Klasifikace a rozpoznávání. Umělé neuronové sítě a Support Vector Machines
|
|
- Miroslava Kovářová
- před 5 lety
- Počet zobrazení:
Transkript
1 Klasifiace a rozpoznávání Umělé neuronové sítě a Support Vector Machines
2 x 1 x 2 w 1 w 2 Lineární lasifiátory a y = f ( w T x+b) Σ f(.) y b Nevýhoda: pouze lineární rozhodovací hranice Možné řešení: Použít jiný než lineární lasifiátor (např. GMM) Nelineární transformace vstupních vetorů: Ale jaou transformaci použít? Postavit hierarchii lineárních lasifiátorů
3 Hierarchie lineárních lasifiátorů w 11 a 1 Σ f(.) h x 1 1 w 12 w 21 x 2 a 2 Σ f(.) h 2 w 22 b 1 w 31 w 32 Σ f(.) y b 3 a 3 b 2 Napřed natrénujeme modrý a zelený lasifiátor ta aby oddělily aždý cluster modrých dat od zbytu. Potřebujeme supervizi: Které modré data patří do terého clusteru? Pa natrénujeme červený lasifiátor na pravděpodobnostních výstupech modrého a zeleného lasifiátoru x 2 h 2 x 1 h 1
4 Neuronové sítě pro lasifiaci w 11 a 1 Σ f(.) h x 1 1 w 12 w 21 x 2 a 2 Σ f(.) h 2 w 22 b 1 b 2 w 31 w 32 a 3 Σ f(.) y b 3 Taovýto hierarchicý lasifiátor můžeme trénovat jao cele bez nutnosti předchozí supervize. Jedná se o jednoduchou neuronovou síť (Neural Networ) pro binární lasifiační problém Klasifiátory v první vrstvě se mají samy naučit jaé clustery je v datech třeba identifiovat, aby finální lineární lasifiátor mohl oddělit třídy. lze vidět jao nelineární transformaci do prostoru, de jsou třídy dobře lineárně separovatelné. představují tzv. srytou vrstvu
5 Neuron a jeho matematicý model x 1 x 2 w 1 a w Σ f(.) y 2 b Zjednodušená abstrace fyzicého neuronu, inspirace v přírodě Zdroj ilustrace: wiipedia
6 Trénování neuronové sítě Uvažujme jednoduchý případ binárního lasifiátoru. Stejně jao u logisticé regrese použijeme jao objetivní funci pravděpodobnost, že všechny trénovací vstupní vetory x n jsou rozpoznány správně: Kde y n je pravděpodobnost třidy C 1 prediovaná výstupem neuronové sítě pro vzor x n. t je vetor oretních identit tříd: t n = 1 resp. t n = 0, poud x n paří do třídy C 1 resp. C2. Opět se nám bude lepe pracovat se (záporným) logaritmem této objetivní funce, tedy vzájemnou entropii: Opět budeme parametry (váhy neuronové sítě) optimalizovat pomoci metody gradient descend: w new = w old ε E(w)
7 Dosazením pa dostaneme Zpětné šíření chyby Potřebujeme vypočítat gradient chyby: (zde jsou vzorce jen pro jeden vzor trénovacích dat) E=[ E w 1 E E w 2 w K ]T Nejprve určíme gradient vah mezi srytou a výstupní vrstvou: h 1 h 2 w 31 w 32 a 3 Σ f(.) y b 3 E w E a E = y a 3 3, j y a3 w3, j 3 E w E = y 3, j y a 3 E = a 3 = a w 3 3, j Řetězové pravidlo: chyba E je složená funce závislá na váze w m,j přes ativaci a 3 a výstup y ( t ln y + (1 t) ln(1 y) ) f ( a ) 3, j y J = δ 3 w3, h = δ 3h w = 1 Zde předpoládáme, že všechny ativační funce jsou logisticé sigmoidy f(a) = σ(a) a víme,ze derivace σ (a) = σ(a) (1-σ(a)) = y (1 - y). a j = 1 t y t y y(1 y) = ( y t) = δ 3 Tazvaná chyba na výstupu
8 Zpětné šíření chyby II Nyní určíme gradient vah mezi vstupní a srytou vrstvou: E E y a3 h a = w, n y a3 h a w,n Opět řetězové pravidlo: chyba E je složená funce závislá na váze wj,n přes ativaci a j a výstup h j první vrstvy a dále přes ativaci a 3 a výstup druhé vrstvy Podobným výpočtem jao pro výstupní vrstvu a využitím už spočítaného δ 3 : E a E w,n E = a 3 E = a a h 3 a w h a,n = δ w h (1 h ) = δ 3 = δ x n 3, w 11 x 1 w 12 w 21 a 1 Σ f(.) h 1 b 1 Chyba na výstupu δ 3 se zpětně se propaguje do chyby ve sryte vrsve δ w 31 a 3 Σ f(.) y x 2 a 2 Σ f(.) h 2 w 22 w 32 b 3 b 2
9 Zpětné šíření chyby III V obecném případě dy má neuronová sít více výstupů y m (např. pro více tříd) bude mít chyba: δ složitější tvar: ( ) M m= m, m M = m m m δ h h w δ a h h a a E = a E = = Protože všechny výstupy sítě závisí na hodnotě sryté vrstvy h, sčítáme parciální derivace ze všech neuronů další vrstvy. Výraz δ m = y m - t m je chyba na m-tém výstupu. Obdobně se chyba δ může zpětně šířit do předešlých vrstev, poud by neuronová síť měla srytých vrstev více.
