Sdílení tepla prouděním. (konvekce)
|
|
- Jakub Vaněk
- před 3 lety
- Počet zobrazení:
Transkript
1 Sdílení tepla prouděním (konvekce)
2 typy konvekce nucená a volná přestup tepla prostup tepla (přestup + vedení) bezrozměrná kritéria
3 Sdílení tepla prouděním 3 2 základní typy: volná a nucená konvekce Volné (přirozené) volná konvekce vlivem rozdílných teplot na různých místech jsou rozdílné hustoty důsledkem je proudění v gravitačním poli T1 T2 1 2
4 Sdílení tepla prouděním 4 Nucené nucená konvekce vynucený tok např. rozdílem tlaků, působením čerpadel, míchadel
5 Přestup tepla 5 Přestup tepla - na rozhraní dvou látek s různou teplotou dochází k přenesení tepla z jedné látky do druhé Q T w T Newtonův ochlazovací zákon Q A T T součinitel přestupu tepla (W.m -2.K -1 ) w stěna laminární podvrstva turbulentní jádro množství tepla, které se vyměňuje mezi proudící tekutinou a pevnou stěnou (kolem které se tekutina pohybuje), je přímo úměrné velikosti plochy a gradientu teploty
6 Přestup tepla 6 Q A T T w součinitel přestupu tepla (W.m -2.K -1 ) není materiálovou vlastností, ale složitou funkcí podmínek je závislý na celé řadě veličin, které jsou charakteristické pro danou látku a daný stav proudění lze charakterizovat experimentálně a zobecnit výsledky pomocí teorie podobnosti zavádějí se kritéria a kriteriální rovnice Nusseltovo kritérium Nu l l.. tepelná vodivost tekutiny.. charakteristická délka, rozměr (např. průměr trubky, délka kanálku v deskovém výměníku)
7 Nusseltovo kritérium 7 Nusseltovo kritérium Nu l Nu l součinitel přestupu tepla a je závislé na celé řadě veličin, které jsou charakteristické pro danou látku a daný stav proudění podobně platí pro Nu Nu představuje podíl intenzity toku tepla přestupem (vedením a konvekcí) a intenzity toku tepla v hypotetickém nehybném prostředí, ve kterém by docházelo ke sdíleni tepla pouze vedením vznikly empirické rovnice, které vyjadřují Nusseltovo kritérium při různých podmínkách (různý charakter proudění, různá geometrie systému) L Nu f Re,Pr,, d w Re.. Reynoldsovo kritérium Pr.. Prandtlovo kritérium Příklad: turbulentní proudění kapaliny v trubce Nu 0,023Re Pr 0,8 0,4
8 bezrozměrná kritéria 8 Nusseltovo kritérium Nu l Reynoldsovo kritérium Prandtlovo kritérium Re Pr l l c p Pécletovo kritérium Pe Pr Re Grashofovo kritérium pro volnou konvekci Gr 3 2 gl t 2..koeficient objemové roztažnosti = 1/T pro ideální plyn Uvedená kritéria se používají pro charakterizaci systémů s tekutinami, používají se pro volnou a nucenou konvekci.
9 Charakteristický rozměr l 9 l.. charakteristická délka, rozměr 1/ válec trubka, kruhový průřez uvažujeme průměr vnitřní trubky l d 2/ mimotrubkový prostor např. trubka v trubce l d ekv 4A o Nu Nu uvažujeme vnitřní průměr velké trubky (D) a vnější průměr malé trubky (d) d d ekv d 2 2 D d 4 4A 4 4 dekv D d o D d d ekv 2 2 D d 4 n 4A 4 4 D nd o D nd D nd svazkový výměník s n trubkami d D 3/ rozměr kanálku v deskovém výměníku, tloušťka mezní vrstvy,.
