Intervalové Odhady Parametrů II Testování Hypotéz
|
|
- Barbora Kovářová
- před 8 lety
- Počet zobrazení:
Transkript
1 Parametrů II Testování Hypotéz Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze Rudolf Blažek & Roman Kotecký, 011 Pravděpodobnost a statistika BI-PST, LS 010/11, Přednáška 10 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnos@
2 Odhad střední hodnoty Intervalové Odhady Konfidenční Intervaly, Intervaly spolehlivosti (Confidence Intervals)
3 Odhad střední hodnoty Bodové odhady populačního průměru μ a rozptylu σ Bodové odhady μ a σ Nechť X1, X, X3,..., Xn je náhodný výběr (i.i.d. náhodné veličiny) se střední hodnotou μ a rozptylem σ (konečnými). Jako bodový odhad μ použijeme výběrový průměr Jako bodový odhad σ použijeme výběrový rozptyl s n = 1 n 1 X n = 1 n P n i=1 X i P n i=1 (X i X n ) i.i.d....* independent and identically distributed * * * nezávislé a stejně rozdělené 3
4 Odhad střední hodnoty Intervalový odhad popul. průměru μ Intervalový odhad střední hodnoty μ Nechť X1, X, X3,..., Xn je náhodný výběr (i.i.d. náhodné veličiny) se střední hodnotou μ a rozptylem σ (konečnými). (1 α)100% Oboustranný konfidenční interval pro μ: Při známém σ: Při neznámém σ: X n ± z / / n X n ± t /,n 1 s/ n zα/ * *... kritická hodnota rozdělení N(0,1) tα/,n-1*... kritická hodnota Studentova t-rozdělení tn-1 Pozn.: Pro malé n rozdělení Xi musí být normální 4
5 Odhad střední hodnoty Intervalový odhad popul. průměru μ Přibližné rozdělení je známo pomocí CLV Z = X n µ / p n N(0, 1) α/ 1 α α/ 0 - -zα/ zα/ 5
6 Odhad střední hodnoty Intervalový odhad popul. průměru μ Pro malé n rozdělení Xi musí být normální T = X n µ s/ p n t(n 1) α/ 1 α α/ -tα/,n tα/,n-1 6
7 Odhad střední hodnoty Intervalový odhad popul. průměru μ α/ 1 α α/ -zα/ 0 zα/ -.. -tα/,n-1 tα/,n-1 7
8 Odhad střední hodnoty Intervalový odhad popul. průměru μ Intervalový odhad střední hodnoty μ Nechť X1, X, X3,..., Xn je náhodný výběr (i.i.d. náhodné veličiny) se střední hodnotou μ a rozptylem σ (konečnými). (1 α)100% Jednostranný konfidenční interval pro μ: Při známém σ: (X n z / p n, 1) ( 1, X n + z / p n) Při neznámém σ: (X n t,n 1 s/ p n, 1) ( 1, X n + t,n 1 s/ p n) zα* *... kritická hodnota rozdělení N(0,1) tα,n-1*... kritická hodnota Studentova t-rozdělení tn-1 8
9 Odhad střední hodnoty Intervalový odhad popul. průměru μ Přibližné rozdělení je známo pomocí CLV Z = X n µ / p n N(0, 1) 1 α α 0 zα 9
10 Odhad střední hodnoty Intervalový odhad popul. průměru μ Pro malé n rozdělení Xi musí být normální T = X n µ s/ p n t(n 1) 1 α α 0 tα,n-1 10
11 Odhad střední hodnoty Intervalový odhad popul. průměru μ T = X n µ s/ p n t(n 1) 1 α α 0 zα tα,n-1 11
12 Odhad střední hodnoty Pravidla použití normálního a t-rozdělení Kritickou hodnotu zα/ normálního rozdělení použijeme pokud známe přesně populační rozptyl σ pravděpodobnost pokrytí přesně (1 α) když výběr je z normálního rozdělení (i pro malé n) pravděpodobnost pokrytí přibližně (1 α) když výběr je dostatečně velký (CLV pro velké n) obvykle stačí n = 30 či n = 50 ale pro šikmá či vícemodální rozdělení n musí být veliké 1