10 Úprava vah w new =w old ǫ E Úpravu vah lze provádět: 1. po předložení všech vetorů trénovací sady (batch training) gradienty pro jednotlivé vzory z předchozích slajdů se aumulují pomalejší onvergence, nebezpečí uvíznutí v loálním minimu 2. po aždém vetoru (Stochastic-Gradient Descent) rychlejší postup trénování při redundantních trénovacích datech rizio přetrénování na posledních pár vetorů z trénovací sady data je lepší předládat v náhodném pořadí 3. po předložení něolia vetorů (mini-batch training)
11 Ochrana proti přetrénování Rozdělení dat: trénovací, cross-validační, testovací sada Algoritmus New-Bob (simulované žíhání): 1. proveď jednu iteraci trénovaní 2. zjisti úspěšnost NN na CV sadě - poud přírůste je menší než 0.5%, sniž teplotu є o 1/2 - poud přírůste opětovně menší než 0.5%, zastav trénování 3. jdi na 1. Učící ro є můžeme interpretovat jao teplotu, s nižší teplotou lesá pohyblivost vah podobně jao je tomu u moleul plynu. Síť s menším počtem parametrů, úzým hrdlem Regularizace vah (weight-decay): do objetivní funce přidáme výraz terý penalizuje váhy s velou ladnou či zápornou hondotou)
12 Normalizace dat bez normalizace x~ = x µ x~ x µ = σ x 2 x 2 x 2 x 1 x 1 x 1 Transformujeme náhodné proměnné X, ta aby platilo: E[X] = 0; D[X] = 1 Dynamicý rozsah hodnot se přizpůsobí dynamicému rozsahu vah
13 Varianty neuronových síťí Umělé neuronové sítě mohou mít více než jednu srytou vrstvu: Současný trend pro large-scale problémy (rozpoznávání řeči či obrazu) jsou hluboé sítě (Deep Neural Networs) s něolia (typicy do 10) vrstvami a až desíty tisíc neuronů (miliony trénovatelných vah) Neuronovou síť lze použít pro jiné problémy než binární lasifiace: Regrese Neunorová síť muže aproximovat libovolnou (M-dimensionální) nelineární funci Typicy je použita lineární (či-li žádná) ativační funce na vytupu NN. Objetivní funce je typicy Mean Squared Error (pro N vzoru a M výstupů): Klasifiace do více tříd: Muticlass cross-entropy obetivní funce: E= E = N M n= 1 m= 1 n= 1 m= 1 ( t y ) m de t n,m, je 1 poud n-tý vzor patří do m-té třídy, jina je 0. Softmax nelinearita na výstupu zaručí, že výstupem jsou normalizované posteriorní pravděpodobnosti říd: M y m N M = exp n, m n, 2 t n,m logy n, m ( a )/ exp( a ) m i= 1 i
14 Support Vector Machines
15 Support Vector Machines SVM lineární lasifiátor s specificou objetivní funci: maximum margin y N = n= 1 T wn xn + b = w x + b V záladní variantě zvládne pouze dvě nepřerývající se lineárně separovatelné třídy
16 SVM ritérium Maximalizuje mezeru (margin) mezi dvěmi shluy dat R D
17 Lineární lasifiátor y = 0 y < 0 y > 0 x y(x) = w T x + b w T x w = - w b + y(x) w x 2 - b w y(x ) w. w w T x w x 1
18 Lineární lasifiátor y = 0 y = 1 y T = w x + b y = -1 Rozhodněme, že margin bude dán prostorem mezi přímami y=-1 a y=1 x 2 w Co se stane, dyž zrátíme vetor w?. x 1
19 Lineární lasifiátor y = 0 y = 1 y T = w x + b y = -1 Rozhodněme, že margin bude dán prostorem mezi přímami y=-1 a y=1 x 2. w Co se stane, dyž zrátíme vetor w? Margin se zvětší! Budeme hledat řešeni, de w je co nejratší a de margin odděluje data obou tříd. x 1
20 Trénování SVM Minimalizujeme: arg min S podmínami: t n 1 w, b 2 w T w T ( x + b) 1 w i n { 1,2,,N} N je počet trénovacích vetorů a t n { 1,1} udávají třídy pro jednotlivá trénovací data. Jedná se o problém tzv. vadraticého programování, což je speciální případ optimalizace s omezením (constrained optimization).
