Derivace funkcí více proměnných

Rozměr: px
Začít zobrazení ze stránky:

Download "Derivace funkcí více proměnných"

Transkript

1 Derivace funkcí více proměnných Pro studenty FP TUL Martina Šimůnková 16. května Derivace podle vektoru jako funkce vektoru. Pro pevně zvolenou funkci f : R d R n a bod a R d budeme zkoumat zobrazení, které vektoru v R d přiřadí vektor D v f(a R n, tedy derivaci funkce f podle vektoru v v bodě a. Toto zobrazení označíme L. Připomeneme definici derivace funkce podle vektoru D v f(a = t 0 f(a t v f(a t Je to ita funkce z R do R n a o té víme, že se počítá po složkách. Příklady. 1. f(x, y = x 3 4xy, a = (1, 1 L : v D v f(a = (1 v 1 t 3 4(1 v 1 t(1 v t 3 = t 0 t = (3v 1 3v t 0 1t v1t 3 4v 1 4v 4v 1 v t = v 1 4v. g(x, y = x y x y rozšířená nulou do bodu a = (0, 0 (0 v 1 t (0 v t 1 L : v D v g(a = t 0 ((0 v 1 t (0 v t t = = v 1v v1 v. Slabá derivace. Podívejme se na grafy výše zkoumaných funkcí Obrázky jsou vygenerovány na wolframalpha.com Derivace podle vektoru souvisí s tečnou řezu grafu ve směru vektoru. U funkce f tyto tečny leží ve společné rovině (viz obrázek vlevo, u funkce g nikoliv (viz obrázek vpravo. To, zda tečny tvoří rovinu, souvisí s tím, zda je zobrazení L lineární (TODO: UKÁZAT 1

2 SOUVISLOST ADITIVITY A SPOLEČNÉ ROVINY TEČEN. A to nás vede k definici derivace, kterou nazýváme slabou derivací. Definice slabé derivace. Lineární zobrazení, které vektoru v R d přiřadí derivaci funkce f v bodě a R d podle vektoru v nazýváme slabou derivací funkce f v bodě a. Poznamenejme, že pro funkci f : R d R n je slabá derivace také zobrazením R d do R n. Příklady. Ve výše uvedeném příkladu má funkce f v bodě (1, 1 slabou derivaci L : (v 1, v v 1 4v. Funkce g v bodě (0, 0 slabou derivaci nemá. Poznámky. 1. Parciální derivace je speciálním případem derivace podle vektoru. Pro funkci dvou proměnných x, y je parciální derivace podle x derivací podle vektoru (1, 0 a parciální derivace podle y derivací podle vektoru (0, 1.. Má-li funkce dvou proměnných slabou derivaci, pak je tato derivace tvaru L : (v 1, v L 1 v 1 L v. Vektoru v = (1, 0 přiřadí L číslo L 1. Proto je L 1 rovno hodnotě parciální derivace podle x. Podobně je L rovno hodnotě parciální derivace podle y. Slabá derivace tedy, pokud existuje, má tvar L : (v 1, v v 1 x (a v y (a Pomocí gradientu a skalárního součinu můžeme slabou derivaci zapsat L : (v 1, v (v 1, v grad f(a (1 3. Vztah (1 platí jen v případě existence slabé derivace. Funkce g zkoumaná výše má v bodě a = (0, 0 gradient grad g(a = (0, 0, ale nemá slabou derivaci. Příklad slabé derivace tedy geometricky tečen v jedné rovině kterou bychom se zdráhali nazvat tečnou rovinou. Na obrázku je graf funkce f : (x, y x4 y x 8 y 4 rozšířený nulou do bodu a = (0, 0. Vypočteme derivaci v bodě a podle vektoru v = (v 1, v. D v f(a = t 0 (v 1 t 4 (v t ((v 1 t 8 (v t 4 t = v4 1v t v 8 1t 4 v 4 = 0 Obrázek je vygenerován na wolframalpha.com Odtud plyne grad f(a = (0, 0 a také existence slabé derivace L : v 0 Z grafu a z f(x, 0 = 0, f(x, x = 1/ plyne, že funkce není v bodě a = (0, 0 spojitá. To nás vede k definici silné derivace. Uvidíme, že spojitost je důsledek existence silné derivace. Výše uvedený příklad ukazuje, že slabá derivace spojitost nezaručuje.

