 x 1 w 12 w 21 a 1 Σ f(.) h 1 b 1 Chyba na výstupu δ 3 se zpětně se propaguje do chyby ve sryte vrsve δ w 31 a 3 Σ f(.) y x 2 a 2 Σ f(.) h 2 w 22 w 32 b 3 b 2

9 Zpětné šíření chyby III V obecném případě dy má neuronová sít více výstupů y m (např. pro více tříd) bude mít chyba: δ složitější tvar: ( ) M m= m, m M = m m m δ h h w δ a h h a a E = a E = = Protože všechny výstupy sítě závisí na hodnotě sryté vrstvy h, sčítáme parciální derivace ze všech neuronů další vrstvy. Výraz δ m = y m - t m je chyba na m-tém výstupu. Obdobně se chyba δ může zpětně šířit do předešlých vrstev, poud by neuronová síť měla srytých vrstev více.

10 Úprava vah w new =w old ǫ E Úpravu vah lze provádět: 1. po předložení všech vetorů trénovací sady (batch training) gradienty pro jednotlivé vzory z předchozích slajdů se aumulují pomalejší onvergence, nebezpečí uvíznutí v loálním minimu 2. po aždém vetoru (Stochastic-Gradient Descent) rychlejší postup trénování při redundantních trénovacích datech rizio přetrénování na posledních pár vetorů z trénovací sady data je lepší předládat v náhodném pořadí 3. po předložení něolia vetorů (mini-batch training)

11 Ochrana proti přetrénování Rozdělení dat: trénovací, cross-validační, testovací sada Algoritmus New-Bob (simulované žíhání): 1. proveď jednu iteraci trénovaní 2. zjisti úspěšnost NN na CV sadě - poud přírůste je menší než 0.5%, sniž teplotu є o 1/2 - poud přírůste opětovně menší než 0.5%, zastav trénování 3. jdi na 1. Učící ro є můžeme interpretovat jao teplotu, s nižší teplotou lesá pohyblivost vah podobně jao je tomu u moleul plynu. Síť s menším počtem parametrů, úzým hrdlem Regularizace vah (weight-decay): do objetivní funce přidáme výraz terý penalizuje váhy s velou ladnou či zápornou hondotou)

12 Normalizace dat bez normalizace x~ = x µ x~ x µ = σ x 2 x 2 x 2 x 1 x 1 x 1 Transformujeme náhodné proměnné X, ta aby platilo: E[X] = 0; D[X] = 1 Dynamicý rozsah hodnot se přizpůsobí dynamicému rozsahu vah

13 Varianty neuronových síťí Umělé neuronové sítě mohou mít více než jednu srytou vrstvu: Současný trend pro large-scale problémy (rozpoznávání řeči či obrazu) jsou hluboé sítě (Deep Neural Networs) s něolia (typicy do 10) vrstvami a až desíty tisíc neuronů (miliony trénovatelných vah) Neuronovou síť lze použít pro jiné problémy než binární lasifiace: Regrese Neunorová síť muže aproximovat libovolnou (M-dimensionální) nelineární funci Typicy je použita lineární (či-li žádná) ativační funce na vytupu NN. Objetivní funce je typicy Mean Squared Error (pro N vzoru a M výstupů): Klasifiace do více tříd: Muticlass cross-entropy obetivní funce: E= E = N M n= 1 m= 1 n= 1 m= 1 ( t y ) m de t n,m, je 1 poud n-tý vzor patří do m-té třídy, jina je 0. Softmax nelinearita na výstupu zaručí, že výstupem jsou normalizované posteriorní pravděpodobnosti říd: M y m N M = exp n, m n, 2 t n,m logy n, m ( a )/ exp( a ) m i= 1 i

14 Support Vector Machines

15 Support Vector Machines SVM lineární lasifiátor s specificou objetivní funci: maximum margin y N = n= 1 T wn xn + b = w x + b V záladní variantě zvládne pouze dvě nepřerývající se lineárně separovatelné třídy

16 SVM ritérium Maximalizuje mezeru (margin) mezi dvěmi shluy dat R D

17 Lineární lasifiátor y = 0 y < 0 y > 0 x y(x) = w T x + b w T x w = - w b + y(x) w x 2 - b w y(x ) w. w w T x w x 1

18 Lineární lasifiátor y = 0 y = 1 y T = w x + b y = -1 Rozhodněme, že margin bude dán prostorem mezi přímami y=-1 a y=1 x 2 w Co se stane, dyž zrátíme vetor w?. x 1