21 Co jsou to Support Vectors? Podpůrné vetory (support vectors) leží na oraji prázdné oblasti a přímo ovlivňují řešení Kdyby se ostatní data vypustila z trénovacího setu, výslede by se nezměnil x 2 x 2 ` ` ` `. ` x 1 x 1
22 Řešení Normálový vetor w definující rozhodovací hranici lze sestavit lineární ombinaci podpůrných vetoru: w = tiαixi > 0 i S α i Tato reprezentace umožňuje lasifiaci bez explicitního vyjádření vetoru w: y T = w x + b = tiαix i S T i x + b Podobně i vstupem do trénovacíhi mohou být he salární součiny mezi trénovacími daty možnost použití následujícího ernel triu.
23 Lineárně neseparovatelná úloha φ(x) Může být řešena nelineárním mapováním dat do nového prostoru (s více dimenzemi) x? φ(x) 2D 3D Pro SVM potřebujeme v novem prostoru spočítat salární součin mezi jaýmioli dvěma mapovanými vetory. To lze často udělat efetivněji bez explicitního mapovaní do noveho prostoru pomoci tzv. jádrové funce (ernel function) T K( x, y) = φ( x) φ( y)
24 Přílady jader Polynomiální jádro: T K( x, y) = (1 + x y) Přilad pro jednorozměrná data a d=2 K( x, y) = (1 + xy) 2 = 1+ 2xy + x 2 y 2 d = φ( x) T φ( y) Což odpovídá salárnímu součinu po mapování: ( ) 2 1, 2x, φ( x) T = x Radiální bázove funce: 1 T K( x, y) = exp ( x y) ( x y) 2 2σ Odpovídají salárnímu součinu po projeci do jistého neonečně dimensionálního prostoru vždy separovatelné třídy.
25 Přerývající se třídy Pro přerývající třídy uvedené řešení selže. Zavádějí se proměnné (slac variables), teré oslabí omezující podmíny x 2 ξ i x 1
26 Přerývající se třídy II Minimalizujeme S podmínami: min w w, b T w + C N n= 1 ξ n t T n( w xn ξ n 0 + b) 1 ξ n n =1K,, N První výraz maximalizuje mezeru (margin) mezi třídami a druhý penalizuje vzory porušující tento margin. C řídí ompromis mezi oběma výrazy. C odpovídá originální variantě pro separovatelná data.
27 Vlastnosti a použití SVM Výstup SVM nemá pravděpodobnostní interpretaci. neprediuje pravděpodobnost tříd pro daný vstup produuje ale měé sóre, teré lze přibližně na pravděpodobnost třídy převést. Objetivní funce má blíže maximalizaci počtu správně rozpoznaných než maximalizaci pravděpodobnost že vše je rozpoznáno dobře (objetivní funce logisticé regrese). Často používaný lasifiátor pro problémy se dvěma třídami. Rozšíření na více tříd je možné, ale ne ta přímočaré jao u pravděpodobnostních lasifiátorů. Hlavní výhoda oproti např. logisticé regresi je možnost implicitní nelineární transformace vstupů pomoci jader. Společná vlastnost všech jádrových metod (Kernel methods).