3 3. Silná derivace. Definice. Lineární zobrazení L nazveme silnou derivací funkce f v bodě a, pokud platí f(a v f(a L(v v o v = o ( Silnou derivaci funkce f v bodě a značíme f (a nebo df(a, případně Df(a. O kolizi značení pro funkci jedné proměnné jednou je f (a číslo, podruhé lineární zobrazení viz následující poznámky a [], definice.6, poznámka.7, [1], příklad a poznámka Poznámky. 1. Místo silná derivace se často říká derivace. Další často používaný termín je totální diferenciál nebo jen diferenciál.. Je-li f funkce z R d do R n, pak je i silná derivace zobrazením z R d do R n. 3. Pro funkci f : R R, tedy funkci jedné proměnné je v definici silné derivace a R, budeme ho tedy značit netučně a. Podobně budeme v R značit v a místo o napíšeme 0. Místo L(v budeme psát součin Lv, kde L není zobrazení, ale reálné číslo. Místo normy napíšeme absolutní hodnotu. Dostaneme f(a v f(a Lv v 0 v Odstraněním absolutní hodnoty se nezmění ita zprava a ita zleva změní znaménko. Můžeme tedy vztah nahoře ekvivalentně přepsat na a to je ekvivalentní s f(a v f(a Lv v 0 v f(a v f(a v 0 v Závěr. V případě funkce jedné proměnné je existence silné derivace ekvivalentní existenci derivace a silná derivace v bodě a je zobrazení L : v f (av. Věta o tvaru silné derivace. Má-li funkce f : R d R v bodě a R d silnou derivaci, pak má tato tvar L : v v grad f(a Důkaz. Důkaz provedeme pro funkci z R do R a do ( dosadíme a = (a 1, a, v = (v 1, v a vyjádříme L(v = L 1 v 1 L v. Naším cílem je tedy ukázat L 1 = x (a = L L = y (a Ze vztahu ( v definici silné derivace plyne, že i ity po přímkách jsou rovny nule. Po dosazení v = 0 dostaneme = 0 = 0 f(a 1 v 1, a f(a 1, a L 1 v 1 v 1 0 v 1 3 = 0

4 Odtud stejnou úvahou jako v poznámce 3 dostaneme a tedy Podobně bychom dostali f(a 1 v 1, a f(a 1, a = L 1 v 1 0 v 1 L 1 = x (a L = y (a Věta o silné a slabé derivaci. Má-li funkce f : R d R n v bodě a R d silnou derivaci, pak má v tomto bodě i slabou derivaci a jsou si rovny. Důkaz. Zvolíme u R d, u o a do ( dosadíme v = t u. Dostaneme po úpravě a po vynásobení u f(a t u f(a L(t u t 0 t u f(a t u f(a tl(u t 0 t u f(a t u f(a tl(u t 0 t Nyní stejnou úvahou jako v poznámce 3 odstraníme absolutní hodnotu a upravíme na f(a t u f(a t 0 t = L(u Dostáváme tedy pro u o rovnost L(u = D u f(a, tedy rovnost silné a slabé derivace. Pro u = o výsledek plyne z linearity obou derivací. Věta o existenci silné derivace. Má-li funkce f : R d R v bodě a R d spojité parciální derivace prvního řádu, pak má v bodě a silnou derivaci L : v v grad f(a Důkaz provedeme pro d =. Přírůstek funkce napíšeme jako součet přírůstků ve směru souřadných os nakreslete obrázek obsahující body a = (a x, a y, a v = (a x v x, a y v y, (a x v x, a y. f(a x v x, a y v y f(a x, a y = f(a x v x, a y v y f(a x v x, a y f(a x v x, a y f(a x, a y Na rozdíly na pravé straně použijeme Lagrangeovu větu o střední hodnotě. Dostaneme = o = o = o f(a x v x, a y v y f(a x, a y = v y y (c v x x (d 4

