PÁSMOVÉ SIGNÁLY (Bandpass signals) SaSM5

Rozměr: px
Začít zobrazení ze stránky:

Download "PÁSMOVÉ SIGNÁLY (Bandpass signals) SaSM5"

Transkript

1 PÁSMOVÉ SIGNÁLY (Bandpa ignal) SaSM5 Deinie: Pámovými ignály nazýváme reálné ignály, keré maí pekrum omezeno do určiého kmiočového páma, neobahuíího nulový kmioče: S() 0, pro S() = 0, pro S() - Kmiočy, (, ) nazýváme mezními kmiočy pámového ignálu. Relaivní šířka páma: - b 0 Klaiikae: Úzkopámové (narrow band) b % Širokopámové (broad/wide band) b(%, 0%) Ulra širokopámové (ulra-wide-band) b 0% Poznámka: Relaivní šířka páma b může doáhnou maximální hodnoy 00%, pokud 0. Příklady: Signál mobilního eleonu GSM - 0 = 890 MHz, = 00 khz: b = 0,0 % úzkopámový ignál TV ignál pozemního analogového vyílání - 0 = 400 MHz, = 6 MHz: b =,5 % úzkopámový ignál

2 Teleonní kanál = 300 Hz, = Hz: b = 70 % ulraširokopámový ignál Další kroky maí: a) íl: Vyádři ignál ako V().exp( 0 ), kde V() e nízkorekvenční ignál e šířkou páma B (komplexní obálka) a exp( 0 ) e komplexní noná, přiom 0 = 0 / B. b) Moivai: a) Zpraování noná umožňue vyílání, nebo muliplex, zprávu přenáší A() b) Maemaiky e lépe praue komplexní exponeniálou. Poup podobně ako Heaviide: A) Heaviide pro harmoniké kmiočy: Nahradil o() exp() a výrazně ím unadnil výpočení operae. Jeho poup vypadá ve pekrální oblai ako: S o () ) o( 0 ): (½).(+ 0 ) (½).(- 0 ) ) Vyvoří e nový pomoný ignál ()=.in( 0 ): S () (½).(- 0 ) (½).(- 0 )

3 Se pekrem: S () = S().ign() 3) Ten e však ryze imaginární, akže e ešě podělí imaginární ednokou a vznikne reálný, zv. družený ignál: ˆ in 4) Nyní vyvoříme nový komplexní ignál ako lineární kombinai ěho dvou ignálů: exp( 0 ) = () + () = o( 0 ) +.in( 0 ): S exp () (- 0 ) 0 5) Původní reálný ignál doaneme z komplexního ignálu exp( 0 ) náleduíí operaí: o( 0 ) = Reexp( 0 ) B) Pro pámové ignály: ) Vydeme z reálného pámového ignálu () e pekrem S(): S() - -

4 ) Vyvoříme pomoný ignál (), ehož pekrum e rovno: S () = S().ign() S () - - Ten ale není reálný, nýbrž čiě imaginární u reálného ignálu by muelo bý S(-) = S * () 3) Proo vydělíme () imaginární ednokou a vyvoříme zv. ˆ družený ignál:, kerý už e reálný. 4) Nakone vyvoříme zv. analyiký (Hilberův) ignál: H ˆ. Pro eho pekrum plaí: S H () = S() + S (), a proo: S H () = 0 pro 0, S H () = S() pro 0: S H () 5) Původní reálný ignál () doaneme z analyikého ignálu ako: () = Re H ()

5 6) V čaové oblai: 6a) neprve vyádříme pomoný ignál (): pekrum pomoného ignálu e rovno: S S ign Proo bude pomoný ignál roven konvolui ignálu () a ignálu, ehož pekrum e rovno ign(). Z vičení víme, že: FA/ = -A.ign() F - ign() = /(). Takže: d Ten e zevně ryze imaginární, akže zavedeme reálný družený ignál vzahem: ˆ d 6b) a eď analyiký ignál H (): H. ˆ Vzah: d Symboliky e značí: () na iný ignál (čaový průběh) ŝ d ˆ nazýváme Hilberovou ranormaí ŝ = H(). Převádí ignál (čaový průběh), kerému říkáme družený. Inverzní ranormai označueme () = H - ŝ. Vzah pro inverzní Hilberovu ranormai odvodíme velmi nadno ve pekrální oblai. Všimněmě i, že přímá Hilberova ranormae vypadá ve pekrální oblai ako: Sˆ S ign Vynáobením éo rovnie unkí ign() doaneme: ˆ ign S S ign S pro 0 0 pro 0

6 Pokud ovšem bude hodnoa huoy pekra ignálu () v bodě = 0 nulová: S 0 d 0, pak plaí ign Sˆ S pro všehna a zpěnou ranormai ve pekrální oblai lze upravi na eno var: S Sˆ ign Sˆ. ign Pro ignály nulovou hodnoou S(0) = 0 edy plaí: H - () = - H() Podmínka S(0) = 0 e pro plano uvedeného vzahu nezbyná. Linearia Hilberovy ranormae: Nehť u() a v() ou ignály a () = a.u() + b.v(), kde a, b ou konany e eih lineární kombinaí. Pak: H() = a. Hu() + b. Hv() - plyne z deiničního vzahu HT.