28 Software Existuje velni dobrá nihovna LibSVM Funce v Matlabu: svmtrain, svmclassify
Klasifikace a rozpoznávání. Lineární klasifikátory
Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.
Obsah přednášky. 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacking 5. Boosting 6. Shrnutí
1 Obsah přednášy 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacing 5. Boosting 6. Shrnutí 2 Meta learning = Ensemble methods Cíl použít predici ombinaci více různých modelů Meta learning (meta
Optimální rozdělující nadplocha 4. Support vector machine. Adaboost.
Optimální rozdělující nadplocha. Support vector machine. Adaboost. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics Opakování Lineární diskriminační
G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování
Matematicé programování Označení a definice veličin. opt i/maimalizace w, Žádaná hodnota,transpozice, relace typu nebo Inde diagonální formy vetoru. Obecná omezovací podmína Γ ( ( = ( Є, R, y podmíny typu
Umělé neuronové sítě a Support Vector Machines. Petr Schwraz
Umělé neuronové sítě a Support Vector Machnes Petr Schraz scharzp@ft.vutbr.cz Perceptron ( neuron) x x x N f() y y N f ( x + b) x vstupy neuronu váhy jednotlvých vstupů b aktvační práh f() nelneární funkce
(iv) D - vybíráme 2 koule a ty mají různou barvu.
2 cvičení - pravděpodobnost 2102018 18cv2tex Definice pojmů a záladní vzorce Vlastnosti pravděpodobnosti Pravděpodobnost P splňuje pro libovolné jevy A a B následující vlastnosti: 1 0, 1 2 P (0) = 0, P
f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.
8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce
Shluková analýza, Hierarchické, Nehierarchické, Optimum, Dodatek. Učení bez učitele
1 Obsah přednášy 1. Shluová analýza 2. Podobnost objetů 3. Hierarchicé shluování 4. Nehierarchicé shluování 5. Optimální počet shluů 6. Další metody 2 Učení bez učitele není dána výstupní lasifiace (veličina
7.3.9 Směrnicový tvar rovnice přímky
7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:
7.3.9 Směrnicový tvar rovnice přímky
739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná
Fakulta informačních technologií VUT Brno. Předmět: Srovnání klasifikátorů Autor : Jakub Mahdal Login: xmahda03 Datum:
Fakulta informačních technologií VUT Brno Předmět: Projekt: SRE Srovnání klasifikátorů Autor : Jakub Mahdal Login: xmahda03 Datum: 9.12.2006 Zadání Vyberte si jakékoliv 2 klasifikátory, např. GMM vs. neuronová
Lineární klasifikátory
Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout
Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)
Bucinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Formalizace rozměrové analýzy ( výsledné jednoty na obou stranách musí souhlasit ). Rozměr fyziální veličiny Mějme nějaou třídu jednote, napřílad [(g,
Support Vector Machines (jemný úvod)
Support Vector Machines (jemný úvod) Osnova Support Vector Classifier (SVC) Support Vector Machine (SVM) jádrový trik (kernel trick) klasifikace s měkkou hranicí (soft-margin classification) hledání optimálních
Vytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 8 1/26 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
1 Gaussova kvadratura
Cvičení - zadání a řešení úloh Zálady numericé matematiy - NMNM0 Verze z 7. prosince 08 Gaussova vadratura Fat, že pro něterá rovnoměrná rozložení uzlů dostáváme přesnost o stupeň vyšší napovídá, že pro
4. Přednáška: Kvazi-Newtonovské metody:
4 Přednáša: Kvazi-Newtonovsé metody: Metody s proměnnou metriou, modifiace Newtonovy metody Efetivní pro menší úlohy s hustou Hessovou maticí Newtonova metoda (opaování): f aproximujeme loálně vadraticou
Algoritmy a struktury neuropočítačů ASN P4. Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby
Algoritmy a struktury neuropočítačů ASN P4 Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby Vrstevnatá struktura - vícevrstvé NN (Multilayer NN, MLNN) vstupní vrstva (input layer)
Úvod do optimalizace, metody hladké optimalizace
Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady
Trénování sítě pomocí učení s učitelem
Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup
Rosenblattův perceptron
Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného
Preceptron přednáška ze dne
Preceptron 2 Pavel Křížek Přemysl Šůcha 6. přednáška ze dne 3.4.2001 Obsah 1 Lineární diskriminační funkce 2 1.1 Zobecněná lineární diskriminační funkce............ 2 1.2 Učení klasifikátoru........................