19 Lineární lasifiátor y = 0 y = 1 y T = w x + b y = -1 Rozhodněme, že margin bude dán prostorem mezi přímami y=-1 a y=1 x 2. w Co se stane, dyž zrátíme vetor w? Margin se zvětší! Budeme hledat řešeni, de w je co nejratší a de margin odděluje data obou tříd. x 1

20 Trénování SVM Minimalizujeme: arg min S podmínami: t n 1 w, b 2 w T w T ( x + b) 1 w i n { 1,2,,N} N je počet trénovacích vetorů a t n { 1,1} udávají třídy pro jednotlivá trénovací data. Jedná se o problém tzv. vadraticého programování, což je speciální případ optimalizace s omezením (constrained optimization).

21 Co jsou to Support Vectors? Podpůrné vetory (support vectors) leží na oraji prázdné oblasti a přímo ovlivňují řešení Kdyby se ostatní data vypustila z trénovacího setu, výslede by se nezměnil x 2 x 2 ` ` ` `. ` x 1 x 1

22 Řešení Normálový vetor w definující rozhodovací hranici lze sestavit lineární ombinaci podpůrných vetoru: w = tiαixi > 0 i S α i Tato reprezentace umožňuje lasifiaci bez explicitního vyjádření vetoru w: y T = w x + b = tiαix i S T i x + b Podobně i vstupem do trénovacíhi mohou být he salární součiny mezi trénovacími daty možnost použití následujícího ernel triu.

23 Lineárně neseparovatelná úloha φ(x) Může být řešena nelineárním mapováním dat do nového prostoru (s více dimenzemi) x? φ(x) 2D 3D Pro SVM potřebujeme v novem prostoru spočítat salární součin mezi jaýmioli dvěma mapovanými vetory. To lze často udělat efetivněji bez explicitního mapovaní do noveho prostoru pomoci tzv. jádrové funce (ernel function) T K( x, y) = φ( x) φ( y)

24 Přílady jader Polynomiální jádro: T K( x, y) = (1 + x y) Přilad pro jednorozměrná data a d=2 K( x, y) = (1 + xy) 2 = 1+ 2xy + x 2 y 2 d = φ( x) T φ( y) Což odpovídá salárnímu součinu po mapování: ( ) 2 1, 2x, φ( x) T = x Radiální bázove funce: 1 T K( x, y) = exp ( x y) ( x y) 2 2σ Odpovídají salárnímu součinu po projeci do jistého neonečně dimensionálního prostoru vždy separovatelné třídy.

25 Přerývající se třídy Pro přerývající třídy uvedené řešení selže. Zavádějí se proměnné (slac variables), teré oslabí omezující podmíny x 2 ξ i x 1

26 Přerývající se třídy II Minimalizujeme S podmínami: min w w, b T w + C N n= 1 ξ n t T n( w xn ξ n 0 + b) 1 ξ n n =1K,, N První výraz maximalizuje mezeru (margin) mezi třídami a druhý penalizuje vzory porušující tento margin. C řídí ompromis mezi oběma výrazy. C odpovídá originální variantě pro separovatelná data.

27 Vlastnosti a použití SVM Výstup SVM nemá pravděpodobnostní interpretaci. neprediuje pravděpodobnost tříd pro daný vstup produuje ale měé sóre, teré lze přibližně na pravděpodobnost třídy převést. Objetivní funce má blíže maximalizaci počtu správně rozpoznaných než maximalizaci pravděpodobnost že vše je rozpoznáno dobře (objetivní funce logisticé regrese). Často používaný lasifiátor pro problémy se dvěma třídami. Rozšíření na více tříd je možné, ale ne ta přímočaré jao u pravděpodobnostních lasifiátorů. Hlavní výhoda oproti např. logisticé regresi je možnost implicitní nelineární transformace vstupů pomoci jader. Společná vlastnost všech jádrových metod (Kernel methods).

28 Software Existuje velni dobrá nihovna LibSVM Funce v Matlabu: svmtrain, svmclassify

Klasifikace a rozpoznávání. Lineární klasifikátory

Klasifikace a rozpoznávání. Lineární klasifikátory Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber

Více

Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)

Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.