5 kde bod c leží někde na úsečce mezi body (a x v x, a y v y, (a x v x, a y a bod d mezi body (a x v x, a y, (a x, a y, Od obou stran odečteme L(v ( ( f(a x v x, a y v y f(a x, a y (v x, v y grad f(a = v y (c y y (a v x (d x y (a dosadíme do definice silné derivace ( ( v y (c (a v y y x v x vy x (d y (a a upravíme v y v x vy ( (c y y (a ( v x (d v x vy x y (a Chceme ukázat, že tento výraz má pro (v x, v y (0, 0 itu rovnu nule. Ze spojitosti parciálních derivací víme, že rozdíly v závorkách mají nulovou itu. O podílech zase víme, že nabývají hodnot mezi nulou a jednou. Věta o itě součinu nulové a omezené funkce dá požadovaný výsledek. Poznámka. Víme, že ity funkce do vícerozměrného prostoru počítáme po složkách. Odtud plyne existence a výpočet silné derivace funkce f = (f 1,..., f n z R d do R n v bodě, ve kterém mají složky f 1,... f n spojité parciální derivace prvního řádu. Ukážeme na následujícím příkladu. Příklad. Funkce f z R do R daná předpisem f : (r, ϕ (r cos ϕ, r sin ϕ má na R spojité parciální derivace prvního řádu, má tedy silnou derivaci a ta je daná předpisem (v 1, v (v 1 cos ϕ v r sin ϕ, v 1 sin ϕ v r cos ϕ což můžeme zapsat maticově ( ( cos ϕ r sin ϕ v1 (v 1, v sin ϕ r cos ϕ Definice Jacobiho matice a Jacobiánu. Necht f = (f 1,..., f n je funkce z R d do R n. Matici parciálních derivací prvního řádu funkce f nazýváme Jacobiho maticí funkce f 1 x n x 1... V případě n = d, kdy je Jacobiho matice čtvercová, nazýváme její determinant Jacobiánem funkce f. Čteme: jakobiho matice, jakobián, spisovně je Jacobiova matice. Věta o spojitosti a derivaci. Má-li funkce f : R d R n silnou derivaci v bodě a, pak je v bodě a spojitá. 1 x d n x d Důkaz. Z ( plyne, že čitatel má nulovou itu, tedy v (f(a v f(a L(v = 0 v o Lineární zobrazení je spojité, tedy L(v o pro v o. Odtud plyne v o f(a v = f(a a tedy spojitost f v bodě a. 5

6 4. Taylorův polynom prvního stupně. Odvodíme z ( vztah pro Taylorův polynom prvního stupně pro funkci dvou proměnných. Čitatel v ( označíme R 1. Dostaneme po úpravě f(a v = f(a grad f(a v R 1 Označíme-li a = (a 1, a, a v = (x, y, odkud vyjádříme v = (x a 1, y a, přepíšeme vztah na f(x, y = f(a 1, a (x a 1 x (a (y a y (a R 1(x, y (3 R 1 interpretujeme jako zbytek Taylorova polynomu. Z ( plyne pro tento zbytek obdobná vlastnost jako v případě funkce jedné proměnné, tedy R 1 (x, y/ (x, y a 0 pro (x, y a. Připomeňme ještě, že pro funkci jedné proměnné plynula uvedená vlastnost zbytku z existence derivace. Pro funkci dvou proměnných plyne z existence silné derivace. Žádná ze slabších forem derivace, jako gradient nebo slabá derivace, vlastnost zbytku nezaručí. Příklad. Výše jsme určili silnou derivaci funkce (r, ϕ (r sin ϕ, r cos ϕ. Napíšeme Taylorovy polynomy jejích složek v bodě (r 0, ϕ 0 r cos ϕ = r 0 cos ϕ 0 (r r 0 cos ϕ 0 (ϕ ϕ 0 r R 1 (r, ϕ r sin ϕ = r (r r 0 sin ϕ 0 (ϕ ϕ 0 r 0 cos ϕ 0 R1 (r, ϕ a zopakujeme, co platí pro jejich zbytky (uvádíme jen pro R 1, pro R1 je vztah stejný R 1 (r, ϕ/ (r r 0 (ϕ ϕ 0 0 pro (r, ϕ (r 0, ϕ 0 Maticově napíšeme oba Taylorovy polynomy ve tvaru ( r cos ϕ r sin ϕ ( ( ( r0 cos ϕ = 0 cos ϕ0 r r r0 r ϕ ϕ 0 ( R1 (r, ϕ R 1 (r, ϕ (4 Poznámka. Srovnejte (4 se vztahem pro funkci jedné proměnné f(x = f(x 0 f (x 0 (x x 0 R 1 (x 5. Derivace složené funkce. Pravidlo pro derivaci složené funkce odvodíme a vysvětlíme na příkladě. Máme funkci f proměnných x, y a dosadíme do ní polární souřadnice. Dostaneme funkci g : (r, ϕ f(r cos ϕ, r sin ϕ Naším cílem je vyjádřit gradient funkce g v bodě (r 0, ϕ 0 pomocí gradientu funkce f v bodě (x 0, y 0 = (r 0 cos ϕ 0, r. K výpočtu použijeme Taylorův polynom. Budeme tedy předpokládat existenci silné derivace funkce f v bodě (x 0, y 0. f(x, y = f(x 0, y 0 x (x 0, y 0 (x x 0 y (x 0, y 0 (y y 0 R 1 (x, y (5 6