Neuronové sítě (11. přednáška)
Neuronové sítě (11. přednáška) Machine Learning Naučit stroje se učit O co jde? Máme model výpočtu (t.j. výpočetní postup jednoznačně daný vstupy a nějakými parametry), chceme najít vhodné nastavení parametrů,
VI. Derivace složené funkce.
VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud
AVDAT Nelineární regresní model
AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných
Neuronové časové řady (ANN-TS)
Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci
Intervalová data a výpočet některých statistik
Intervalová data a výpočet některých statistik Milan Hladík 1 Michal Černý 2 1 Katedra aplikované matematiky Matematicko-fyzikální fakulta Univerzita Karlova 2 Katedra ekonometrie Fakulta informatiky a
Geometrická zobrazení
Pomocný text Geometricá zobrazení hodná zobrazení hodná zobrazení patří nejjednodušším zobrazením na rovině. Je jich vša hrozně málo a často se stává, že musíme sáhnout i po jiných, nědy výrazně složitějších
MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE
OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 PŘEDNÁŠKA 5 MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 Multiriteriální rozhodování
Metoda konjugovaných gradientů
0 Metoda onjugovaných gradientů Ludě Kučera MFF UK 11. ledna 2017 V tomto textu je popsáno, ja metodou onjugovaných gradientů řešit soustavu lineárních rovnic Ax = b, de b je daný vetor a A je symetricá
11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah
11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné
OPTIMALIZACE. (přehled metod)
OPTIMALIZACE (přehled metod) Typy optimalizačních úloh Optimalizace bez omezení Nederivační metody Derivační metody Optimalizace s omezeními Lineární programování Nelineární programování Globální optimalizace
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat
Zkouška ISR 2013 přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat 1. Rozdílné principy u induktivního a deduktivního
Pavel Seidl 1, Ivan Taufer 2
UMĚLÉ NEURONOVÉ SÍTĚ JAKO PROSTŘEDEK PRO MODELOVÁNÍ DYNAMICKÉHO CHOVÁNÍ HYDRAULICKO-PNEUMATICKÉ SOUSTAVY USING OF ARTIFICIAL NEURAL NETWORK FOR THE IDENTIFICATION OF DYNAMIC PROPERTIES OF HYDRAULIC-PNEUMATIC
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. LINEÁRNÍ KLASIFIKACE PRINCIPY KLASIFIKACE pomocí diskriminačních funkcí funkcí,
Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka
Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní
1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
Strojové učení Marta Vomlelová
Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer
Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I
Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Příklad Tahová síla papíru používaného pro výrobu potravinových sáčků je důležitá charakteristika kvality. Je známo, že síla
5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015
Umělé neuronové sítě 5. 4. 205 _ 5- Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce _ 5-2 Neuronové aktivační
GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS. Roman Biskup, Anna Čermáková
GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS Roman Bisup, Anna Čermáová Anotace: Příspěve se zabývá prezentací principů učení jednoho onrétního typu neuronových sítí. Cílem práce
AVDAT Klasický lineární model, metoda nejmenších
AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i
Funkce jedné proměnné
Funkce jedné proměnné Příklad - V následujících příkladech v případě a) pro funkce dané rovnicí zjistěte zda jsou rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf
Matematická analýza III.
3. Implicitní funkce Miroslav Hušek, Lucie Loukotová UJEP 2010 V této kapitole se seznámíme s dalším možným zadáním funkce jejím implicitním vyjádřením. Doplní tak nám již známé explicitní a parametrické
Analýza a zpracování signálů. 5. Z-transformace
nalýa a pracování signálů 5. Z-transformace Z-tranformace je mocný nástroj použitelný pro analýu lineárních discretetime systémů Oboustranná Z-transformace X j F j x, je omplexní číslo r e r e Oboustranná
a) formulujte Weierstrassovo kritérium stejnoměrné konvergence b) pomocí tohoto kritéria ukažte, že funkční řada konverguje stejnoměrně na celé R
) ČÍSELNÉ A FUNKČNÍ ŘADY (5b) a) formulujte Leibnitzovo ritérium včetně absolutní onvergence b) apliujte toto ritérium na řadu a) formulujte podílové ritérium b) posuďte onvergenci řad c) oli členů této
Těleso na nakloněné rovině Dvě tělesa spojená tyčí Kyvadlo
TEORETICKÁ MECHANIKA INTEGRÁLNÍ PRINCIPY MECHANIKY Záladní pojmy z mechaniy Mechanicý systém: jaáoli soustava částic nebo těles teré se rozhodneme popisovat (eletron atom Zeměoule planetární systém ).
Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)
2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h
Matematická analýza III.
2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom
Testování hypotéz. December 10, 2008
Testování hypotéz December, 2008 (Testování hypotéz o neznámé pravděpodobnosti) Jan a Františe mají pytlíy s uličami. Jan má 80 bílých a 20 červených, Františe má 30 bílých a 70 červených. Vybereme náhodně
Umělé neuronové sítě
Umělé neuronové sítě 17. 3. 2018 5-1 Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce 5-2 Neuronové aktivační
7. TRANSFORMÁTORY. 7.1 Štítkové údaje. 7.2 Měření odporů vinutí. 7.3 Měření naprázdno
7. TRANSFORMÁTORY Pro zjednodušení budeme měření provádět na jednofázovém transformátoru. Na trojfázovém transformátoru provedeme pouze ontrolu jeho zapojení měřením hodinových úhlů. 7.1 Štítové údaje
Kybernetika a umělá inteligence, cvičení 10/11
Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu
Přednáška 13 Redukce dimenzionality
Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /
Využití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
Klasifikace a rozpoznávání. Bayesovská rozhodovací teorie
Klasifikace a rozpoznávání Bayesovská rozhodovací teorie Extrakce p íznaků Granáty Četnost Jablka Váha [dkg] Pravděpodobnosti - diskrétní p íznaky Uvažujme diskrétní p íznaky váhové kategorie Nechť tabulka
Předpoklady: a, b spojité na intervalu I.
Diferenciální rovnice Obyčejná diferenciální rovnice řádu n: F t, x, x, x,, x n Řešení na intervalu I: funce x : I R taová, že pro aždé t I je F t, xt, x t,, x n t Maximální řešení: neexistuje řešení na
7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí
202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají
6 5 = 0, = 0, = 0, = 0, 0032
III. Opaované pousy, Bernoulliho nerovnost. Házíme pětrát hrací ostou a sledujeme výsyt šesty. Spočtěte pravděpodobnosti možných výsledů a určete, terý má největší pravděpodobnost. Řešení: Jedná se o serii
Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých
Obyčejné diferenciální rovnice Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých se vyskytují derivace neznámé funkce jedné reálné proměnné. Příklad. Bud dána funkce f : R R.
Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně
7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností
Numerická matematika 1
Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................
Numerické metody optimalizace - úvod
Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu
Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.
6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami
Algoritmy a struktury neuropočítačů ASN P3
Algoritmy a struktury neuropočítačů ASN P3 SOM algoritmus s učitelem i bez učitele U-matice Vektorová kvantizace Samoorganizující se mapy ( Self-Organizing Maps ) PROČ? Základní myšlenka: analogie s činností
Lineární diskriminační funkce. Perceptronový algoritmus.
Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace
5. cvičení z Matematiky 2
5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými
F6180 Úvod do nelineární dynamiky. F6150 Pokročilé numerické metody FX003 Plánování a vyhodnocování experimentu. F7780 Nelineární vlny a solitony
Moderní metody modelování ve fyzice jaro 2015 přednáša: D. Hemzal cvičení: F. Münz F1400 Programování F5330 Záladní numericé metody F7270 Matematicé metody zpracování měření F6180 Úvod do nelineární dynamiy
4. Aplikace matematiky v ekonomii
4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =
Interpolace, ortogonální polynomy, Gaussova kvadratura
Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť
Binomická věta
97 Binomicá věta Předpolady: 96 Kdysi dávno v prvním ročníu jsme se učili vzorce na umocňování dvojčlenu Př : V tabulce jsou vypsány vzorce pro umocňování dvojčlenu Najdi podobnost s jinou dosud probíranou
MATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOL BÁŇSKÁ TECHICKÁ UIVERZIT OSTRV FKULT STROJÍ MTEMTIK II V PŘÍKLDECH CVIČEÍ Č 0 Ing Petra Schreiberová, PhD Ostrava 0 Ing Petra Schreiberová, PhD Vysoá šola báňsá Technicá univerzita Ostrava
Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc
Neuronové sítě a možnosti jejich využití Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc 1. Biologický neuron Osnova 2. Neuronové sítě Umělý neuron
Otázku, kterými body prochází větev implicitní funkce řeší následující věta.