Více

Obsah přednášky. 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacking 5. Boosting 6. Shrnutí

Obsah přednášky. 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacking 5. Boosting 6. Shrnutí 1 Obsah přednášy 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacing 5. Boosting 6. Shrnutí 2 Meta learning = Ensemble methods Cíl použít predici ombinaci více různých modelů Meta learning (meta

Více

Optimální rozdělující nadplocha 4. Support vector machine. Adaboost.

Optimální rozdělující nadplocha 4. Support vector machine. Adaboost. Optimální rozdělující nadplocha. Support vector machine. Adaboost. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics Opakování Lineární diskriminační

Více

G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování

G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování Matematicé programování Označení a definice veličin. opt i/maimalizace w, Žádaná hodnota,transpozice, relace typu nebo Inde diagonální formy vetoru. Obecná omezovací podmína Γ ( ( = ( Є, R, y podmíny typu

Více

Umělé neuronové sítě a Support Vector Machines. Petr Schwraz

Umělé neuronové sítě a Support Vector Machines. Petr Schwraz Umělé neuronové sítě a Support Vector Machnes Petr Schraz scharzp@ft.vutbr.cz Perceptron ( neuron) x x x N f() y y N f ( x + b) x vstupy neuronu váhy jednotlvých vstupů b aktvační práh f() nelneární funkce

Více

(iv) D - vybíráme 2 koule a ty mají různou barvu.

(iv) D - vybíráme 2 koule a ty mají různou barvu. 2 cvičení - pravděpodobnost 2102018 18cv2tex Definice pojmů a záladní vzorce Vlastnosti pravděpodobnosti Pravděpodobnost P splňuje pro libovolné jevy A a B následující vlastnosti: 1 0, 1 2 P (0) = 0, P

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

Shluková analýza, Hierarchické, Nehierarchické, Optimum, Dodatek. Učení bez učitele

Shluková analýza, Hierarchické, Nehierarchické, Optimum, Dodatek. Učení bez učitele 1 Obsah přednášy 1. Shluová analýza 2. Podobnost objetů 3. Hierarchicé shluování 4. Nehierarchicé shluování 5. Optimální počet shluů 6. Další metody 2 Učení bez učitele není dána výstupní lasifiace (veličina

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

Fakulta informačních technologií VUT Brno. Předmět: Srovnání klasifikátorů Autor : Jakub Mahdal Login: xmahda03 Datum:

Fakulta informačních technologií VUT Brno. Předmět: Srovnání klasifikátorů Autor : Jakub Mahdal Login: xmahda03 Datum: Fakulta informačních technologií VUT Brno Předmět: Projekt: SRE Srovnání klasifikátorů Autor : Jakub Mahdal Login: xmahda03 Datum: 9.12.2006 Zadání Vyberte si jakékoliv 2 klasifikátory, např. GMM vs. neuronová

Více

Lineární klasifikátory

Lineární klasifikátory Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout

Více

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Bucinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Formalizace rozměrové analýzy ( výsledné jednoty na obou stranách musí souhlasit ). Rozměr fyziální veličiny Mějme nějaou třídu jednote, napřílad [(g,

Více

Support Vector Machines (jemný úvod)

Support Vector Machines (jemný úvod) Support Vector Machines (jemný úvod) Osnova Support Vector Classifier (SVC) Support Vector Machine (SVM) jádrový trik (kernel trick) klasifikace s měkkou hranicí (soft-margin classification) hledání optimálních

Více

Vytěžování znalostí z dat

Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 8 1/26 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).

Více

1 Gaussova kvadratura

1 Gaussova kvadratura Cvičení - zadání a řešení úloh Zálady numericé matematiy - NMNM0 Verze z 7. prosince 08 Gaussova vadratura Fat, že pro něterá rovnoměrná rozložení uzlů dostáváme přesnost o stupeň vyšší napovídá, že pro

Více

4. Přednáška: Kvazi-Newtonovské metody:

4. Přednáška: Kvazi-Newtonovské metody: 4 Přednáša: Kvazi-Newtonovsé metody: Metody s proměnnou metriou, modifiace Newtonovy metody Efetivní pro menší úlohy s hustou Hessovou maticí Newtonova metoda (opaování): f aproximujeme loálně vadraticou

Více

Algoritmy a struktury neuropočítačů ASN P4. Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby

Algoritmy a struktury neuropočítačů ASN P4. Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby Algoritmy a struktury neuropočítačů ASN P4 Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby Vrstevnatá struktura - vícevrstvé NN (Multilayer NN, MLNN) vstupní vrstva (input layer)

Více

Úvod do optimalizace, metody hladké optimalizace

Úvod do optimalizace, metody hladké optimalizace Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady

Více

Trénování sítě pomocí učení s učitelem

Trénování sítě pomocí učení s učitelem Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup

Více

Rosenblattův perceptron

Rosenblattův perceptron Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného

Více

Preceptron přednáška ze dne

Preceptron přednáška ze dne Preceptron 2 Pavel Křížek Přemysl Šůcha 6. přednáška ze dne 3.4.2001 Obsah 1 Lineární diskriminační funkce 2 1.1 Zobecněná lineární diskriminační funkce............ 2 1.2 Učení klasifikátoru........................

Více

Neuronové sítě (11. přednáška)

Neuronové sítě (11. přednáška) Neuronové sítě (11. přednáška) Machine Learning Naučit stroje se učit O co jde? Máme model výpočtu (t.j. výpočetní postup jednoznačně daný vstupy a nějakými parametry), chceme najít vhodné nastavení parametrů,

Více

VI. Derivace složené funkce.

VI. Derivace složené funkce. VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

AVDAT Nelineární regresní model

AVDAT Nelineární regresní model AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Intervalová data a výpočet některých statistik

Intervalová data a výpočet některých statistik Intervalová data a výpočet některých statistik Milan Hladík 1 Michal Černý 2 1 Katedra aplikované matematiky Matematicko-fyzikální fakulta Univerzita Karlova 2 Katedra ekonometrie Fakulta informatiky a

Více

Geometrická zobrazení

Geometrická zobrazení Pomocný text Geometricá zobrazení hodná zobrazení hodná zobrazení patří nejjednodušším zobrazením na rovině. Je jich vša hrozně málo a často se stává, že musíme sáhnout i po jiných, nědy výrazně složitějších

Více

MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE

MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 PŘEDNÁŠKA 5 MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 Multiriteriální rozhodování

Více

Metoda konjugovaných gradientů

Metoda konjugovaných gradientů 0 Metoda onjugovaných gradientů Ludě Kučera MFF UK 11. ledna 2017 V tomto textu je popsáno, ja metodou onjugovaných gradientů řešit soustavu lineárních rovnic Ax = b, de b je daný vetor a A je symetricá

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

OPTIMALIZACE. (přehled metod)

OPTIMALIZACE. (přehled metod) OPTIMALIZACE (přehled metod) Typy optimalizačních úloh Optimalizace bez omezení Nederivační metody Derivační metody Optimalizace s omezeními Lineární programování Nelineární programování Globální optimalizace

Více

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní ..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X

Více

přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat

přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat Zkouška ISR 2013 přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat 1. Rozdílné principy u induktivního a deduktivního

Více

Pavel Seidl 1, Ivan Taufer 2

Pavel Seidl 1, Ivan Taufer 2 UMĚLÉ NEURONOVÉ SÍTĚ JAKO PROSTŘEDEK PRO MODELOVÁNÍ DYNAMICKÉHO CHOVÁNÍ HYDRAULICKO-PNEUMATICKÉ SOUSTAVY USING OF ARTIFICIAL NEURAL NETWORK FOR THE IDENTIFICATION OF DYNAMIC PROPERTIES OF HYDRAULIC-PNEUMATIC

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. LINEÁRNÍ KLASIFIKACE PRINCIPY KLASIFIKACE pomocí diskriminačních funkcí funkcí,

Více

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Strojové učení Marta Vomlelová

Strojové učení Marta Vomlelová Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer

Více

Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I

Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Příklad Tahová síla papíru používaného pro výrobu potravinových sáčků je důležitá charakteristika kvality. Je známo, že síla

Více

5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015

5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015 Umělé neuronové sítě 5. 4. 205 _ 5- Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce _ 5-2 Neuronové aktivační

Více

GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS. Roman Biskup, Anna Čermáková

GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS. Roman Biskup, Anna Čermáková GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS Roman Bisup, Anna Čermáová Anotace: Příspěve se zabývá prezentací principů učení jednoho onrétního typu neuronových sítí. Cílem práce

Více

AVDAT Klasický lineární model, metoda nejmenších

AVDAT Klasický lineární model, metoda nejmenších AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i

Více

Funkce jedné proměnné

Funkce jedné proměnné Funkce jedné proměnné Příklad - V následujících příkladech v případě a) pro funkce dané rovnicí zjistěte zda jsou rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf

Více

Matematická analýza III.