7 REPREZENTAE PÁSMOVÉHO SIGNÁLU: Obálka pámového ignálu (): Deinueme i ako: A Re Im ˆ H H Vlanoi obálky: a) -A() () A() b) V míeh, kde () = A() plaí: () = A () obálka e ečně ýká e ignálem ) A() 0 d) A() = 0 pouze am, kde e oučaně ignál i družený ignál rovnaí 0. A() edy obepíná (obalue) ignál (). Příklad: H +A() () -A()

8 Okamžiá áze pámového ignálu (): Deinie: Deinueme neprve pomonou unki (): Im H arg H arg Re 0, Im Re pro H H H Im H arg Re 0 Re pro H H Im H arg Re 0, Re pro H H 0 Im 0 H Tímo vzahem e () ednoznačně deinována v rozmezí 0 -. Přiom, pokaždé když () proíná hranii, změní e eí hodnoa kokem o. Pokud e ale H () poiý, měla by bý i eho áze poiou unkí čau. Okamžiou ázi () ignálu () edy deinueme ako: mod, přiom při průhodu mezemi k., kde k e elé čílo, e () poiou unkí čau. Označíme-li () = () - 0, pak: () = 0 + () Analyiký ignál H () pak lze vyádři v exponeniálním varu: H () = A().exp() Pámový ignál () = Re H ()lze vyádři vzahem: () = A().o() = A().o 0 + () Okamžiý kmioče pámového ignálu (): Deinie: d d, nebo úhlový kmioče: d d Komplexní obálka pámového ignálu (): Deinie: V() = H ().exp(- ),

9 přiom e noný kmioče volí ak, že pekrum S V () ignálu V() zabírá pámo v okolí nulového kmioču - 0, + 0, akže e z pámového ignálu ane ignál nízkorekvenční: S() 0 = - 0 = Je zřemé, že noný kmioče není ouo deinií určen ednoznačně, akže ani komplexní obálka není ednoznačně deinována a závií na volbě. Z exponeniálního vyádření analyikého ignálu: H () = A().exp() doaneme pro komplexní obálku: V() = A().exp()- = A().exp()- A().exp(), kde () = () - e zv. áze komplexní obálky A naopak pro analyiký ignál: H () = A().exp +() = = A().o + () + A().in + () Původní reálný pámový ignál () pak lze zapa ako: () = Re H () = A().o + () = A()o().o( ) A() in(). in( ) = A ().o( ) + A ().in( ) kde: A () a A () ou obálky orogonálníh ložek o( ) a in( ) závilé na čae.

10 Uvedený vzah e nazývá rozklad pámového ignálu do orogonálníh ložek. Sdružený ignál ŝlze zae zapa ako: ŝ = Im H () = A().in + () A().o + ()-/ Teno vzah lze inerpreova náleduíím způobem: Sdružený ignál e pounuý oproi původnímu ignálu o -/ Pro komplexní obálku pak doáváme: V() = A().exp() = A().o() + A(). in() = = A () A () = ReV()+.ImV() ReV() = A () ImV() = -A () Pro obálku: A V A A A pro ázi komplexní obálky (): A arg V arg A

11 POSTUPY ZÍSKÁNÍ KOMPLEXNÍ OBÁLKY, OBÁLKY A FÁZE KOMPLEXNÍ OBÁLKY Komplexní obálka: () = A ().o( ) + A ().in( ) = ReV()o( ) - ImV()in( ) (). o( ) = ReV().o ( ) - ImV().in( ).o( ) -(). in( ) = -ReV().o( ).in( ) + ImV().in ( ) INTEG ReV()/ () o( ) -in( ) INTEG ImV()/ Kvadraurní demoduláor nebo demoduláor komplexní obálky T T Re T o T T d V o d ImV o in T Re in T T d T T Re V V o in d ImV in T T ImV d d

12 Deeke obálky: a) koherenně (e znaloí noné včeně áze) Kvadraurní demoduláor A ()/ INTEG ( ) () o( ) in( ) INTEG ( ) + A()/ A ()/ Koherenní deekor obálky b) nekoherenně (bez znaloi noné) I: () ŝ ( ) A () + A() -/ ( ) ˆ A o A in A Deekor obálky I

13 ) nekoherenně II: A().o +() () () INTEG.A()/ Deekor obálky II ( dvoueným uměrněním) Fáze obálky (pouze koherenně): Kvadraurní demoduláor INTEG A () () o( ) -in( ) arg A A () INTEG A () Fázový deekor

Digitální modulace, modulátory a demodulátory

Digitální modulace, modulátory a demodulátory Digiální modulace, moduláory a demoduláory Charakeriiky rádiových ignálů Spekrum ouředěno kolem noného kmioču f c Pámově omezené (šířka páma B) Věšinou plaí f c >>B S ( f ) S rf( f) B B -f c f c f 0 f

Více

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI OBJÍMKA VÁZANÁ RUŽINOU NA NELAKÉM OTOČNÉM RAMENI SEIFIKAE ROBLÉMU Rameno čvercového průřezu roue konanní úhlovou rychloí ω Na něm e nasazena obímka hmonoi m s koeicienem ření mezi ní a ěnami ramene Obímka

Více

NUMP403 (Pravděpodobnost a Matematická statistika II) 1. Na autě jsou prováděny dvě nezávislé opravy a obě opravy budou hotovy do jedné hodiny.

NUMP403 (Pravděpodobnost a Matematická statistika II) 1. Na autě jsou prováděny dvě nezávislé opravy a obě opravy budou hotovy do jedné hodiny. Spojiá rozdělení I.. Na auě jou prováděny dvě nezávilé opravy a obě opravy budou hoovy do jedné hodiny. Předpokládejme, že obě opravy jou v akové fázi, že rozdělení čau do ukončení konkréní opravy je rovnoměrné.

Více

Úloha IV.E... už to bublá!