10 Součinitel přestupu tepla 10 Postup určení součinitele přestupu tepla Určení typu konvekce (volná, nucená) Podle charakteru proudění vypočteme vhodné kritérium nucená konvekce Reynoldsovo kritérium volná konvekce Grashofovo kritérium Výběr vhodné empirické rovnice pro výpočet Nusseltova kritéria Výpočet Příklad: nucená konvekce, turbulentní proudění Re Re+ Pr Nu Nu plyny kapaliny volná konvekce = 2-20 = nucená konvekce = = var, kondenzace = náplň CHI 1 jen nucená konvekce
11 Součinitel přestupu tepla při nucené konvekci 11 1/ laminární oblast proudění Gz d Nu 3,66 Gz Re Pr Gz w L platí pro 0,1<Gz< / přechodná oblast proudění platí pro 2100<Re< ,14 2/3 0,14 2/3 1/3 d 0, L w Nu Re Pr Graetzovo kritérium 3/ turbulentní oblast proudění Re>10000 Nu 0,023Re Pr 0,8 0,4 Nu Re Pr 0,8 0,4 0,023 w 0,14 0,14 Člen w je významný, pokud se liší teplota v jádře kapaliny a u stěny.
12 výpočet součinitele přestupu tepla při nucené konvekci 12 postup: 1/ určíme rychlost proudění (m/s) 2/ najdeme potřebné fyzikální vlastnosti kapaliny při střední teplotě 3/ vypočteme Reynoldsovo kritérium a určíme charakter proudění, vypočteme Prandtlovo kritérium 4/ vybereme vhodnou kriteriální rovnici a určíme Nusseltovo kritérium 5/ vypočteme součinitel přestupu tepla 6/ celou dobu pracujeme s charakteristickým rozměrem,,, cp Re Re+ Pr Re Re+ Pr Nu Nu
13 Prostup tepla složené sdílení tepla 13 Prostup tepla: 1/ přestup tepla z jádra proudící teplejší tekutiny A na povrch stěny, kolem které tekutina A protéká 2/ vedení tepla stěnou (může být jednoduchá, nebo složená z více vrstev) 3/ přestup tepla od povrchu stěny, kolem které protéká chladnější tekutina B, do jádra proudící tekutiny B
14 Prostup tepla rovinná stěna 14 1/ tekutina A Q A T T A ba wa 2/ vedení tepla stěnou Q A 3/ tekutina B T wa n i1 T i i wb Q A T T B wb bb Q 1 TbA TwA A n Q i A TwA TwB A i1 i Q 1 TwB TbB A Sečteme: B Q A n 1 i 1 TbA T A i1 i B bb
15 Prostup tepla rovinná stěna 15 Q A n 1 i 1 TbA T A i1 i B bb Definujme koeficient prostupu tepla k [W/m 2.K] n 1 1 i 1 k A i1 i B rovinná stěna Q k A T T ba bb Rozdíl teplot ΔT = T ba -T bb představuje hnací sílu prostupu tepla. Pozn. Uvažujeme střední teploty v jádře kapaliny.
16 Prostup tepla válec 16 1/ tekutina A Q Ld T T A A ba wa 2/ vedení tepla stěnou Q 2 L 3/ tekutina B T wa T 1 d ln d wb ex in Q Ld T T B B wb bb K výměně tepla dochází na vnitřní trubce mezi A a B. podle obrázku d d a d d in A ex B Q 1 Q 1 TbA T T Q 1 d wa wb TbB L da ln ex L d TwA T A BB L 2 din wb
17 Prostup tepla válec 17 Q 1 1 d ex 1 ln TbA T L Ad A 2 din Bd B bb Definujme délkový koeficient prostupu tepla k L [W/m.K] 1 1 d ex 1 ln k d 2 d d L A A in B B Q k L T T L ba bb Rozdíl teplot ΔT = T ba -T bb představuje hnací sílu prostupu tepla. Pozn. Uvažujeme střední teploty v jádře kapaliny.
PROCESY V TECHNICE BUDOV 11
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 11 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací
VII. cená konvekce Fourier Kirchhoffova rovnice T!! ρ c p + ρ c p u T λ T + µ d t :! (g d + Q" ) (VII 1) Stacionární děj bez vnitřního zdroje se zanedbatelnou viskózní disipací! (VII ) ρ c p u T λ T 1.