Matematická analýza III. 3. Implicitní funkce Miroslav Hušek, Lucie Loukotová UJEP 2010 V této kapitole se seznámíme s dalším možným zadáním funkce jejím implicitním vyjádřením. Doplní tak nám již známé explicitní a parametrické

Více

Analýza a zpracování signálů. 5. Z-transformace

Analýza a zpracování signálů. 5. Z-transformace nalýa a pracování signálů 5. Z-transformace Z-tranformace je mocný nástroj použitelný pro analýu lineárních discretetime systémů Oboustranná Z-transformace X j F j x, je omplexní číslo r e r e Oboustranná

Více

a) formulujte Weierstrassovo kritérium stejnoměrné konvergence b) pomocí tohoto kritéria ukažte, že funkční řada konverguje stejnoměrně na celé R

a) formulujte Weierstrassovo kritérium stejnoměrné konvergence b) pomocí tohoto kritéria ukažte, že funkční řada konverguje stejnoměrně na celé R ) ČÍSELNÉ A FUNKČNÍ ŘADY (5b) a) formulujte Leibnitzovo ritérium včetně absolutní onvergence b) apliujte toto ritérium na řadu a) formulujte podílové ritérium b) posuďte onvergenci řad c) oli členů této

Více

Těleso na nakloněné rovině Dvě tělesa spojená tyčí Kyvadlo

Těleso na nakloněné rovině Dvě tělesa spojená tyčí Kyvadlo TEORETICKÁ MECHANIKA INTEGRÁLNÍ PRINCIPY MECHANIKY Záladní pojmy z mechaniy Mechanicý systém: jaáoli soustava částic nebo těles teré se rozhodneme popisovat (eletron atom Zeměoule planetární systém ).

Více

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) 2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h

Více

Matematická analýza III.

Matematická analýza III. 2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom

Více

Testování hypotéz. December 10, 2008

Testování hypotéz. December 10, 2008 Testování hypotéz December, 2008 (Testování hypotéz o neznámé pravděpodobnosti) Jan a Františe mají pytlíy s uličami. Jan má 80 bílých a 20 červených, Františe má 30 bílých a 70 červených. Vybereme náhodně

Více

Umělé neuronové sítě

Umělé neuronové sítě Umělé neuronové sítě 17. 3. 2018 5-1 Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce 5-2 Neuronové aktivační

Více

7. TRANSFORMÁTORY. 7.1 Štítkové údaje. 7.2 Měření odporů vinutí. 7.3 Měření naprázdno

7. TRANSFORMÁTORY. 7.1 Štítkové údaje. 7.2 Měření odporů vinutí. 7.3 Měření naprázdno 7. TRANSFORMÁTORY Pro zjednodušení budeme měření provádět na jednofázovém transformátoru. Na trojfázovém transformátoru provedeme pouze ontrolu jeho zapojení měřením hodinových úhlů. 7.1 Štítové údaje

Více

Kybernetika a umělá inteligence, cvičení 10/11

Kybernetika a umělá inteligence, cvičení 10/11 Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu

Více

Přednáška 13 Redukce dimenzionality

Přednáška 13 Redukce dimenzionality Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /

Více

Využití metod strojového učení v bioinformatice David Hoksza

Využití metod strojového učení v bioinformatice David Hoksza Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace

Více

Klasifikace a rozpoznávání. Bayesovská rozhodovací teorie

Klasifikace a rozpoznávání. Bayesovská rozhodovací teorie Klasifikace a rozpoznávání Bayesovská rozhodovací teorie Extrakce p íznaků Granáty Četnost Jablka Váha [dkg] Pravděpodobnosti - diskrétní p íznaky Uvažujme diskrétní p íznaky váhové kategorie Nechť tabulka

Více

Předpoklady: a, b spojité na intervalu I.