Úloha IV.E... už to bublá! Úloha IV.E... už o bublá! 8 bodů; průměr 5,55; řešilo 42 udenů Změře účinno rychlovarné konvice. Údaj o příkonu naleznee obvykle na amolepce zepodu konvice. Výkon určíe ak, že zjiíe, o kolik upňů Celia

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY

10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY - 54-10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY (V.LYSENKO) Základní princip analogově - číslicového převodu Analogové (spojié) y se v nich ransformují (převádí) do číslicové formy. Vsupní spojiý (analogový) doby

Více

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie

Více

Spektrum 1. Spektrum 2. Výsledné Spektrum. Jan Malinský

Spektrum 1. Spektrum 2. Výsledné Spektrum. Jan Malinský Jan Malinsý V omo doumenu bude odvozeno sperum vysenuého sinusového signálu pomocí onvoluce ve frevenční oblasi. V časové oblasi e možno eno vysenuý signál vyvoři násobením obdélníového ( V a sinusového

Více

x udává hodnotu směrnice tečny grafu

x udává hodnotu směrnice tečny grafu Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

1.1.9 Rovnoměrný pohyb IV

1.1.9 Rovnoměrný pohyb IV 1.1.9 Rovnoměrný pohyb IV ředpoklady: 118 V jedné z minulých hodin jme odvodili vzah pro dráhu (nebo polohu) rovnoměrného pohybu = v (dráha je přímo úměrná rychloi a čau). ř. 1: Karel a onza e účaní dálkového

Více

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2 STŘEDNÍ ŠKOLA ELEKTOTECNICKÁ FENŠTÁT p.. Jméno: JAN JEK Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENEÁTO FNKCÍ Číslo měření: 6 Zkoušené předměy: ) Komparáor ) Inegráor ) Generáor unkcí Funkce při měření:

Více

Matematika v automatizaci - pro řešení regulačních obvodů:

Matematika v automatizaci - pro řešení regulačních obvodů: . Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.

Více

Maxwellovy a vlnová rovnice v obecném prostředí

Maxwellovy a vlnová rovnice v obecném prostředí Maxwellovy a vlnová rovnie v obeném prosředí Ing. B. Mihal Malík, Ing. B. Jiří rimas TCHNICKÁ UNIVRZITA V LIBRCI Fakula meharoniky, informaiky a mezioborovýh sudií Teno maeriál vznikl v rámi proeku SF

Více

Pasivní tvarovací obvody RC

Pasivní tvarovací obvody RC Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ týden doc Ing Renata WAGNEROVÁ, PhD Otrava 013 doc Ing Renata WAGNEROVÁ, PhD Vyoká škola báňká Technická univerzita

Více

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované.

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované. finní ransformace je posunuí plus lineární ransformace má svou maici vzhledem k homogenním souřadnicím využií například v počíačové grafice [] Idea afinního prosoru BI-LIN, afinia, 3, P. Olšák [2] Lineární

Více

7. Měření kmitočtu a fázového rozdílu; 8. Analogové osciloskopy

7. Měření kmitočtu a fázového rozdílu; 8. Analogové osciloskopy 7. Měření kmioču a fázového rozdílu; Měření kmioču osciloskopem Měření kmioču číačem Měření fázového rozdílu osciloskopem Měření fázového rozdílu elekronickým fázoměrem 8. Analogové osciloskopy Blokové

Více

Obr. PB1.1: Schématické zobrazení místa.

Obr. PB1.1: Schématické zobrazení místa. 97 Projekové zadání PB1 Poouzení nehodové udáoi Na zákadě chémau nehody oveďe vyhodnocení nehodové udáoi. Určee: - paramery oai řeu pode chémau na orázku Or. PB1.1 ( x1, x, y1, y, x1, x, y1, y ); - zda

Více

NA POMOC FO. Pád vodivého rámečku v magnetickém poli

NA POMOC FO. Pád vodivého rámečku v magnetickém poli NA POMOC FO Pád vodivého rámečku v maneickém poli Karel auner *, Pedaoická akula ZČU v Plzni Příklad: Odélníkový rámeček z vodivého dráu má rozměry a,, hmonos m a odpor. Je zavěšen ve výšce h nad horním

Více

Analogový komparátor

Analogový komparátor Analogový komparáor 1. Zadání: A. Na předloženém inverujícím komparáoru s hyserezí změře: a) převodní saickou charakerisiku = f ( ) s diodovým omezovačem při zvyšování i snižování vsupního napěí b) zaěžovací

Více

Derivace funkce více proměnných

Derivace funkce více proměnných Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme

Více

2. MĚŘICÍ ZESILOVAČE A PŘEVODNÍKY

2. MĚŘICÍ ZESILOVAČE A PŘEVODNÍKY . MĚŘCÍ ZESLOVAČE A PŘEVODNÍKY Senzor předsavuje vsupní blok měřicího řeězce. Snímá sledovanou veličinu a převádí ji na veličinu měronosnou, nejčasěji analogový elekrický signál. Výsupem akivního senzoru

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzia omáše Bai ve Zlíně Úsav elekroechniky a měření Sřídavý proud Přednáška č. 5 Milan Adámek adamek@f.ub.cz U5 A711 +4057603551 Sřídavý proud 1 Obecná charakerisika periodických funkcí zákl. vlasnosí

Více

Vysoká škola báňská Technická univerzita Ostrava MODULOVANÉ SIGNÁLY. učební text. Zdeněk Macháček, Pavel Nevřiva

Vysoká škola báňská Technická univerzita Ostrava MODULOVANÉ SIGNÁLY. učební text. Zdeněk Macháček, Pavel Nevřiva Vysoká škola báňská Tehniká univerzia Osrava MODULOVANÉ SIGNÁLY učební ex Zdeněk Maháček, Pavel Nevřiva Osrava Reenze: Ing. Jiří Kozian, Ph.D. RNDr. Miroslav Liška, CS. Název: Modulované signály Auor:

Více

FUNKCE VE FYZICE. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Miroslava Jarešová Ivo Volf

FUNKCE VE FYZICE. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Miroslava Jarešová Ivo Volf FUNKCE VE FYZICE Sudijní ex pro řešiele FO a oaní zájemce o fyziku Mirolava Jarešová Ivo Volf Obah Elemenární funkce na CD ROMu 2 1 Základní pojmy 4 1.1 Pojemfunkce............................ 4 1.2 Graffunkce.............................