13 Odhad střední hodnoty Pravidla použití normálního a t-rozdělení Kritickou hodnotu tα/ Studentova t-rozdělení použijeme když populační rozptyl σ odhadujeme pomocí s pravděpodobnost pokrytí přesně (1 α) pokud výběr je z normálního rozdělení (i pro malé n) pravděpodobnost pokrytí přibližně (1 α) pokud výběr je ze symetrického unimodálního rozdělení, bez odlehlých pozorování a velikost výběru je n 15 výběr je ze mírně šikmého, unimodálního rozdělení, bez odlehlých pozorování a velikost výběru je 16 n 40 výběr je velký (n > 40) a bez odlehlých pozorování 13
14 Odhad rozptylu Intervalový odhad popul. rozptylu σ Intervalový odhad rozptylu σ Nechť X1, X, X3,..., Xn je náhodný výběr (i.i.d. náhodné veličiny) z normálního rozdělení se střední hodnotou μ a rozptylem σ (konečnými). (1 α)100% Oboustranný konfidenční interval pro σ : (n 1)s 1 /, n 1 apple apple (n 1)s /, n 1 /, n 1 a 1 /, n 1 * * * * * * * *...* kvantily rozdělení chi-kvadrát 14
15 Odhad rozptylu Intervalový odhad popul. rozptylu σ Rozdělení Xi musí být normální (n 1)s n 1 1 α α/ α/ 0 /, n 1 1 /, n 1 15
16 Odhad rozptylu Intervalový odhad popul. rozptylu σ Rozdělení Xi musí být normální P /, n 1 apple (n 1)s apple 1 /, n 1 1 α α/ α/ 0 /, n 1 1 /, n 1 16
17 Odhad rozptylu Intervalový odhad popul. rozptylu σ Pravděpodobnost pokrytí parametru σ 1 = P /, n 1 apple (n 1)s apple 1 /, n 1! 1 = P 1 1 /, n 1 apple (n 1)s apple 1 /, n 1! 1 = P (n 1)s 1 /, n 1 apple apple (n 1)s /, n 1 17
18 Příklad: odhad střední hodnoty a rozptylu normálního rozdělení Příklad: odhad střední hodnoty a rozptylu normálního rozdělení Příklad Uvažujme následující výběr (iid) z normálního rozdělení: i Xi Najděte intervalové odhady pro střední hodnotu a rozptyl rozdělení veličin Xi. Bodové odhady: X n = 1 P n n i=1 X i = 1.80 s n = 1 P n n 1 i=1 (X i X n ) P 10 i=1 (X i 1.80) = =
19 Příklad: odhad střední hodnoty a rozptylu normálního rozdělení Příklad: odhad střední hodnoty a rozptylu normálního rozdělení Příklad 90% intervalový odhad pro střední hodnotu X n ± t /,n 1 s/ n 1.80 ± (1.833) p /10 X n = 1.80 s = t /,n 1 = t 0.05,9 = % intervalový odhad pro střední hodnotu: [1.76, 1.84] 19
20 Příklad: odhad střední hodnoty a rozptylu normálního rozdělení Příklad: odhad střední hodnoty a rozptylu normálního rozdělení Příklad 90% intervalový odhad pro rozptyl (n 1)s 1 /, n 1 apple apple (n 1)s /, n 1 (9)(0.0051) apple apple (9)(0.0051) % intervalový odhad pro rozptyl [0.007, ] 0
21 Testování Hypotéz Testování Hypotéz (Hypotheses Testing) 1
22 Testování Hypotéz Úvod Bodové a intervalové odhady Vyberu náhodně 30 kuliček (s vracením) Vidím do dlaně: 0 z 30 je červených Kolik procent kuliček Nevidím do krabičky v krabičce je asi červených? Bodový odhad: cca /3 = 66.67% Intervalový odhad s 95% spolehlivostí: 48.76% 84.57%
23 Testování Hypotéz Úvod Testování hypotéz Vyberu náhodně 30 kuliček (s vracením) Vidím do dlaně: 0 z 30 je červených Nevidím do krabičky Je v krabičce 40% červených kuliček? Závěr s 95% jistotou: NE Protože na 95% věřím: 48.76% 84.57% 3
24 Testování Hypotéz Úvod Testování hypotéz Dá se provádět s použitím intervalů spolehlivosti. V předchozím případě uvažovali následující hypotézy: Nulová hypotéza* * * * * H0: μ = 0.4 Oboustranná alternativa* * * HA: μ 0.4 Všimněte si: μ = EX = 0.q + 1.p = p = P(červená kulička) Závěr testu: Založen na oboustranném 95% intervalovém odhadu pro střední hodnotu μ: [0.4876, ] 0.4 [0.4876, ] Zamítneme H0 P(chyby) = podívejme se blíže co chyba znamená 4