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Přestup tepla nucená konvekce beze změny skupenství v trubkových systémech Hana Charvátová,
Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 Nestacionární vedení tepla v rovinné stěně Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory
þÿ PY e s t u p t e p l a
DSpace VSB-TUO http://www.dspace.vsb.cz þÿx a d a b e z p e n o s t n í i n~ e n ý r s t v í / S a f e t y E n gþÿx i n eae dr ia n g b es zep re i ens o s t n í i n~ e n ý r s t v í. 2 0 1 0, r o. 5 /
Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek
Univerzita obrany K-216 Laboratorní cvičení z předmětu TERMOMECHANIKA Měření na výměníku tepla Protokol obsahuje 13 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování: 7.5.2011
BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PROCESS AND ENVIRONMENTAL
SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM I.
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM
Miloslav Dohnal 1 PROCESNÍ VÝPOČTY TECHNOLOGIÍ
Miloslav Dohnal 1 PROCESNÍ VÝPOČTY TECHNOLOGIÍ Tento článek je věnován odborné stáži, která vznikla v rámci projektu MSEK Partnerství v oblasti energetiky. 1. ÚVOD Projekt MSEK Partnerství v oblasti energetiky
102FYZB-Termomechanika
České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH
Hydromechanické procesy Obtékání těles
Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak
Mechanika tekutin. Hydrostatika Hydrodynamika
Mechanika tekutin Hydrostatika Hydrodynamika Hydrostatika Kapalinu považujeme za kontinuum, můžeme využít předchozí úvahy Studujeme kapalinu, která je v klidu hydrostatika Objem kapaliny bude v klidu,
5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.
OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické
Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007
Tepelná technika Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelné konstanty technických látek Základní vztahy Pro proces sdílení tepla platí základní
N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích
Vysoká škola technická a ekonomická V Českých Budějovicích N_ Stavebně fyzikální aspekty budov Přednáška č. 3 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: prof. Ing. Ingrid
TERMOMECHANIKA 15. Základy přenosu tepla
FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný
Kondenzace brýdové páry ze sušení biomasy
Kondenzace brýdové páry ze sušení biomasy Jan HAVLÍK 1,*, Tomáš DLOUHÝ 1 1 České vysoké učení technické v Praze, Fakulta strojní, Ústav energetiky, Technická 4, 16607 Praha 6, Česká republika * Email:
Měření prostupu tepla
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ
1 Zatížení konstrukcí teplotou
1 ZATÍŽENÍ KONSTRUKCÍ TEPLOTOU 1 1 Zatížení konstrukcí teplotou Časově proměnné nepřímé zatížení Klimatické vlivy, zatížení stavebních konstrukcí požárem Účinky zatížení plynou z rozšířeného Hookeova zákona
ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ
ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ Rok vzniku: 29 Umístěno na: Vysoké učení technické v Brně, Fakulta strojního ženýrství, Technická 2, 616 69 Brno, Hala C3/Energetický ústav
12 Prostup tepla povrchem s žebry
2 Prostup tepla povrchem s žebry Lenka Schreiberová, Oldřich Holeček Základní vztahy a definice V případech, kdy je třeba sdílet teplo z média s vysokým součinitelem přestupu tepla do média s nízkým součinitelem
FLUENT přednášky. Turbulentní proudění
FLUENT přednášky Turbulentní proudění Pavel Zácha zdroj: [Kozubková, 2008], [Fluent, 2011] Proudění skutečných kapalin - klasifikujeme 2 základní druhy proudění: - laminární - turbulentní - turbulentní