1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.
Kmity a rotace molekul
Kmity a rotace moleul Svět moleul je neustále v pohybu l eletrony se pohybují oolo jader l jádra mitají olem rovnovážných poloh l moleuly rotují a přesouvají se Ion H + podrobněji Kmity vibrace moleul
Pokročilé metody učení neuronových sítí. Tomáš Řehořek tomas.rehorek@fit.cvut.cz
Pokročilé metody učení neuronových sítí Tomáš Řehořek tomas.rehorek@fit.cvut.cz Problém učení neuronové sítě (1) Nechť N = (V, I, O, S, w, f, h) je dopředná neuronová síť, kde: V je množina neuronů I V
Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky
AVDAT Mnohorozměrné metody, metody klasifikace
AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných
Vícekriteriální programování příklad
Vícekriteriální programování příklad Pražírny kávy vyrábějí dva druhy kávy (Super a Standard) ze dvou druhů kávových bobů KB1 a KB2, které mají smluvně zajištěny v množství 4 t a 6 t. Složení kávy (v procentech)
LDA, logistická regrese
Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
5.3. Implicitní funkce a její derivace
Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)
Markov Chain Monte Carlo. Jan Kracík.
Markov Chain Monte Carlo Jan Kracík jan.kracik@vsb.cz Princip Monte Carlo integrace Cílem je (přibližný) výpočet integrálu I(g) = E f [g(x)] = g(x)f (x)dx. (1) Umíme-li generovat nezávislé vzorky x (1),
MATEMATICKÁ STATISTIKA - XP01MST
MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného
Obsah Obyčejné diferenciální rovnice
Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................
StatSoft Úvod do neuronových sítí
StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem
ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz
ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT prof. Ing. Jiří Holčík,, CSc. NEURONOVÉ SÍTĚ otázky a odpovědi 1 AKD_predn4, slide 8: Hodnota výstupu závisí na znaménku funkce net i, tedy na tom, zda bude suma
verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu
Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové
Zpětnovazební učení Michaela Walterová Jednoocí slepým,
Zpětnovazební učení Michaela Walterová Jednoocí slepým, 17. 4. 2019 V minulých dílech jste viděli Tři paradigmata strojového učení: 1) Učení s učitelem (supervised learning) Trénovací data: vstup a požadovaný
Neuronové sítě AIL002. Iveta Mrázová 1 František Mráz 2. Neuronové sítě. 1 Katedra softwarového inženýrství. 2 Kabinet software a výuky informatiky
Neuronové sítě AIL002 Iveta Mrázová 1 František Mráz 2 1 Katedra softwarového inženýrství 2 Kabinet software a výuky informatiky Do LATEXu přepsal: Tomáš Caithaml Učení s učitelem Rozpoznávání Použití:
OPTIMALIZACE PARAMETRŮ PID REGULÁTORU POMOCÍ GA TOOLBOXU
OPTMALZACE PARAMETRŮ PD REGULÁTORU POMOCÍ GA TOOLBOXU Radomil Matouše, Stanislav Lang Department of Applied Computer Science Faculty of Mechanical Engineering, Brno University of Technology Abstrat Tento
MATEMATICKÁ STATISTIKA
MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat
MATEMATIKA 1 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! MA1ACZMZ07DT. Pokyny pro vyplňování záznamového archu
MAACZMZ07DT MATURITA NANEČISTO 007 MATEMATIKA didaticý test Testový sešit obsahuje 0 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém sešitu. Odpovědi pište do záznamového archu. Používejte rýsovací
SRE 03 - Statistické rozpoznávání
SRE 03 - Statistické rozpoznávání vzorů II Lukáš Burget ÚPGM FIT VUT Brno, burget@fit.vutbr.cz FIT VUT Brno SRE 03 - Statistické rozpoznávání vzorů II Lukáš Burget, ÚPGM FIT VUT Brno, 2006/07 1/29 Opakování
Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
Asociativní sítě (paměti) Asociace známého vstupního vzoru s daným výstupním vzorem. Typická funkce 1 / 44
Asociativní paměti Asociativní sítě (paměti) Cíl učení Asociace známého vstupního vzoru s daným výstupním vzorem Okoĺı známého vstupního vzoru x by se mělo také zobrazit na výstup y odpovídající x správný