Více

10. Charakteristiky pohonů ve vlastní spotřebě elektrárny

10. Charakteristiky pohonů ve vlastní spotřebě elektrárny 0. Charakeriiky pohonů ve vlaní pořebě elekrárny pořebiče ve V.. ají yo charakeriické vlanoi: Příkon Záběrný oen Doba rvání rozběhu Hlavní okruhy pořebičů klaické konvenční epelné elekrárny jou:. Zauhlování

Více

Laplaceova transformace Modelování systémů a procesů (11MSP)

Laplaceova transformace Modelování systémů a procesů (11MSP) aplaceova ransformace Modelování sysémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček 5. přednáška MSP čvrek 2. března 24 verze: 24-3-2 5:4 Obsah Fourierova ransformace Komplexní exponenciála

Více

Analogové modulace. Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206

Analogové modulace. Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 EVROPSKÝ SOCIÁLNÍ FOND Analogové modulace PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 Modulace Co je to modulace?

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

Parciální funkce a parciální derivace

Parciální funkce a parciální derivace Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci

Více

Téma: Měření tíhového zrychlení.

Téma: Měření tíhového zrychlení. PRACOVNÍ LIST č. 2 Téma úlohy: Měření íhového zrychlení Pracoval: Třída: Daum: Spolupracovali: Teploa: Tlak: Vlhko vzduchu: Hodnocení: Téma: Měření íhového zrychlení. Míní hodnou íhového zrychlení lze

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace

Více

13. Kvadratické rovnice 2 body

13. Kvadratické rovnice 2 body 13. Kvadratické rovnice 2 body 13.1. Rovnice x 2 + 2x + 2 m = 0 (s neznámou x) má dva různé reálné kořeny, které jsou oba menší než tři, právě a) m (1, 17), b) m = 2, c) m = 2 m = 5, d) m 2, 5, e) m >

Více

POPIS OBVODŮ U2402B, U2405B

POPIS OBVODŮ U2402B, U2405B Novodvorská 994, 142 21 Praha 4 Tel. 239 043 478, Fax: 241 492 691, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = POPIS OBVODŮ U2402B, U2405B Oba dva obvody

Více

KINEMATIKA. 1. Základní kinematické veličiny

KINEMATIKA. 1. Základní kinematické veličiny KINEMATIKA. Základní kinemaické veličiny Tao čá fyziky popiuje pohyb ěle. VZTAŽNÁ SOUSTAVA je ěleo nebo ouava ěle, ke kerým vzahujeme pohyb nebo klid ledovaného ělea. Aboluní klid neexiuje, proože pohyb

Více

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav 5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických

Více

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují

Více

4. KINEMATIKA - ZÁKLADNÍ POJMY

4. KINEMATIKA - ZÁKLADNÍ POJMY 4. KINEMATIKA - ZÁKLADNÍ POJMY. Definuj pojem hmoný bod /HB/. 2. Co o je vzažná ouava? 3. Co je o mechanický pohyb? 4. Podle jakých krierií můžeme mechanický pohyb rozlišova? 5. Vyvělee relaivno klidu

Více

5. MĚŘENÍ KMITOČTU a FÁZOVÉHO ROZDÍLU

5. MĚŘENÍ KMITOČTU a FÁZOVÉHO ROZDÍLU 5. MĚŘENÍ KMIOČU a FÁZOVÉHO ROZDÍLU Měření kmioč: zdroje ealonového kmioč, přímé měření osciloskopem, elekronické analogové kmioměry a vibrační kmioměr, číače (měření f přímo, měření, průměrování, možnos

Více

Slovní úlohy na pohyb

Slovní úlohy na pohyb VY_32_INOVACE_M-Ar 8.,9.09 Sloní úlohy na pohyb Anoace: Praconí li ukazuje žákoi poup řešení loních úloh na pohyb. Jou zde rozebrány ypy, keré mohou naa. Poupy řešení zoroých příkladů jou žákům promínuy

Více

Řešení úloh 1. kola 55. ročníku fyzikální olympiády. Kategorie D

Řešení úloh 1. kola 55. ročníku fyzikální olympiády. Kategorie D 1.a) Graf v km h 1 Řešení úloh 1. kola 55. ročníku fyzikální olympiády. Kaegorie D 50 Auor úloh: J. Jírů 40 30 0 10 0 0 1 3 4 5 6 7 8 9 10 11 1 13 14 6bodů b) Pomocí obahu plochy pod grafem určíme dráhu

Více

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

Popis obvodu U2407B. Funkce integrovaného obvodu U2407B

Popis obvodu U2407B. Funkce integrovaného obvodu U2407B ASICenrum s.r.o. Novodvorská 994, 142 21 Praha 4 Tel. (02) 4404 3478, Fax: (02) 472 2164, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = Popis obvodu U2407B

Více

MECHANIKA - KINEMATIKA

MECHANIKA - KINEMATIKA Projek Efekivní Učení Reformou oblaí gymnaziálního vzdělávání je polufinancován Evropkým ociálním fondem a áním rozpočem Čeké republiky. Implemenace ŠVP MECHANIKA - KINEMATIKA Učivo - Fyzikální veličiny

Více

Popis obvodů U2402B, U2405B

Popis obvodů U2402B, U2405B ASICenrum s.r.o. Novodvorská 99, Praha Tel. (0) 0 78, Fax: (0) 7 6, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = Popis obvodů U0B, U0B Funkce inegrovaných

Více

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s Ronoměrný poyb eliko rycloi ále ejná (konanní) základní za:. graf záiloi dráy na čae: polopřímka ycázející z počáku (pokud poyb začíná z klidu) m graf záiloi rycloi na čae: ronoběžka odoronou ou m. U poybu

Více

Příloha: Elektrická práce, příkon, výkon. Příklad: 4 varianta: Př. 4 var: BEZ CHYBY

Příloha: Elektrická práce, příkon, výkon. Příklad: 4 varianta: Př. 4 var: BEZ CHYBY říloha: Elekrická práce, příkon, výkon říklad: 4 variana: onorné čerpadlo vyčerpá axiálně 22 lirů za inuu do axiální výšky 1,5 erů Jaká je jeho účinnos, když jeho příkon je 9 Husoa vody je 1 ř 4 var: BEZ