Předpoklady: a, b spojité na intervalu I. Diferenciální rovnice Obyčejná diferenciální rovnice řádu n: F t, x, x, x,, x n Řešení na intervalu I: funce x : I R taová, že pro aždé t I je F t, xt, x t,, x n t Maximální řešení: neexistuje řešení na

Více

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí 202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají

Více

6 5 = 0, = 0, = 0, = 0, 0032

6 5 = 0, = 0, = 0, = 0, 0032 III. Opaované pousy, Bernoulliho nerovnost. Házíme pětrát hrací ostou a sledujeme výsyt šesty. Spočtěte pravděpodobnosti možných výsledů a určete, terý má největší pravděpodobnost. Řešení: Jedná se o serii

Více

Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých

Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých Obyčejné diferenciální rovnice Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých se vyskytují derivace neznámé funkce jedné reálné proměnné. Příklad. Bud dána funkce f : R R.

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

Numerická matematika 1

Numerická matematika 1 Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................

Více

Numerické metody optimalizace - úvod

Numerické metody optimalizace - úvod Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu

Více

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu. 6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami

Více

Algoritmy a struktury neuropočítačů ASN P3

Algoritmy a struktury neuropočítačů ASN P3 Algoritmy a struktury neuropočítačů ASN P3 SOM algoritmus s učitelem i bez učitele U-matice Vektorová kvantizace Samoorganizující se mapy ( Self-Organizing Maps ) PROČ? Základní myšlenka: analogie s činností

Více

Lineární diskriminační funkce. Perceptronový algoritmus.

Lineární diskriminační funkce. Perceptronový algoritmus. Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace

Více

5. cvičení z Matematiky 2

5. cvičení z Matematiky 2 5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými

Více

F6180 Úvod do nelineární dynamiky. F6150 Pokročilé numerické metody FX003 Plánování a vyhodnocování experimentu. F7780 Nelineární vlny a solitony

F6180 Úvod do nelineární dynamiky. F6150 Pokročilé numerické metody FX003 Plánování a vyhodnocování experimentu. F7780 Nelineární vlny a solitony Moderní metody modelování ve fyzice jaro 2015 přednáša: D. Hemzal cvičení: F. Münz F1400 Programování F5330 Záladní numericé metody F7270 Matematicé metody zpracování měření F6180 Úvod do nelineární dynamiy

Více

4. Aplikace matematiky v ekonomii

4. Aplikace matematiky v ekonomii 4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

Binomická věta

Binomická věta 97 Binomicá věta Předpolady: 96 Kdysi dávno v prvním ročníu jsme se učili vzorce na umocňování dvojčlenu Př : V tabulce jsou vypsány vzorce pro umocňování dvojčlenu Najdi podobnost s jinou dosud probíranou

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOL BÁŇSKÁ TECHICKÁ UIVERZIT OSTRV FKULT STROJÍ MTEMTIK II V PŘÍKLDECH CVIČEÍ Č 0 Ing Petra Schreiberová, PhD Ostrava 0 Ing Petra Schreiberová, PhD Vysoá šola báňsá Technicá univerzita Ostrava

Více

Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc

Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc Neuronové sítě a možnosti jejich využití Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc 1. Biologický neuron Osnova 2. Neuronové sítě Umělý neuron

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

Kmity a rotace molekul

Kmity a rotace molekul Kmity a rotace moleul Svět moleul je neustále v pohybu l eletrony se pohybují oolo jader l jádra mitají olem rovnovážných poloh l moleuly rotují a přesouvají se Ion H + podrobněji Kmity vibrace moleul

Více

Pokročilé metody učení neuronových sítí. Tomáš Řehořek tomas.rehorek@fit.cvut.cz

Pokročilé metody učení neuronových sítí. Tomáš Řehořek tomas.rehorek@fit.cvut.cz Pokročilé metody učení neuronových sítí Tomáš Řehořek tomas.rehorek@fit.cvut.cz Problém učení neuronové sítě (1) Nechť N = (V, I, O, S, w, f, h) je dopředná neuronová síť, kde: V je množina neuronů I V

Více

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky

Více

AVDAT Mnohorozměrné metody, metody klasifikace

AVDAT Mnohorozměrné metody, metody klasifikace AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných

Více

Vícekriteriální programování příklad

Vícekriteriální programování příklad Vícekriteriální programování příklad Pražírny kávy vyrábějí dva druhy kávy (Super a Standard) ze dvou druhů kávových bobů KB1 a KB2, které mají smluvně zajištěny v množství 4 t a 6 t. Složení kávy (v procentech)

Více

LDA, logistická regrese

LDA, logistická regrese Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme

Více

5.3. Implicitní funkce a její derivace

5.3. Implicitní funkce a její derivace Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)

Více

Markov Chain Monte Carlo. Jan Kracík.