7 Taylorův polynom (5 zapíšeme v maticovém tvaru ( f(x, y = f(x 0, y 0 x (x 0, y 0, ( x y (x x0 0, y 0 y y 0 R 1 (x, y (6 Taylorův polynom vnitřní funkce jsme napsali v (4. Do (6 dosadíme ( x x0 a za y y 0 f(x, y = g(r, ϕ f(x 0, y 0 = g(r 0, ϕ 0 dosadíme z (4 ( ( ( x x0 r cos ϕ r cos ϕ0 cos ϕ0 r = = y y 0 r sin ϕ r sin ϕ r 0 cos ϕ 0 Dostaneme ( r r0 ϕ ϕ 0 ( R1 (r, ϕ R 1 (r, ϕ g(r, ϕ = g(r 0, ϕ 0 ( x (x 0, y 0, ( x (x 0, y 0, y (x 0, y 0 R 1 (r cos ϕ, r sin ϕ ( cos y (x ϕ0 r 0, y 0 ( cos ϕ0 r ( r r0 ϕ ϕ 0 ( R1 (r, ϕ R 1 (r, ϕ Dá se ukázat (my to vynecháme, že poslední dva řádky jsou součástí zbytku Taylorova polynomu ( R(r, ϕ = x (x 0, y 0, ( ( cos y (x ϕ0 r 0, y 0 R1 (r, ϕ R sin ϕ 0 r 0 cos ϕ 1 (r cos ϕ, r sin ϕ 0 R 1 (r, ϕ Taylorův polynom pak napíšeme ve tvaru g(r, ϕ = g(r 0, ϕ 0 ( x (x 0, y 0, ( cos y (x ϕ0 r 0, y 0 R(r, ϕ ( r r0 ϕ ϕ 0 a gradient funkce g ve tvaru ( g r (r 0, ϕ 0, g ( ϕ (r 0, ϕ 0 = x (x 0, y 0, ( cos y (x ϕ0 r 0, y 0 nebo stručněji ve tvaru ( cos ϕ0 r grad g(r 0, ϕ 0 = grad f(x 0, y 0 7

8 a pomocí gradientu zobrazení h : (r, ϕ (r cos ϕ, r sin ϕ ve tvaru Nakonec ještě napišme vztah po složkách grad g(r 0, ϕ 0 = grad f(x 0, y 0 grad h(r 0, ϕ 0 g r g ϕ = cos ϕ sin ϕ x y = r sin ϕ r cos ϕ x y (7 Výše uvedené odvození shrneme ve větě o derivaci složené funkce. Její důkaz neuvádíme, je zobecnění postupu ve výše uvedeném příkladě. Věta o silné derivaci složeného zobrazení. Má-li funkce f : R d R m v bodě a R d silnou derivaci a funkce g : R m R n v bodě f(a R m silnou derivaci, pak má složená funkce g f : x g(f(x v bodě a silnou derivaci rovnu složenému zobrazení obou derivací. Úlohy. 1. Vyjádřete z (7 derivace x, y.. Vyjádřete (za předpokladu spojitosti parciálních derivací druhého řádu druhou derivaci f. x Návod. Z předchozího cvičení jsme dostali x = cos ϕ g r sin ϕ g r ϕ Dvojím použitím tohoto pravidla dostaneme f x = ( = cos ϕ ( cos ϕ g x x r r sin ϕ g sin ϕ r ϕ r ϕ ( cos ϕ g r sin ϕ g r ϕ 3. Za předpokladů stejných jako v předchozím cvičení vyjádřete f x do tvaru f x f y = g r 1 g r r 1 g r ϕ f y a upravte Reference [1] Jiří Veselý. Základy matematické analýzy. [] Luděk Zajíček. Skripta. 8

III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ).