Více

Č š ú ú ú ú Ú ú ú Ú Š ť Č Í Í Č

Č š ú ú ú ú Ú ú ú Ú Š ť Č Í Í Č Š Č Ýú ú ž Š Í š ú ú Č ú ž š Š ů ů ú ú Ú ú Š ú ú Ú ú ů ú ť ú Ú ú ů ú Č Ú ú Ú ú ú Š Š ú Š ú ů ú Č Í Í Č Č š ú ú ú ú Ú ú ú Ú Š ť Č Í Í Č ú ó ů Ú Á Í ž ú ú ú Í ú Í Í ú Ú ů š ů ů ů Ž Í ů Ž Ž Ů Ú Ž ó Ž ů ú

Více

10 Lineární elasticita

10 Lineární elasticita 1 Lineární elasicia Polymerní láky se deformují lineárně elasicky pouze v oblasi malých deformací a velmi pomalých deformací. Hranice mezi lineárním a nelineárním průběhem deformace (mez lineariy) závisí

Více

Úč é ř é ž é é žň é č ž š é é é é ž ů úč ó ř ž é š ý ý š č ř č ř ů ř é č ý ý é ž é č č é ý é ť ž č ůž č č ř ů ý ř ř ůž é ů ý ý ů ž č ř ůž ý é ůž ř ř ž

Úč é ř é ž é é žň é č ž š é é é é ž ů úč ó ř ž é š ý ý š č ř č ř ů ř é č ý ý é ž é č č é ý é ť ž č ůž č č ř ů ý ř ř ůž é ů ý ý ů ž č ř ůž ý é ůž ř ř ž ď Á Ý š Á ý ý č ý š ř ů č č é č č č ú š é č Č ý ř ž ř é ž Č ř č ň š č č č č é Úč ž ř é é ř é č ř ý š ř ů ý ž č ř ř ř é ž é é Úč é ř é ž é é žň é č ž š é é é é ž ů úč ó ř ž é š ý ý š č ř č ř ů ř é č ý ý

Více

4. LOCK-IN ZESILOVAČE

4. LOCK-IN ZESILOVAČE 4. LOCK-IN ZESILOVAČE Záladní princip Fázově cilivý deeor (PSD) s řízeným směrňovačem - vlasnosi Fázově cilivý deeor (PSD) s číslicovým zpracováním signál - vlasnosi Vysoofrevenční Loc-in zesilovač X38SMP

Více

12. MAGNETICKÁ MĚŘENÍ, OSCILOSKOPY

12. MAGNETICKÁ MĚŘENÍ, OSCILOSKOPY 2. MAGNETICKÁ MĚŘENÍ, OSCILOSKOPY měření magneické indukce a inenziy magneického pole (sejnosměrné pole - Hallova a feromagneická sonda, anizoropní magneorezisor; sřídavé pole - měřicí cívka) analogový

Více

e) U ( ) ( ) r 1.1. Ř EŠENÉPŘ ÍKLADY PDF byl vytvořen zkušebníverzífineprint pdffactory

e) U ( ) ( ) r 1.1. Ř EŠENÉPŘ ÍKLADY PDF byl vytvořen zkušebníverzífineprint pdffactory . Signá ly se souvislým časem Ř EŠENÉPŘ ÍKLADY r.. a) Urč ee sřednía eeivníhodnou signálů na obr.., jejich výon a energii za č as =. d) = b) e), 5ms c) ),5V -,5V Obr... Analyzované signály. Sředníhodnoa:

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE MASARYKŮV ÚSTAV VYŠŠÍCH STUDIÍ BAKALÁŘSKÁ PRÁCE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE MASARYKŮV ÚSTAV VYŠŠÍCH STUDIÍ BAKALÁŘSKÁ PRÁCE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE MASARYKŮV ÚSTAV VYŠŠÍCH STUDIÍ BAKALÁŘSKÁ PRÁCE Praha, 0 Ing. Per BUBLA ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE MASARYKŮV ÚSTAV VYŠŠÍCH STUDIÍ Sudijní program: Specializace

Více

ÚČ ř Í ů é č ř úč ů ř ř úč ů č Ů Ě Í ÚČ č š ú ú ó é ř é č ž úř ŠĚú Ů é úř ů é Úř ú ř ď Í ú ř ě č Úř ě ě ě ú Č Č úř č Ú ř ř Á č ŘÍ Í ď úč ČÍ úř ř š č ř

ÚČ ř Í ů é č ř úč ů ř ř úč ů č Ů Ě Í ÚČ č š ú ú ó é ř é č ž úř ŠĚú Ů é úř ů é Úř ú ř ď Í ú ř ě č Úř ě ě ě ú Č Č úř č Ú ř ř Á č ŘÍ Í ď úč ČÍ úř ř š č ř úř úř č č ň č ř ě ú úř úř č č úř ř š úř č é úř ě ě ě ů é ě č ú ú ř ě ě ě ú ě ů ů ě é ě ě é ě ě š ř ů é ě č ř é ě š ř ů ř ž ú ú ž ě Č é ě Č ě Č é ě Č ě Č é ě ř š ě ú č ě úř ě ř š ě é č úř ě ěř ů ě ěř č

Více

Práce a výkon při rekuperaci

Práce a výkon při rekuperaci Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Lineární algebra 4. přednáška: Vekorové prosory Dalibor Lukáš Kaedra aplikované maemaiky FEI VŠB Technická univerzia Osrava email: dalibor.lukas@vsb.cz hp://www.am.vsb.cz/lukas/la Tex byl vyvořen v rámci

Více

4. Gomory-Hu Trees. r(x, z) min(r(x, y), r(y, z)). Důkaz: Buď W minimální xz-řez.

4. Gomory-Hu Trees. r(x, z) min(r(x, y), r(y, z)). Důkaz: Buď W minimální xz-řez. 4. Gomory-Hu Tree Cílem éo kapioly je popa daovou rukuru, kerá velice kompakně popiuje minimální -řezy pro všechny dvojice vrcholů, v daném neorienovaném grafu. Tuo rukuru poprvé popali Gomory a Hu v článku[1].