25 Testování Hypotéz Chyby při testování hypotéz Chyby při testování hypotéz Uvažované hypotézy: Nulová hypotéza* * * * * H0: μ = 0.4 Oboustranná alternativa* * * HA: μ 0.4 Závěr testu: Zamítneme H0 P(chyby) = P(zamítnu chybně H0) * = P( rozhodnu H0 neplatí přestože H0 platí ) * = P( rozhodnu μ 0.4 μ = 0.4 ) * = P( μ = 0.4 leží mimo 95% interval pro μ = 0.4 μ = 0.4 ) protože histogram je centrován v 0.4 5
26 Testování Hypotéz Chyby při testování hypotéz Chyby při testování hypotéz T = X n µ s/ p n t(n 1).5% 95%.5%
27 Testování Hypotéz Chyby při testování hypotéz Chyby při testování hypotéz X n N(µ, /n).5% 95%.5% μ.045 -s μ=0.40 μ+.045 s / p n / p n 7
28 Testování Hypotéz Chyby při testování hypotéz Chyby při testování hypotéz X n N(µ, /n).5% 95%.5% X n = μ μ=0.40 μ
29 Testování Hypotéz Chyby při testování hypotéz Chyby při testování hypotéz Uvažované hypotézy: Nulová hypotéza* * * * * H0: μ = 0.4 Oboustranná alternativa* * * HA: μ 0.4 Opačný závěr testu: Nezamítneme H0 P(chyby) = P(chybně nezamítnu H0) * = P( rozhodnu H0 platí přestože H0 neplatí ) * = P( rozhodnu μ = 0.4 μ 0.4 ) * = P( 0.4 leží uvnitř 95% intervalu pro μ 0.4 μ 0.4 ) =?... protože histogram je centrován v neznámém μ 0.4 9
30 Testování Hypotéz Chyby při testování hypotéz Oboustranná alternativa Obecné hypotézy o střední hodnotě μ Nulová hypotéza* * * * * H0: μ = μ0 Oboustranná alternativa* * * HA: μ μ0 Test založen na oboustranném (1 α)100% intervalovém odhadu pro střední hodnotu μ μ0 konfidenční interval Zamítneme H0 P(chyby) = α... Chyba prvního druhu malá, nastavená μ0 konfidenční interval Nezamítneme H0 P(chyby) =??... Chyba druhého druhu je neznámá Zamítnutí H0 je silný výsledek! 30
31 Testování Hypotéz Chyby při testování hypotéz Jednostranné alternativy Obecné hypotézy o střední hodnotě μ Nulová hypotéza* * * * * H0: μ = μ0 Jednostranná alternativa** * HA: μ < μ0 Test založen na jedstranném (1 α)100% konf. intervalu pro μ Typ intervalu: (, A) μ0 konfidenční interval (A < μ0 ) Zamítneme H0 P(chyby) = α... Chyba prvního druhu malá, nastavená μ0 konfidenční interval Nezamítneme H0 P(chyby) =??... Chyba druhého druhu je neznámá Zamítnutí H0 je silný výsledek! 31
32 Testování Hypotéz Chyby při testování hypotéz Jednostranné alternativy Konfidenční interval pro jednostrannou alternativu HA: μ < μ0 1 ) X n + t,n X n Věřím HA: μ < μ0 (a zamítnu H0) pokud výběrový průměr je mnohem menší než μ0 1 s/ p n X n ) A μ0 P(chybné zamítnutí H0) = α 1 X n ) A μ0 3
33 Testování Hypotéz Chyby při testování hypotéz Jednostranné alternativy Obecné hypotézy o střední hodnotě μ Nulová hypotéza* * * * * H0: μ = μ0 Jednostranná alternativa** * HA: μ > μ0 Test založen na jedstranném (1 α)100% konf. intervalu pro μ Typ intervalu: (A, ) μ0 konfidenční interval (A < μ0 ) Zamítneme H0 P(chyby) = α... Chyba prvního druhu malá, nastavená μ0 konfidenční interval Nezamítneme H0 P(chyby) =??... Chyba druhého druhu je neznámá Zamítnutí H0 je silný výsledek! 33