III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ). III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce = f(x 0 + h 1, y 0 + h 2 ) f(x 0, y 0 ) f u (x 0, y 0 ), kde u = (h 1, h 2 ). ( ) = f(x 0 + h 1, y 0 ) f(x 0, y 0 ) x (x 0,

Více

5. cvičení z Matematiky 2

5. cvičení z Matematiky 2 5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými

Více

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové

Více

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k), Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako

Více

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z: PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se

Více

6. přednáška 5. listopadu 2007

6. přednáška 5. listopadu 2007 6. přednáška 5. listopadu 2007 Souvislost diferenciálu a parciálních derivací. Diferenciál implikuje parciální derivace a spojité parciální derivace implikují diferenciál. Tvrzení 2.3. Když je funkce f

Více

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2 6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje

Více

Matematická analýza III.

Matematická analýza III. 2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom

Více

5.3. Implicitní funkce a její derivace

5.3. Implicitní funkce a její derivace Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 10. přednáška Diferenciální počet funkcí více proměnných (II) Jan Tomeček jan.tomecek@upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí 202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají

Více

1. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny 1., 2. a 3. parciální derivace funkce f a funkce g.

1. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny 1., 2. a 3. parciální derivace funkce f a funkce g. . Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny.,. a 3. parciální derivace funkce f a funkce g.. Spočtěte všechny první parciální derivace funkcí: a) f(x, y) = x 4 + y 4 4x y, b) f(x,

Více

10 Funkce více proměnných

10 Funkce více proměnných M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y

Více

4. Diferenciál a Taylorova věta

4. Diferenciál a Taylorova věta 4. Diferenciál a Taylorova věta Definice 4.1. Buď f : R n R, a Df. Řekneme, že f je diferencovatelná v bodě a, když h V n takový, že a + h Df platí f(a + h) f(a) gradf(a) h + h τ(h), kde lim τ(h) 0. Funkce

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 2017-2018 Vybrané kapitoly z matematiky 2017-2018 1 / 19 Základní informace předmět: 714-0513, 5 kreditů přednáší: Radek Kučera kontakt: radek.kucera@vsb.cz,

Více

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. 4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,

Více

Limita a spojitost funkce

Limita a spojitost funkce Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném

Více

f(c) = 0. cn pro f(c n ) > 0 b n pro f(c n ) < 0

f(c) = 0. cn pro f(c n ) > 0 b n pro f(c n ) < 0 KAPITOLA 5: Spojitost a derivace na intervalu [MA-8:P5] 5 Funkce spojité na intervalu Věta 5 o nulách spojité funkce: Je-li f spojitá na uzavřeném intervalu a, b a fa fb < 0, pak eistuje c a, b tak, že

Více

Příklad 1. Řešení 1a. Řešení 1b ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 5

Příklad 1. Řešení 1a. Řešení 1b ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 5 Příklad 1 Najděte totální diferenciál d (h) pro h=(h,h ) v příslušných bodech pro následující funkce: a) (,)= cos, =1; b) (,)=ln( + ), =2; 0 c) (,)=arctg(), =1; 0 1 d) (,)= +, =1; 1 Řešení 1a Máme nalézt

Více

Derivace funkce DERIVACE A SPOJITOST DERIVACE A KONSTRUKCE FUNKCÍ. Aritmetické operace

Derivace funkce DERIVACE A SPOJITOST DERIVACE A KONSTRUKCE FUNKCÍ. Aritmetické operace Derivace funkce Derivace je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako

Více

(Cramerovo pravidlo, determinanty, inverzní matice)

(Cramerovo pravidlo, determinanty, inverzní matice) KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce

Více

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) 2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h

Více

Derivace funkce Otázky

Derivace funkce Otázky funkce je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako směrnici tečny grafu