Více

REAKČNÍ KINETIKA 1. ZÁKLADNÍ POJMY. α, ß jsou dílčí reakční řády, α je dílčí reakční řád vzhledem ke složce A, ß vzhledem ke složce

REAKČNÍ KINETIKA 1. ZÁKLADNÍ POJMY. α, ß jsou dílčí reakční řády, α je dílčí reakční řád vzhledem ke složce A, ß vzhledem ke složce REKČNÍ KINETIK - zabývá se ryhlosí hemikýh reakí ZÁKLDNÍ POJMY Definie reakční ryhlosi v - pro reake probíhajíí za konsanního objemu v dξ di v V d ν d i [] moldm 3 s Ryhlosní rovnie obeně vyjadřuje vzah

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

STAVOVÁ A ALGEBRAICKÁ TEORIE ŘÍZENÍ

STAVOVÁ A ALGEBRAICKÁ TEORIE ŘÍZENÍ U n i v e r z i a o m á š e B a i v e Z l í n ě Fakula aplikované informaiky SAVOVÁ A AGEBAICKÁ EOIE ŘÍZENÍ PE DOSÁ ADEK MAUŠŮ ZÍN Skripa jou určena udenům. ročníku magierkého udia udijního oboru Auomaické

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

ó ž ř ó ú ž ů ř ř ř š ů ř ř řž ř ř š ř š š ř é řž š ž ř ř ř š ů ó ř š éúř ř š ž ř ó ú ř ó ú ó ř ř úš ř šš žš ťé řď ž óú ž é šř š é š ř é ř é ó é é é é

ó ž ř ó ú ž ů ř ř ř š ů ř ř řž ř ř š ř š š ř é řž š ž ř ř ř š ů ó ř š éúř ř š ž ř ó ú ř ó ú ó ř ř úš ř šš žš ťé řď ž óú ž é šř š é š ř é ř é ó é é é é ř úř úř úř úř úř ř š ď ú ř šň ř ů é ř ú ř ř ž ž ž š š š š ž ž ú é ú řóž ú ř ú ž ů ř ď ř ř ř š ů ř řóž ř ň š é š š ř é ž š ž ř ň ó ř ř š ů ř š éú ř šš žš ř é ř ř ú ř ó ř ú ř žš é ř ž ž ž ř šř ó šť é ď š

Více

MECHANIKA PODZEMNÍCH KONSTRUKCÍ Základní vztahy z reologie a reologického modelování

MECHANIKA PODZEMNÍCH KONSTRUKCÍ Základní vztahy z reologie a reologického modelování STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTRSKÉHO PROGRAMU STAVBNÍ INŽNÝRSTVÍ -GOTCHNIKA A PODZMNÍ STAVITLSTVÍ MCHANIKA PODZMNÍCH KONSTRUKCÍ Základní vzahy z reologie a reologického

Více

Připojení k rozlehlých sítím

Připojení k rozlehlých sítím Připojení k rozlehlých sítím Základy počítačových sítí Lekce 12 Ing. Jiří ledvina, CSc Úvod Telefonní linky ISDN DSL Kabelové sítě 11.10.2006 Základy počítačových sítí - lekce 12 2 Telefonní linky Analogové

Více

Vysokofrekvenční obvody s aktivními prvky

Vysokofrekvenční obvody s aktivními prvky Vokofrekvenční obvod aktivními prvk Základními aktivními prvk ve vokofrekvenční technice jou bipolární a unipolární tranzitor. Dalšími aktivními prvk jou hbridní nebo monolitické integrované obvod. Tranzitor

Více

Úloha V.E... Vypař se!

Úloha V.E... Vypař se! Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee

Více

á Í č ě ž áť í á ž á áží ě í á í č š í á í š é é ě ž é č ě č í š í é í á á ž á ě í ě í ě í í í ě í í á á á ě í á é í á Ťí á á ě í í í í é Ťí ě č ě ž á

á Í č ě ž áť í á ž á áží ě í á í č š í á í š é é ě ž é č ě č í š í é í á á ž á ě í ě í ě í í í ě í í á á á ě í á é í á Ťí á á ě í í í í é Ťí ě č ě ž á ž Ť č š í č é í ě č ě šč í ť Í Á Č É Ě Č š í ě í ší ě ž á í ě é ě ž ž ě á ž áž í ž ě é ž í ž á á š ž č í é č é é ě é í š ěť č ě á Ťí á ž é é á í ž í í é ě é ě í é š ž žá é ě š í č ěšéá é íší č á á Ť ž

Více

x (D(f) D(g)) : (f + g)(x) = f(x) + g(x), (2) rozdíl funkcí f g znamená: x (D(f) D(g)) : (f g)(x) = f(x) g(x), (3) součin funkcí f.

x (D(f) D(g)) : (f + g)(x) = f(x) + g(x), (2) rozdíl funkcí f g znamená: x (D(f) D(g)) : (f g)(x) = f(x) g(x), (3) součin funkcí f. 1. Funkce Deinice 1.1. Zobrazení nazýváme reálná unkce, jestliže H() R. Další speciikaci můžeme provést podle deiničního oboru zobrazení. Deinice 1.2. Reálná unkce se nazývá (1) unkce jedné reálné proměnné,

Více

13. OSCILOSKOPY, DALŠÍ MĚŘICÍ PŘÍSTROJE A SENZORY

13. OSCILOSKOPY, DALŠÍ MĚŘICÍ PŘÍSTROJE A SENZORY 13. OSCILOSKOPY, DALŠÍ MĚŘICÍ PŘÍSTROJE A SENZORY analogový osciloskop (základní paramery, blokové schéma, spoušěná časová základna princip synchronizace, pasivní sonda k osciloskopu, dvoukanálový osciloskop