VÝSLEDKY OVĚŘOVÁNÍ ZEMNÍHO MASIVU JAKO ZDROJE ENERGIE PRO TEPELNÁ ČERPADLA. Technická fakulta České zemědělské univerzity v Praze
VÝSLEDKY OVĚŘOVÁNÍ ZEMNÍHO MASIVU JAKO ZDROJE ENERGIE PRO TEPELNÁ ČERPADLA Radomír Adamovský Pavel Neuberger Technická fakulta České zemědělské univerzity v Praze H = 1,0 2,0 m; D = 0,5 2,0 m; S = 0,1
Návrh deskového výměníku sirup chladicí voda (protiproudové uspořádání)
Návrh deskového výměníku sirup chladicí voda (protiproudové uspořádání) Postup výpočtu Studijní podklady pro předměty ZSPZ a PRO III. Zpracoval: Pavel Hoffman Datum: 9/2004 1. Zadané hodnoty Roztok ochlazovaný
Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne:
Označení materiálu: VY_32_INOVACE_ZMAJA_VYTAPENI_08 Název materiálu: Sdílení tepla Anotace: Prezentace uvádí příklady a popisuje způsoby sdílení tepla Tematická oblast: Vytápění 1. ročník Instalatér Očekávaný
MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU
MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU. Cíl práce: Roštový kotel o jmenovitém výkonu 00 kw, vybavený automatickým podáváním paliva, je určen pro spalování dřevní štěpky. Teplo z topného okruhu je předáváno
NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014
NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT
Optimalizace teplosměnné plochy kondenzátoru brýdových par ze sušení biomasy
Optimalizace teplosměnné plochy kondenzátoru brýdových par ze sušení biomasy Jan HAVLÍK 1,*, Tomáš Dlouhý 1 1 České vysoké učení technické v Praze, Fakulta strojní, Ústav energetiky, Technická 4, 16607
Šíření tepla. Obecnéprincipy
Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření
BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D.
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Průběh zkoušky, literatura Tepelně
Autokláv reaktor pro promíchávané vícefázové reakce
Vysoká škola chemicko technologická v Praze Ústav organické technologie (111) Autokláv reaktor pro promíchávané vícefázové reakce Vypracoval : Bc. Tomáš Sommer Předmět: Vícefázové reaktory (prof. Ing.
CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM
CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez
Návrh trubkového zahřívače kapalina - kapalina (protiproudové uspořádání) Postup výpočtu
Návrh trubkového zahřívače kapalina - kapalina (protiproudové uspořádání) Postup výpočtu Studijní podklady pro předměty ZSPZ a PO III. Zpracoval: Pavel Hoffman Datum: 10/00 1. Zadané hodnoty oztok proudící
Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -
Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé
Příklad 1: V tlakové nádobě o objemu 0,23 m 3 jsou 2 kg vodní páry o tlaku 1,6 MPa. Určete, jestli je pára sytá, mokrá nebo přehřátá, teplotu,
Příklad 1: V tlakové nádobě o objemu 0,23 m 3 jsou 2 kg vodní páry o tlaku 1,6 MPa. Určete, jestli je pára sytá, mokrá nebo přehřátá, teplotu, případně suchost a měrnou entalpii páry. Příklad 2: Entalpická
Sdílení tepla. Úvod - Přehled. Sdílení tepla mezi termodynamickou soustavou a okolím je podmíněno rozdílností teplot soustavy T.
7.4.0 Úvod - Přehled Sdílení tepla Sdílení tepla mez termodynamckou soustavou a okolím je podmíněno rozdílností teplot soustavy T s a okolí T o. Teplo mez soustavou a okolím se sdílí třem základním způsoby:
17. Základy přenosu tepla - přenosu tepla vedením, přenos tepla prouděním, nestacionární přenos tepla, prostup tepla, vyměníky tepla
1/14 17. Základy přenosu tepla - přenosu tepla vedením, přenos tepla prouděním, nestacionární přenos tepla, prostup tepla, vyměníky tepla Příklad: 17.1, 17.2, 17.3, 17.4, 17.5, 17.6, 17.7, 17.8, 17.9,
Proudění Sborník článků z on-line pokračujícího zdroje Transformační technologie.