Více

VI. Derivace složené funkce.

VI. Derivace složené funkce. VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,

Více

7B. Výpočet limit L Hospitalovo pravidlo

7B. Výpočet limit L Hospitalovo pravidlo 7B. Výpočet it L Hospitalovo pravidlo V prai často potřebujeme určit itu výrazů, které vzniknou operacemi nebo složením několika spojitých funkcí. Většinou pomohou pravidla typu ita součtu násobku, součinu,

Více

Metody výpočtu limit funkcí a posloupností

Metody výpočtu limit funkcí a posloupností Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

Derivace a monotónnost funkce

Derivace a monotónnost funkce Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1).

y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1). III Diferenciál funkce a tečná rovina Úloha 1: Určete rovnici tečné roviny ke grafu funkce f = f(x, y) v bodě (a, f(a)) f(x, y) = 3x 3 x y + 5xy 6x + 5y + 10, a = (1, 1) Řešení Definičním oborem funkce

Více

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010 Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice

i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných študenti MFF 15. augusta 2008 1 5 Základy teorie funkcí více proměnných Požadavky Parciální derivace a totální

Více

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6) 1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných

Více

7. Aplikace derivace

7. Aplikace derivace 7. Aplikace derivace Verze 20. července 2017 Derivace funkce se využívá při řešení úloh technické praxe i teorie. Uvedeme několik z nich: vyčíslení hodnot funkce, výpočet limity, vyšetřování průběhu funkce

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

2. prosince velikosti symboly a, b, je b ω a b = a b cosω (1) a. ω pro ω π/2, π platí a b = b a a (3) a b = a 1 b 1 + a 2 b 2 + a 3 b 3 (5)

2. prosince velikosti symboly a, b, je b ω a b = a b cosω (1) a. ω pro ω π/2, π platí a b = b a a (3) a b = a 1 b 1 + a 2 b 2 + a 3 b 3 (5) Vektorové prostory se skalárním součinem 2. prosince 25 1 Skalární součin geometrických vektorů Skalární součin geometrických vektorů je definován jako součin jejich velikostí násobený kosinem jejich odchylky.

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Přednáška 11, 12. prosince Část 5: derivace funkce

Přednáška 11, 12. prosince Část 5: derivace funkce Přednáška 11, 12. prosince 2014 Závěrem pasáže o spojitých funkcích zmíníme jejich podtřídu, lipschitzovské funkce, nazvané podle německého matematika Rudolfa Lipschitze (1832 1903). Fukce f : M R je lipschitzovská,

Více

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu [M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:

Více

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

15 Fourierova transformace v hypersférických souřadnicích

15 Fourierova transformace v hypersférických souřadnicích 15 HYPERSFÉRICKÉ SOUŘADNICE 1 15 Fourierova transformace v hypersférických souřadnicích 151 Definice hypersférických souřadnic r, ϑ N,, ϑ 1, ϕ v E N Hypersférické souřadnice souvisejí s kartézskými souřadnicemi

Více

Limita a spojitost LDF MENDELU

Limita a spojitost LDF MENDELU Limita a spojitost Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 = Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva

Více

Zimní semestr akademického roku 2015/ ledna 2016

Zimní semestr akademického roku 2015/ ledna 2016 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Zimní semestr akademického roku 015/016 5. ledna 016 Obsah Cvičení Předmluva iii

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018 Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

Extrémy funkce dvou proměnných

Extrémy funkce dvou proměnných Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

Diferenciál a Taylorův polynom

Diferenciál a Taylorův polynom Diferenciál a Taylorův polynom Základy vyšší matematiky lesnictví LDF MENDELU c Simona Fišnarová (MENDELU) Diferenciál a Taylorův polynom ZVMT lesnictví 1 / 11 Aproximace funkce v okoĺı bodu Danou funkci

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010 Věty o přírustku funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické

Více

verze 1.4 Ekvivalentní podmínkou pro stacionární bod je, že totální diferenciál je nulový

verze 1.4 Ekvivalentní podmínkou pro stacionární bod je, že totální diferenciál je nulový 1 Úvod Lokální extrémy funkcí více proměnných verze 14 Následující text popisuje výpočet lokálních extrémů funkcí více proměnných Měl by sloužit především studentům předmětu MATEMAT1 na Univerzitě Hradec