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Unverza Tomáše Ba ve Zlíně ABOATONÍ VIČENÍ EEKTOTEHNIKY A PŮMYSOVÉ EEKTONIKY Název úlohy: Zpracoval: Měření čnného výkonu sřídavého proudu v jednofázové sí wamerem Per uzar, Josef Skupna: IT II/ Moravčík,

Více

Inovace a vytvoření odborných textů pro rozvoj klíčových. kompetencí v návaznosti na rámcové vzdělávací programy. education programs

Inovace a vytvoření odborných textů pro rozvoj klíčových. kompetencí v návaznosti na rámcové vzdělávací programy. education programs N V E S T C E D O R O Z V O J E V Z D Ě L Á V Á N Í Operační progra: Název oblas podpory: Název projek: Vzdělávání pro konkrenceschopnos Zvyšování kvaly ve vzdělávání novace a vyvoření odborných exů pro

Více

ochranným obvodem, který chrání útlumové články před vnějším náhodným přetížením.

ochranným obvodem, který chrání útlumové články před vnějším náhodným přetížením. SG 2000 je vysokofrekvenční generátor s kmitočtovým rozsahem 100 khz - 1 GHz (s option až do 2 GHz), s možností amplitudové i kmitočtové modulace. Velmi užitečnou funkcí je také rozmítání výstupního kmitočtu

Více

Aplikace analýzy citlivosti při finačním rozhodování

Aplikace analýzy citlivosti při finačním rozhodování 7 mezinárodní konference Finanční řízení podniků a finančních insiucí Osrava VŠB-U Osrava Ekonomická fakula kaedra Financí 8 9 září 00 plikace analýzy cilivosi při finačním rozhodování Dana Dluhošová Dagmar

Více

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Meodika zpracování finanční analýzy a Finanční udržielnos projeků PŘÍLOHA

Více

1.1.18 Rovnoměrně zrychlený pohyb v příkladech IV

1.1.18 Rovnoměrně zrychlený pohyb v příkladech IV 8 Rovnoměně ychlený pohyb v příkladech IV Předpoklady: 7 Pedagogická ponámka: Česká škola v současné době budí ve sudenech předsavu, že poblémy se řeší ásadně najednou Sudeni ak mají obovské poblémy v

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická

Více

Kinematika hmotného bodu

Kinematika hmotného bodu Kinemaika hmoného bodu 1. MECHANICKÝ POHYB Základní pojmy kinemaiky Relaino klidu a pohybu. POLOHA HMOTNÉHO BODU 3. TRAJEKTORIE A DRÁHA HMOTNÉHO BODU 4. RYCHLOST HMOTNÉHO BODU 5. ZRYCHLENÍ HMOTNÉHO BODU

Více

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA Přednáška 7 MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA A INTERAKCE S MĚNOVÝM KURZEM (navazující přednáška na přednášku na éma inflace, měnová eorie a měnová poliika) Měnová poliika

Více

PB169 Operační systémy a sítě

PB169 Operační systémy a sítě PB169 Operační systémy a sítě Přenos dat v počítačových sítích Marek Kumpošt, Zdeněk Říha Způsob propojení sítí opak. Drátové sítě TP (twisted pair) kroucená dvoulinka 100Mbit, 1Gbit Koaxiální kabel vyšší

Více

Digitální modulace. Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206

Digitální modulace. Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 Modulace analogových modulací modulační i

Více

Zrnitost. Zrnitost. MTF, rozlišovací schopnost. Zrnitost. Kinetika vyvolávání. Kinetika vyvolávání ( D) dd dt. Graininess vs.

Zrnitost. Zrnitost. MTF, rozlišovací schopnost. Zrnitost. Kinetika vyvolávání. Kinetika vyvolávání ( D) dd dt. Graininess vs. MTF, rozlišovací schopnos Zrnios Graininess vs. granulariy Zrnios Zrnios foografických maeriálů je definována jako prosorová změna opické husoy rovnoměrně exponované a zpracované plošky filmu měřená denziomerem

Více

Ž Ý ř Ů ř ó ř ř Ý ř ó ř óú ř ů ř ř ř ř ž ř Ž ř ř ň ů ř ř ř ř ř ř ř ó ř ř Á ř Ž ř Ž ř ř ř Ž ů ř Ž ř ň ó É ů ř ů ř ř ř Ř ř ř ů ř ň ř ů ř ř ů Ž Á ó Ž ř ř Ž ř ř ř ť ř ů ž ř ů ř ř ř ů ř ř ř ř ř ř ř ř ř Ť ň

Více

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m

Více

Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici

Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Kinemaika Základní pojmy Ronoměný přímočaý pohyb Ronoměně zychlený přímočaý pohyb Ronoměný pohyb po kužnici Základní pojmy Kinemaika - popiuje pohyb ělea, neuduje jeho příčiny Klid (pohyb) - učujeme zhledem

Více

é ě ů Í ě ě ě é ě ů Í Í ů ů ú Ů ě Ú ú ú ě é ú é ě ú Ú Í ú Í Í é é ě é Š ě ě é ě é Í ě ě ů ů ě ě ů ě ů ě ě ů ě ě ě ě é ě é ě Í ě é ě ě ě ě ů Í ě ě ě é

é ě ů Í ě ě ě é ě ů Í Í ů ů ú Ů ě Ú ú ú ě é ú é ě ú Ú Í ú Í Í é é ě é Š ě ě é ě é Í ě ě ů ů ě ě ů ě ů ě ě ů ě ě ě ě é ě é ě Í ě é ě ě ě ě ů Í ě ě ě é é ě ú ě Š é ú ů ů é Š é ě ě Í ě é ě ě ů ě é ů ě ě Í é Í Ú é ě é Í é ě ú é ě ů Ú ě é ú ú é Š Š ě Í ě Š Í ě é ě ů ů ě é ě ů ě ů é ě ě é é ě ů Í ě ě ě é ě ů Í Í ů ů ú Ů ě Ú ú ú ě é ú é ě ú Ú Í ú Í Í é é ě