Proudění Sborník článků z on-line pokračujícího zdroje Transformační technologie. 37. Škrcení plynů a par 38. Vznik tlakové ztráty při proudění tekutiny 39. Efekty při proudění vysokými rychlostmi 40.
ZÁKLADY STAVEBNÍ FYZIKY
ZÁKLADY STAVEBNÍ FYZIKY Doc.Ing.Václav Kupilík, CSc. První termodynamická věta představuje zákon o zachování energie. Podle tohoto zákona nemůže energie samovolně vznikat nebo zanikat, ale může se pouze
teplosměnná plocha Obr. 11-1 Schéma souproudu
11 Sdílení tepla Lenka Schreiberová, Oldřich Holeček I Základní vztahy a definice Sdílením tepla rozumíme převod energie z místa s vyšší teplotou na místo s nižší teplotou vlivem rozdílu teplot. Zařízení
Výpočtové nadstavby pro CAD
Výpočtové nadstavby pro CAD 4. přednáška eplotní úlohy v MKP Michal Vaverka, Martin Vrbka Přenos tepla Př: Uvažujme pro jednoduchost spalovací motor chlazený vzduchem. Spalováním vzniká teplo, které se
TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013
Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.
Tepelně vlhkostní posouzení
Tepelně vlhkostní posouzení komínů výpočtové metody Přednáška č. 9 Základní výpočtové teploty Teplota v okolí komína 1 Teplota okolí komína 2 Teplota okolí komína 3 Teplota okolí komína 4 Teplota okolí
1. FYZIKÁLNÍ ZÁKLADY ŠÍŘENÍ TEPLA
. FYZIKÁLNÍ ZÁKLADY ŠÍŘENÍ TEPLA. Veličiny, symboly, jednotky Teplota, teplotní rozdíl ϑ... teplota Θ... termodynamická teplota = ϑ - ϑ... teplotní rozdíl Θ = Θ - Θ... teplotní rozdíl C... stupeň Celsia
Proudění vody v potrubí. Martin Šimek
Proudění vody v potrubí Martin Šimek Zadání problému Umělá vlna pro surfing Dosavadní řešení pomocí čerpadel Sestrojení modelu pro přívod vody z řeky Vyčíslení tohoto modelu Zhodnocení výsledků Návrh systému
1141 HYA (Hydraulika)
ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů
VI. Nestacionární vedení tepla
VI. Nestacionární vedení tepla Nestacionární vedení tepla stagnantním prostředím, tj. tělesy a kapalinou, ve které se neprojevuje přirozená konvekce. F. K. rovnice " ρ c p = q + Q! = λ + Q! ( g) 2 ( g)
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ. Studijní program: B2301 Strojní inženýrství Studijní zaměření: Stavba energetických strojů a zařízení
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Studijní program: B2301 Strojní inženýrství Studijní zaměření: Stavba energetických strojů a zařízení BAKALÁŘSKÁ PRÁCE Modelování mezní vrstvy a vliv na přestup
U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze
Seminář z PHTH 3. ročník Fakulta strojní ČVUT v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Přenos tepla 2 Mechanismy přenosu tepla Vedení (kondukce) Fourierův zákon homogenní izotropní prostředí
MĚŘENÍ SOUČINITELE PŘESTUPU TEPLA V KRUHOVÝCH MINIKANÁLECH
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE MĚŘENÍ SOUČINITELE PŘESTUPU TEPLA V KRUHOVÝCH
TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla;
TERMIKA II Šíření tepla vedením, prouděním a zářením; Stacionární vedení s dokonalou i nedokonalou izolací; Nestacionární vedení tepla; Obecná rovnice vedení tepla; Přestup a prostup tepla; 1 Šíření tepla
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PROCESS AND ENVIRONMENTAL
1/58 Solární soustavy
1/58 Solární soustavy hydraulická zapojení zásobníky tepla tepelné výměníky 2/58 Přehled solárních soustav příprava teplé vody kombinované soustavy ohřev bazénové vody hydraulická zapojení typické zisky
Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny
Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Hustota toku Zatím jsme studovali pouze soustavy, které byly v rovnovážném stavu není-li soustava v silovém poli, je hustota částic stejná
Anemometrie - žhavené senzory
Anemometrie - žhavené senzory Fyzikální princip metody Metoda je založena na ochlazování žhaveného senzoru proudícím médiem. Teplota senzoru: 50 300 C Ochlazování závisí na: Vlastnostech senzoru Fyzikálních
MIKROPORÉZNÍ TECHNOLOGIE
MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Základní principy MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Co je to tepelná izolace? Jednoduše řečeno
Posouzení konstrukce podle ČS :2007 TOB v PROTECH, s.r.o. Nový Bor Datum tisku:
Posouzení konstrukce podle ČS 050-:00 TOB v...0 00 POTECH, s.r.o. Nový Bor 080 - Ing.Petr Vostal - Třebíč Datum tisku:..009 Tepelný odpor, teplota rosného bodu a průběh kondenzace. Firma: Stavba: Místo:
Teplotní roztažnost Přenos tepla Kinetická teorie plynů
Teplotní roztažnost Přenos tepla Kinetická teorie plynů Teplotní roztažnost pevných látek l a kapalin Teplotní délková roztažnost Teplotní objemová roztažnost a závislost hustoty na teplotě Objemová roztažnost
Tepelná ztráta potrubí s izolací kruhového průřezu
kruhového průřezu Tloušťka siz = 40 mm Průměr d = 32 mm Tloušťka stěny st = 4.4 mm D = d + 2 siz = 112 mm Určující souč. prostupu tepla (dle vyhl. 193/2007) => Uo,193/2007 = 0.18 W / m K Součinitel prostupu
TEPLOTECHNICKÝ VÝPOČET TRUBKOVÉHO CHLADIČE VZDUCHU
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING
1/1 PŘEHLED TEORIE A VÝPOČTOVÝCH VZTAHŮ. Základní stavové veličiny látky. Vztahy mezi stavovými veličinami ideálních plynů
1/1 PŘEHLED TEORIE A VÝPOČTOVÝCH VZTAHŮ Základní stavové veličiny látky Vztahy mezi stavovými veličinami ideálních plynů Stavová rovnice ideálního plynu f(p, v, T)=0 Měrné tepelné kapacity, c = f (p,t)
Měření měrné telené kapacity pevných látek
Měření měrné telené kapacity pevných látek Úkol :. Určete tepelnou kapacitu kalorimetru.. Určete měrnou tepelnou kapacitu daných těles. 3. Naměřené hodnoty porovnejte s hodnotami uvedených v tabulkách
Tepelné procesy. Přednášky a cvičení AN: prof. Fatima Hassouna, učebna B139. Přednášky CZ: prof. Pavel Hasal, posluchárna B III
Tepelné procesy Přednášky a cvičení AN: prof. Fatima Hassouna, učebna B139 Přednášky CZ: prof. Pavel Hasal, posluchárna B III Cvičení CZ: Vladislav Nevoral, učebna B139 1 Pavel Hasal e-mail: Pavel.Hasal@vscht.cz
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY NÁVRH OHŘÍVÁKU TOPNÉ VODY PRO VYVEDENÍ TEPLA Z TEPLÁRNY SPALUJÍCÍ BIOMASU 5,5 MW
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE NÁVRH OHŘÍVÁKU TOPNÉ VODY PRO VYVEDENÍ TEPLA
Otázky Chemické inženýrství I ak. rok 2013/14
Otázky Chemické inženýrství I ak. rok 2013/14 1. Principy bilancování. Bilancovatelné veličiny. Pojmy: bilanční systém a jeho hranice, bilanční období, proud, složka, akumulace, zdroj, fiktivní proud,
Teorie přenosu tepla Deskové výměníky tepla
Teorie přenosu tepla Deskové výměníky tepla Teorie přenosu tepla Následující stránky vám pomohou lépe porozumnět tomu, jak fungují výměníky tepla. Jasně a jednoduše popíšeme základní principy přenosu tepla.