Markov Chain Monte Carlo. Jan Kracík. Markov Chain Monte Carlo Jan Kracík jan.kracik@vsb.cz Princip Monte Carlo integrace Cílem je (přibližný) výpočet integrálu I(g) = E f [g(x)] = g(x)f (x)dx. (1) Umíme-li generovat nezávislé vzorky x (1),

Více

MATEMATICKÁ STATISTIKA - XP01MST

MATEMATICKÁ STATISTIKA - XP01MST MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného

Více

Obsah Obyčejné diferenciální rovnice

Obsah Obyčejné diferenciální rovnice Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................

Více

StatSoft Úvod do neuronových sítí

StatSoft Úvod do neuronových sítí StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem

Více

ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz

ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT prof. Ing. Jiří Holčík,, CSc. NEURONOVÉ SÍTĚ otázky a odpovědi 1 AKD_predn4, slide 8: Hodnota výstupu závisí na znaménku funkce net i, tedy na tom, zda bude suma

Více

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové

Více

Zpětnovazební učení Michaela Walterová Jednoocí slepým,

Zpětnovazební učení Michaela Walterová Jednoocí slepým, Zpětnovazební učení Michaela Walterová Jednoocí slepým, 17. 4. 2019 V minulých dílech jste viděli Tři paradigmata strojového učení: 1) Učení s učitelem (supervised learning) Trénovací data: vstup a požadovaný

Více

Neuronové sítě AIL002. Iveta Mrázová 1 František Mráz 2. Neuronové sítě. 1 Katedra softwarového inženýrství. 2 Kabinet software a výuky informatiky

Neuronové sítě AIL002. Iveta Mrázová 1 František Mráz 2. Neuronové sítě. 1 Katedra softwarového inženýrství. 2 Kabinet software a výuky informatiky Neuronové sítě AIL002 Iveta Mrázová 1 František Mráz 2 1 Katedra softwarového inženýrství 2 Kabinet software a výuky informatiky Do LATEXu přepsal: Tomáš Caithaml Učení s učitelem Rozpoznávání Použití:

Více

OPTIMALIZACE PARAMETRŮ PID REGULÁTORU POMOCÍ GA TOOLBOXU

OPTIMALIZACE PARAMETRŮ PID REGULÁTORU POMOCÍ GA TOOLBOXU OPTMALZACE PARAMETRŮ PD REGULÁTORU POMOCÍ GA TOOLBOXU Radomil Matouše, Stanislav Lang Department of Applied Computer Science Faculty of Mechanical Engineering, Brno University of Technology Abstrat Tento

Více

MATEMATICKÁ STATISTIKA

MATEMATICKÁ STATISTIKA MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat

Více

MATEMATIKA 1 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! MA1ACZMZ07DT. Pokyny pro vyplňování záznamového archu

MATEMATIKA 1 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! MA1ACZMZ07DT. Pokyny pro vyplňování záznamového archu MAACZMZ07DT MATURITA NANEČISTO 007 MATEMATIKA didaticý test Testový sešit obsahuje 0 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém sešitu. Odpovědi pište do záznamového archu. Používejte rýsovací

Více

SRE 03 - Statistické rozpoznávání

SRE 03 - Statistické rozpoznávání SRE 03 - Statistické rozpoznávání vzorů II Lukáš Burget ÚPGM FIT VUT Brno, burget@fit.vutbr.cz FIT VUT Brno SRE 03 - Statistické rozpoznávání vzorů II Lukáš Burget, ÚPGM FIT VUT Brno, 2006/07 1/29 Opakování

Více

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a) Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a

Více

Asociativní sítě (paměti) Asociace známého vstupního vzoru s daným výstupním vzorem. Typická funkce 1 / 44

Asociativní sítě (paměti) Asociace známého vstupního vzoru s daným výstupním vzorem. Typická funkce 1 / 44 Asociativní paměti Asociativní sítě (paměti) Cíl učení Asociace známého vstupního vzoru s daným výstupním vzorem Okoĺı známého vstupního vzoru x by se mělo také zobrazit na výstup y odpovídající x správný

Více