Více

š š ÍÍ Ž Ó Č é é č í Í ě é á é Ť í á š ň á í ě ě Ž Ž í ě á Ť Ž ž Ž é Ž š ě í Ž á ě é Ť á á ě ě š ě í í é ž č š é ě ě ší Ž ě Ž é š ě Ť č Ť í č í í á ěč

š š ÍÍ Ž Ó Č é é č í Í ě é á é Ť í á š ň á í ě ě Ž Ž í ě á Ť Ž ž Ž é Ž š ě í Ž á ě é Ť á á ě ě š ě í í é ž č š é ě ě ší Ž ě Ž é š ě Ť č Ť í č í í á ěč ÍÍ Ž Ó Í ě á Ť á ň á ě ě Ž Ž ě á Ť Ž ž Ž Ž ě Ž á ě Ť á á ě ě ě ž ě ě Ž ě Ž ě Ť Ť á ě Ť ž á Ž ž ě á á á áž á á Ť Ž ě Ž Ž ě ě Ť Ť á ěě á Ž ž á Ž á á Ž žá Í ě Ž á Ť á Í Ú Í á Žá ž á á ě ěť ě Ťá Ž á Ť á Ť

Více

Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10. měřicí člen. porovnávací. člen. REGULÁTOR ruční řízení

Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10. měřicí člen. porovnávací. člen. REGULÁTOR ruční řízení Měřicí a řídicí echnia magisersé sudium FTOP - přednášy ZS 29/1 REGULACE regulované sousavy sandardní signály ační členy reguláory Bloové schéma regulačního obvodu z u regulovaná sousava y ační člen měřicí

Více

Stýskala, L e k c e z e l e k t r o t e c h n i k y. Vítězslav Stýskala TÉMA 6. Oddíl 1-2. Sylabus k tématu

Stýskala, L e k c e z e l e k t r o t e c h n i k y. Vítězslav Stýskala TÉMA 6. Oddíl 1-2. Sylabus k tématu Sýskala, 22 L e k c e z e l e k r o e c h n i k y Víězslav Sýskala TÉA 6 Oddíl 1-2 Sylabus k émau 1. Definice elekrického pohonu 2. Terminologie 3. Výkonové dohody 4. Vyjádření pohybové rovnice 5. Pracovní

Více

FAKULTA APLIKOVANÝCH VĚD

FAKULTA APLIKOVANÝCH VĚD FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÁ UNIVERZITA V PLZNI Semesrální práce z předměu KMA/MAB Téma: Schopnos úrokového rhu předvída sazby v době krize Daum: 7..009 Bc. Jan Hegeď, A08N095P Úvod Jako éma pro

Více

- 1 - U N I V E R Z I T A P A L A C K É H O V O L O M O U C I. O b o r : P e d a g o g i k a v e ř e j n á s p r á v a D O P R A V N Í C H N E H O D

- 1 - U N I V E R Z I T A P A L A C K É H O V O L O M O U C I. O b o r : P e d a g o g i k a v e ř e j n á s p r á v a D O P R A V N Í C H N E H O D - 1 - U N I V E R Z I T A P A L A C K É H O V O L O M O U C I P e d a g o g i c k á f a k u l t a L A D I S L A V P R O K E Š I I I. r o č n í k k o m b i n o v a n é s t u d i u m O b o r : P e d a g

Více

1.4 Metoda lineární superpozice

1.4 Metoda lineární superpozice Vážení zákazníi, dovolueme si Vás upozornit, že na tuto ukázku knih se vztahuí autorská práva, tzv. opright. To znamená, že ukázka má sloužit výhradnì pro osoní potøeu poteniálního kupuíího (a ètenáø vidìl,

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZIT V LIBERCI Savová regulace Liberec Ing. irolav Vavroušek . Savová regulace V práci e budu zabýva analýzou yému popaného diferenciální rovnicí: Řešení bude probíha pomocí yému TLB...

Více

ú ú š úř Č š ž ř ř š ř ž š š ř š š ř š ř ř ř ž ž Ž ž ř ř ž ř ž ř ř ř ú ž ř š ř ž ž ř š ž Í š ň š ř ž ř š ř š ň úř Ú ř š š ř úř Č š ž ř š ř ú ř Ř Ú Í ž

ú ú š úř Č š ž ř ř š ř ž š š ř š š ř š ř ř ř ž ž Ž ž ř ř ž ř ž ř ř ř ú ž ř š ř ž ž ř š ž Í š ň š ř ž ř š ř š ň úř Ú ř š š ř úř Č š ž ř š ř ú ř Ř Ú Í ž Úř Ů úř Č Ř ř Ú Í Í úř úř úř ř š ú ř š ř ř ž ž ř ó ž š š ú ú Í ř ú ř Ř ú ř š Č ú ť ř ú ú ú ú Í ú ú ú ú š úř Č š ž ř ř š ř ž š š ř š š ř š ř ř ř ž ž Ž ž ř ř ž ř ž ř ř ř ú ž ř š ř ž ž ř š ž Í š ň š ř ž ř

Více

ď ň ý é ú ě é ž é ý ě ě Í Í š

ď ň ý é ú ě é ž é ý ě ě Í Í š ý š ý ě ú É ý ú ě ě ž é ú Ň ž Ě Ř Š Ý Ž ý ú ý é ď ň ý é ú ě é ž é ý ě ě Í Í š ý ě š ž ý ž ě ž ž Ň ý Š ě Ř ú ú ě ě ž ú é ž š ě š ě ž Ě Ř Ě ÉÝ Ě Í ě ě š ě ž ě ž é é é ýš ý é Ť Ň Ý Í é ě ě Ě ů é Ť ě ě Ó žň

Více

9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST

9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST 9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST Modulace tvoří základ bezdrátového přenosu informací na velkou vzdálenost. V minulosti se ji využívalo v telekomunikacích při vícenásobném využití přenosových

Více