34 Testování Hypotéz Chyby při testování hypotéz Volba jednostranné alternativy Zamítnutí H0 je silný výsledek! Pokud potřebuji evidenci, že průměrná hodnota je veliká Nulová hypotéza* * * * * H0: μ = μ0 Jednostranná alternativa** * HA: μ > μ0 Např. při dokazovnání, že továrna příliš zamořuje ovzduší Pokud potřebuji evidenci, že průměrná hodnota je malá Nulová hypotéza* * * * * H0: μ = μ0 Jednostranná alternativa** * HA: μ < μ0 Např. při dokazovnání, že továrna NEzamořuje ovzduší nad daný limit 34
35 Testování Hypotéz Chyby při testování hypotéz Oboustranná a jednostranné alternativy Jednostranná alternativa* * * HA: μ < μ0 X n ) X n + t,n 1 s/ p n Jednostranná alternativa* * * HA: μ > μ0* * (se stejnými daty) ( X n t,n 1 s/ p n X n Oboustranná alternativa* * * HA: μ μ0* * (se stejnými daty) ( X n t,n 1 s/ p n 1 X n ) X n + t,n 1 s/ p n 35
36 Testování Hypotéz Chyby při testování hypotéz Oboustranná a jednostranné alternativy Oboustranná alternativa Nulová hypotéza* * * * * * * H0: μ = μ0 Oboustranná alternativa* * * * * HA: μ μ0 Test založen na oboustranném (1 α)100% konf. intervalu Jednostranná alternativa Nulová hypotéza* * * * * * * H0: μ = μ0 Jednostranná alternativa** Buď * * HA: μ > μ0!!!!!!!!! Anebo * HA: μ > μ0) Test založen na jednostranném (1 α)100% konf. intervalu Anebo na oboustranném (1 α)100% konf. intervalu 36
Intervalové Odhady Parametrů
Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze
Cvičení 10. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.
10 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické
Odhady Parametrů Lineární Regrese
Odhady Parametrů Lineární Regrese Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké
Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.
11 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické
Cvičení 1. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.
1 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v
Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.
Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman
Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika
TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B
TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 1: Opakování ze statistiky LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Z čeho studovat 1) Z KNIHY Krkošková,
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Cvičení ze statistiky - 8. Filip Děchtěrenko
Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost
ÚVOD DO TEORIE ODHADU. Martina Litschmannová
ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
Ing. Michael Rost, Ph.D.
Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním
Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Příklady na testy hypotéz o parametrech normálního rozdělení
Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
5. T e s t o v á n í h y p o t é z
5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
Příklad datového souboru. Pravděpodobnost vs. statistika. Formální definice. Teorie odhadu
Pravděpodobnost vs. statistika Teorie pravděpodobnosti pracuje s jednou nebo více teoretickými náhodnými veličinami, jejichž rozdělení je známo Statistika odvozovali jsme charakteristiky těchto rozdělení
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Testy statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.
Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost
12. prosince n pro n = n = 30 = S X
11 cvičení z PSI 1 prosince 018 111 test střední hodnoty normálního rozdělení při známém rozptylu Teploměrem o jehož chybě předpokládáme že má normální rozdělení se směrodatnou odchylkou σ = 3 jsme provedli
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
Testování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum Kontakt: Literatura: Obecné informace Zvárová, J.: Základy statistiky pro biomedicínskéobory I. Vydavatelství
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
STATISTICKÉ HYPOTÉZY
STATISTICKÉ HYPOTÉZY ZÁKLADNÍ POJMY Bodové/intervalové odhady Maruška řešila hodnoty parametrů (průměr, rozptyl atd.) Zde bude Maruška dělat hypotézy (předpoklady) ohledně parametrů Z.S. Výsledek nebude
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 4. až 5.4 hod. http://www.osu.cz/~tvrdik
Stručný úvod do testování statistických hypotéz
Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.
Testování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
Cvičení 5. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.
5 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě
12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem)
cvičení z PSI 0-4 prosince 06 Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) Z realizací náhodných veličin X a Y s normálním rozdělením) jsme z výběrů daného rozsahu obdrželi
prosince oboustranný symetrický 95% interval spolehlivosti pro střední hodnotu životnosti τ. X i. X = 1 n.. Podle CLV má veličina
10 cvičení z PSI 5-9 prosince 016 101 intervalový odhad Veličina X, představující životnost žárovky, má exponenciální rozdělení s parametrem τ Průměrná životnost n = 64 náhodně vybraných žárovek je x =
STATISTICKÉ ODHADY Odhady populačních charakteristik
STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s
Statistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
Testování statistických hypotéz. Obecný postup
poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu 016 9 Testování statistických hypotéz Obecný postup (I) Vyslovení hypotézy O datech vyslovíme doměnku, kterou chceme ověřit statistickým
7. Analýza rozptylu.
7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a
Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33
1 / 33 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které
Statistika. Testování hypotéz statistická indukce Úvod do problému. Roman Biskup
Statistika Testování hypotéz statistická indukce Úvod do problému Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by Birom
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
STATISTICKÉ ZJIŠŤOVÁNÍ
STATISTICKÉ ZJIŠŤOVÁNÍ ÚVOD Základní soubor Všechny ryby v rybníce, všechny holky/kluci na škole Cílem určit charakteristiky, pravděpodobnosti Průměr, rozptyl, pravděpodobnost, že Maruška kápne na toho
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Matematická statistika. Testy v. v binomickém. Test pravděpodobnosti. Test homogenity dvou. Neparametrické testy. statistika. Testy v.
Opakování Opakování: y o střední hodnotě normálního 1 jednovýběrový t-test 2 párový t-test 3 výběrový t-test Šárka Hudecová Katedra a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy
Aproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum I. ÚVOD vv této přednášce budeme hovořit o jednovýběrových a dvouvýběrových testech týkajících se střední hodnoty
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
5. Odhady parametrů. KGG/STG Zimní semestr
Základní soubor Výběr, výběrový (statistický) soubor Náhodný výběr Princip Odhad neznámých parametrů základního souboru na základz kladě charakteristik výběru. Přecházíme z části na celek, zevšeobec eobecňujeme
Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead
PSY117/454 Statistická analýza dat v psychologii Přednáška 8 Statistické usuzování, odhady Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead Barevná srdíčka kolegyně
PSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady
PSY117/454 Statistická analýza dat v psychologii přednáška 8 Statistické usuzování, odhady Výběr od deskripce k indukci Deskripce dat, odhad parametrů Usuzování = inference = indukce Počítá se s náhodným
STATISTIKA VĚDA O USUZOVÁNÍ NA ZÁKLADĚ DAT. Patrícia Martinková Ústav informatiky AV ČR
STATISTIKA VĚDA O USUZOVÁNÍ NA ZÁKLADĚ DAT Patrícia Martinková Ústav informatiky AV ČR martinkova@cs.cas.cz www.cs.cas.cz/martinkova 1.LF UK, 22. a 30. března 2017 Motivace 1 Velké množství (medicínských
6. ZÁKLADY STATIST. ODHADOVÁNÍ. Θ parametrický prostor. Dva základní způsoby odhadu neznámého vektoru parametrů bodový a intervalový.