Kontrolní otázky k 1. přednášce z TM
Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele
Třecí ztráty při proudění v potrubí
Třecí ztráty při proudění v potrubí Vodorovným ocelovým mírně zkorodovaným potrubím o vnitřním průměru 0 mm proudí 6 l s - kapaliny o teplotě C. Určete tlakovou ztrátu vlivem tření je-li délka potrubí
POZNÁMKA: V USA se používá ještě Fahrenheitova teplotní stupnice. Převodní vztahy jsou vzhledem k volbě základních bodů složitější: 9 5
TEPLO, TEPLOTA Tepelný stav látek je charakterizován veličinou termodynamická teplota T Jednotkou je kelvin T K Mezi Celsiovou a Kelvinovou teplotní stupnicí existuje převodní vztah T 73,5C t POZNÁMKA:
Otázky pro Státní závěrečné zkoušky
Obor: Název SZZ: Strojírenství Mechanika Vypracoval: Doc. Ing. Petr Hrubý, CSc. Doc. Ing. Jiří Míka, CSc. Podpis: Schválil: Doc. Ing. Štefan Husár, PhD. Podpis: Datum vydání 8. září 2014 Platnost od: AR
Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF
Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 14.12.14 Mechanika tekuln 12/13 1 Mechanika teku,n - přednášky 1. Úvod, pojmy,
TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA STROJNÍ
TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA STROJNÍ Katedra energetických zařízení PATRIK BULÍŘ Výkonové charakteristiky vytápěcí jednotky SAHARA Power characteristics of unit heater SAHARA Vedoucí bakalářské
Termomechanika 12. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 2. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
1 Tlaková ztráta při toku plynu výplní
I Základní vztahy a definice 1 Tlaková ztráta při toku plynu výplní Proudění plynu (nebo kapaliny) nehybnou vrstvou částic má řadu aplikací v chemické technoloii. Částice tvořící vrstvu mohou být kuličky,
Mechanika tekutin je nauka o rovnováze a makroskopickém pohybu tekutin a o jejich působení na tělesa do ní ponořená či jí obtékaná.
Mechanika tekutin je nauka o rovnováze a makroskopickém pohybu tekutin a o jejich působení na tělesa do ní ponořená či jí obtékaná. Popisuje chování tekutin makroskopickými veličinami, které jsou definovány
OBSAH ŠKOLENÍ. Internet DEK netdekwifi
OBSAH ŠKOLENÍ 1) základy stavební tepelné techniky pro správné posuzování skladeb 2) samotné školení práce v aplikaci TEPELNÁ TECHNIKA 1D Internet DEK netdekwifi 1 Základy TEPELNÉ OCHRANY BUDOV 2 Legislativa
Technologie a procesy sušení dřeva
strana 1 Technologie a procesy sušení dřeva 3. Teplotní pole ve dřevě během sušení Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
TOB v PROTECH spol. s r.o ARCHEKTA-Ing.Mikovčák - Čadca Datum tisku: MŠ Krasno 2015.TOB 0,18 0,18. Upas,20,h = Upas,h =
Tepelný odpor, teplota rosného bodu a průběh kondenzace. Stavba: MŠ Krasno Místo: Zadavatel: Zpracovatel: Zakázka: Archiv: Projektant: E-mail: Datum: Telefon:..0 Výpočet je proveden dle STN 00:00 SCH -
U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze
U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Seminář z PHH 3. ročník Fakulta strojní ČVU v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Seminář z PHH - eplo U218 Ústav procesní
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Obecní úřad Suchonice Ulice: 29 PSČ: 78357 Město: Stručný popis budovy Seznam
Výzkum vlivu přenosových jevů na chování reaktoru se zkrápěným ložem katalyzátoru. Petr Svačina
Výzkum vlivu přenosových jevů na chování reaktoru se zkrápěným ložem katalyzátoru Petr Svačina I. Vliv difuze vodíku tekoucím filmem kapaliny na průběh katalytické hydrogenace ve zkrápěných reaktorech
Míchání a homogenizace směsí Míchání je hydrodynamický proces, při kterém je různými způsoby vyvoláván vzájemný pohyb částic míchaného materiálu.