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

Lineární algebra : Lineární prostor

Lineární algebra : Lineární prostor Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Limita a spojitost funkce Lineární funkce Lineární funkce je jedna z nejjednodušších a možná i nejpoužívanějších funkcí. f(x) = kx + q D(f)

Více

I. 7. Diferenciál funkce a Taylorova věta

I. 7. Diferenciál funkce a Taylorova věta I. 7. Diferenciál funkce a Taylorova věta 343 I. 7. Diferenciál funkce a Taylorova věta Věta 26. Funkce f má v bodě x 0 diferenciál (je diferencovatelná v x 0 ) právě tehdy, když existuje vlastní derivace

Více

3. LIMITA A SPOJITOST FUNKCE

3. LIMITA A SPOJITOST FUNKCE 3. LIMITA A SPOJITOST FUNKCE Okolí reálného čísla a 3.1. Deinice Okolím reálného čísla a nazýváme otevřený interval a, a, kde je libovolné kladné číslo. Je to tedy množina reálných čísel x, která vyhovují

Více

dx se nazývá diferenciál funkce f ( x )

dx se nazývá diferenciál funkce f ( x ) 6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí

Více

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH 1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU

Více

Limita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39

Limita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39 Limita funkce FIT ČVUT v Praze 3.týden (FIT) Limita funkce 3.týden 1 / 39 Definice funkce. Zobrazení (f, D f ), jehož definiční obor D f i obor hodnot H f je podmnožinou množiny reálných čísel, se nazývá

Více

Derivace funkce více proměnných

Derivace funkce více proměnných Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme

Více

Substituce ve vícenásobném integrálu verze 1.1

Substituce ve vícenásobném integrálu verze 1.1 Úvod Substituce ve vícenásobném integrálu verze. Následující text popisuje výpočet vícenásobných integrálů pomocí věty o substituci. ěl by sloužit především studentům předmětu ATEAT k přípravě na zkoušku.

Více

Zobecněný Riemannův integrál

Zobecněný Riemannův integrál Zobecněný Riemannův integrál Definice (Zobecněný Riemannův integrál). Buď,,. Nechť pro všechna existuje určitý Riemannův integrál. Pokud existuje konečná limita, říkáme, že zobecněný Riemannův integrál

Více

1 L Hospitalovo pravidlo

1 L Hospitalovo pravidlo L Hospitalovo pravidlo Věta.. Bud R R R {± }). Necht je splněna jedna z podmínek i) ii) f) g), g). Eistuje-li vlastní nebo nevlastní) f ) g ) Obdobné tvrzení platí i pro jednostranné ity., pak eistuje

Více

LIMITA FUNKCE, SPOJITOST FUNKCE - CVIČENÍ

LIMITA FUNKCE, SPOJITOST FUNKCE - CVIČENÍ MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA LIMITA FUNKCE, SPOJITOST FUNKCE - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy

Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Jan Slovák Masarykova univerzita Fakulta informatiky 3. 10. 2011 Obsah přednášky 1 Literatura

Více

Limita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1]

Limita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1] KAPITOLA 3: Limita a spojitost funkce [MA-8:P3.] 3. Úvod Necht je funkce f definována alespoň na nějakém prstencovém okolí bodu 0 R. Číslo a R je itou funkce f v bodě 0, jestliže pro každé okolí Ua) bodu

Více

Spojitost a limita funkce

Spojitost a limita funkce Spojitost a ita funkce Okolí bodu Značení: a R ε > 0 označujeme O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a) \ {a} x a ε-ové

Více

1 Řešení soustav lineárních rovnic

1 Řešení soustav lineárních rovnic 1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty

Více

P 1 = P 1 1 = P 1, P 1 2 =

P 1 = P 1 1 = P 1, P 1 2 = 1 Výpočet inverzní matice Věta 1 Necht P U elementární matice vzniklá el úpravou U Pak je P U regulární Důkaz: Protože elementární úprava U je invertovatelná, existuje el úprava U, která vrací změny U

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

Kristýna Kuncová. Matematika B3

Kristýna Kuncová. Matematika B3 (5) Funkce více proměnných II Kristýna Kuncová Matematika B3 Kristýna Kuncová (5) Funkce více proměnných II 1 / 20 Parciální derivace - příklad Otázka Tabulka vpravo znázorňuje hodnoty funkce f (x, y).

Více