6. ZÁKLADY STATIST. ODHADOVÁNÍ X={X 1, X 2,..., X n } výběr z rozdělení s F (x, θ), θ={θ 1,..., θ r } - vektor reálných neznámých param. θ Θ R k. Θ parametrický prostor. Dva základní způsoby odhadu neznámého
Dva případy chybného rozhodnutí při testování: a) Testační statistika padne mimo obor přijetí nulové H hypotézy O, tj.
Uvedeme obecný postup statistického testování:. Formulace nulové H 0a alternativní hpotéz H A.. Volba hladin významnosti α.. Volba testační statistik např... Určení kritického oboru testové charakteristik.
Ranní úvahy o statistice
Ranní úvahy o statistice Neúplný návod ke čtení statistických výsledků Dušan Merta květen 2016 Co nás čeká 1 Základní pojmy 2 Testování hypotéz 3 Confidence interval 4 Odds ratio 2 / 26 Základní pojmy
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce ANOVA 2015
letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test
Párový Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 motivační příklad Párový Příklad (Platová diskriminace) firma
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
5 Parametrické testy hypotéz
5 Parametrické testy hypotéz 5.1 Pojem parametrického testu (Skripta str. 95-96) Na základě výběru srovnáváme dvě tvrzení o hodnotě určitého parametru θ rozdělení f(x, θ). První tvrzení (které většinou
LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR
LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR Ve většině případů pracujeme s výběrovým souborem a výběrové výsledky zobecňujeme na základní soubor. Smysluplné
Bodové a intervalové odhady parametrů v regresním modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e
Testování hypotéz. testujeme (většinou) tvrzení o parametru populace. tvrzení je nutno předem zformulovat
Testování hypotéz testujeme (většinou) tvrzení o parametru populace tvrzení je nutno předem zformulovat najít odpovídající test, podle kterého se na základě informace z výběrového souboru rozhodneme, zda
Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr
StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule
II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal
Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,
t-test, Studentův párový test Ing. Michael Rost, Ph.D.
Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se
Testování hypotéz Biolog Statistik: Matematik: Informatik:
Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé
11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
UNIVERZITA PARDUBICE CHEMICKO-TECHNOLOGICKÁ FAKULTA KATEDRA ANALYTICKÉ CHEMIE
UNIVERZITA PARDUBICE CHEMICKO-TECHNOLOGICKÁ FAKULTA KATEDRA ANALYTICKÉ CHEMIE STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT V OSTRAVĚ 20.3.2006 MAREK MOČKOŘ PŘÍKLAD Č.1 : ANALÝZA VELKÝCH VÝBĚRŮ Zadání: Pro kontrolu
Přednáška X. Testování hypotéz o kvantitativních proměnných
Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody
1. (18 bod ) Náhodná veli ina X je po et rub p i 400 nezávislých hodech mincí. a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost
(8 bod ) Náhodná veli ina X je po et rub p i nezávislých hodech mincí a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost P ( X EX < ) (9 bod ) b) Formulujte centrální limitní v tu a pomocí ní vypo
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test)
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Autoři: Carlos M. Jarque and Anil K. Bera Předpoklady: - Výběrová data mohou obsahovat chybějící pozorování (chybějící hodnoty) vhodné zejména
letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika
Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin
Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme
Opakování. Neparametrické testy. Pořadí. Jednovýběrový Wilcoxonův test. t-testy: hypotézy o populačním průměru (střední hodnoty) předpoklad normality
Opakování Opakování: Testy o střední hodnotě normálního rozdělení 1 jednovýběrový t-test 2 párový t-test 3 dvouvýběrový t-test jednovýběrový Wilcoxonův test párový Wilcoxonův test dvouvýběrový Wilcoxonův
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b