Míchání a homogenizace směsí Míchání je hydrodynamický proces, při kterém je různými způsoby vyvoláván vzájemný pohyb částic míchaného materiálu. Účelem mícháním je dosáhnout dokonalé, co nejrovnoměrnější
Fyzikální parametry oleje: dynamická viskozita je 8 mpa s a hustota 850 kg m 3.
Ocelová deska o ploše 0,2 m 2 se pohybuje rovnoměrným přímočarým pohybem na tenkém olejovém filmu rychlostí 0,1 m s 1. Tloušt ka filmu je 2 mm. Vypočtěte sílu F, kterou musíte působit na desku, abyste
125ESB 1-B Energetické systémy budov
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov 15ESB 1-B Energetické systémy budov doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu 1 Dimenzování
Teoretické otázky z hydromechaniky
Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM tepelně-fyzikální parametry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM tepelně-fyzikální parametry Vedení tepla v látkách: vedením (kondukcí) předání kinetické energie neuspořádaných tepelných pohybů. Přenos z míst vyšší
Protokol pomocných výpočtů
Protokol pomocných výpočtů STN-1: příčka - strojovna Pomocný výpočet korekce součinitele prostupu tepla ΔU Korekce pro vzduchové vrstvy dle ČSN EN ISO 6946 Korekční úroveň: Vzduchové spáry propojující
PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2.
PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -. Řešené příklady z hydrodynamiky 1) Příklad užití rovnice kontinuity Zadání: Vodorovným
Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo.
PROMOTE MSc POPIS TÉMATU FYZKA 1 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubov@upol.cz Popis
M T I B A ZÁKLADY VEDENÍ TEPLA 2010/03/22
M T I B ZATÍŽENÍ KONSTRUKCÍ KLIMATICKOU TEPLOTOU A ZÁKLADY VEDENÍ TEPLA Ing. Kamil Staněk, k124 2010/03/22 ROVNICE VEDENÍ TEPLA Cíl = získat rozložení teploty T T x, t Řídící rovnice (parciální diferenciální)
STUDENTSKÁ SOUTĚŢNÍ PRÁCE
VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA ENERETIKY STUDENTSKÁ SOUTĚŢNÍ PRÁCE Návrh řešení chlazení plynu z teploty 000 ºC na teplotu 600 ºC Autor: Bc. Zdeněk Schee OSTRAVA 20 ANOTACE STUDENTSKÉ
Splaveniny. = tuhé částice přemísťované vodou anorganický původ organický původ různého tvaru a velikosti
SPLAVENINY Splaveniny = tuhé částice přemísťované vodou anorganický původ organický původ různého tvaru a velikosti Vznik splavenin plošná eroze (voda, vítr) a geologické vlastnosti svahů (sklon, příp.
Energetická náročnost budov
Energetická náročnost budov Energetická náročnost budov - právní rámec směrnice 2002/91/EC, o energetické náročnosti budov Prováděcí dokument představuje vyhláška 148/2007 Sb., o energetické náročnosti
PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY
PRŮKAZ ERGETICKÉ NÁROČNOSTI BUDOVY PODLE VYHLÁŠKY č. 78/2013 Sb. Rodinný dům č.p. 252, 35708 Krajková Energetický specialista: Ing. Jan Kvasnička ČKAIT 0300688, AT pozemní stavby MPO č. oprávnění: 0855
Aplikace metody teplotních oscilací pro měření součinitele přestupu tepla
Aplikace metody teplotních oscilací pro měření součinitele přestupu tepla Stanislav Solnař 1 1 ČVUT v Praze, Fakulta strojní, Ústav procesní a zpracovatelské techniky, Technická 4, 166 7 Praha 6, Česká