1. Základní p ístupy k syntéze adaptivních ídících systém, schématické vyjád ení, srovnání s p edpoklady a návrhem standardních regulátor
|
|
- Patrik Svoboda
- před 8 lety
- Počet zobrazení:
Transkript
1 T SZ AS 1, Základní p ístupy k syntéz adaptivních ídících systém, schématické vyjád ní, srovnání s p dpoklady a návrhm standardních rgulátor Standardní forma zp tnovazbního ízní: Stav systému rprzntuj dynamický procs s jistým výstupm. Cílm j zajistit, aby výstup sldoval ur itým zp sobm rfrn ní signál a potla oval vliv poruch. ídící systém dv ásti p dkompnzátor pro tvarování p nosové fc od rfrn vstupu na výstup - rgulátor zajišt ní stability, potla vlivu poruch, ovlivnování citlivosti ídícího sys Cíl ízní: problém rgulátoru vlké poruchy, konstatní cíl ízní Srvo problém rf signál s m ní, al poruchy jsou zandbatlné Systémy zpracování signálu: Filtrac signálu odstran ní šumu, poruchy Prdikc signálu odhad budoucích hodnot (p : budoucí poloha ltícího cíl) Charaktristiky konvn ních rgulátor a systém na zpracování signálu T-invarianc asov nm nné paramtry paramtry systém (koficinty) Linarita LDS aproximac NDS, kompltní tori NDS nxistuj - Samonastavující tchniky jsou založny na linár. mtodách Samonastavující s systém : x konvn ním mtodám návrhu, algoritmi ízní a zprac. sign. mají koficinty prom nné v as. Ida spo ívá v návrhu algoritm, ktré budou automaticky m nit své paramtry v souladu s konkrétní situací. Proto j p idán ladící mchanismus, ktrý monituruj signál nbo systém a nastavuj koficinty rgulátoru.
2 T SZ AS 1,2 2 P ístupy k samolad ní a adaptaci 1. Samonastavující s rgulátor = Slf-tuning controlr = SFC Idntifikuj systém z m ných dat a formuj vhodný rgulátor. Tnto postup j nustál opakován. 2. Adaptivní ízní s rfrn ním modlm = Modl rfrnc adaptiv control = MRAC J spcifikováno chování systému (rfrn ní modl). J porovnáván výstup systému s výstupm rf. modlu a podl toho j upravno chování rgulátoru. Cílm j, aby s výstup rf. modlu shodoval s výstupm systému. 3. Lad ní xprtních systém = Exprt tuning systms = ETS Vstupn -výstupní data jsou porovnávána v xprtním systému s kritérii kvality. Výsldky jsou použity k nastavní rgulátoru. 4. Gain-schduling Paramtry rgulátoru jsou m n ny v závislosti na pracovních podmínkách. J pouz jdna zp tná vazba.
3 T SZ AS 1, Vysoký zisk v zp tné vazb = High gain fdback Citlivost systému na zm nu paramtr j rdukována zavdním zp tné vazby s vysokým ziskm = robustní ízní. nm ním tdy paramtry rgulátoru. Použití samolad ní Kompnzac Monitorování monitoring chyb Adaptivní rgulátor p dpoklad dvou zp tných vazb rychlá = oby. zp t. vazba - pomalá = zm ny paramtr rgul Klasifikac stochastických adaptivních rgulátor Adaptivní rgul. plní dv fc. Poznávací a ídící. Nduální jsou takové, kdy procs poznávání j od procsu ízní odd ln. Duální rgul.- procsy poznávání a ízní jsou provád ny simultáln, vzájmn s ovliv ují a jsou v jakémsi protikladu. Adaptivní zpracování signál samonastavujícís filtry (tlkomunikac) Postup návrhu samonastavujících s systém 1. Modlování systému nbo mchanismu gnrujícího signál matmatický modl systému 2. Návrh rgul nbo sign procsoru syntéza j provád na podl zvolného cíl (kritéria) 3. Implmntac rgul nbo sign procsoru šna pomocí íslicových alg, výstupm bloku návrhu jsou paramtry a s t mi s zd po ítá. Samonastavující s rgulátor
4 T SZ AS 1,2 4 Samonastavující s signálový procsor Vlastnosti samonastavijících s systém íslicová przntac Slf-tunry jsou oby jn implmntovány touto cstou Rkurzivní stimac Srdcm každého samoladícího systému j rkurzivní stimator Návrh ízní Základm ízní j on-lin kombinac stimatoru a syntzy ízní. Estimator j asto založn na mtod njm. tvrc a syntéza ízní na umístitlnosti ko n a jdno i víckrokových optimaliza ních mtodách. Zpracování signálu Algoritmi využívající samolad ní vdou na adapt prdikt a filtry. Stabilita Stabilita rgulátoru j závislá na stabilit stimátoru. Globální stabilita nlz dokázat, pouz v výjim ných p ípadch.
5 T SZ AS 1, Adaptivní ízní s rfrn ním modlm, MIT pravidlo, využití Ljapunovovi tori stability P vodn pro spojité systémy s nznámou dynamikou. Založno na modlu, ktrý íká, jak by s m l systém chovat. Dv zp tné vazby. Vnit ní standardní zp tná vazba. Vn jší obsahuj ladící mchanismus umož ující nastavovat paramtry rgulátoru tak, aby odchylka mzi výstupm systému a rf modlu byla minimální. Problémm j tdy navrhnout ladící mchanismus tak, aby systém byl stabilní a chyba lzla do nuly. 1. Gradintní p ístup MIT pravidlo (Massachustts Institut of Tchnology, Cambridg) δ = α δθ Kd δ/δθ jsou citlivostní drivac chyby vzhldm k nastavovaným paramtr m. Paramtr α ur uj rychlost adaptac. Kritérium : J(Θ) = ½ 2 ; =y-y m - vd na MIT pravidlo - δ = α δθ δ = α sign( δθ δ = α * sign( ) sign( δθ J(Θ) = abs() ) Sign-sign alg ) Pro malý zisk α lz o kávat dobré chování navržných systém. Al stabilita závisí i na jiných vli inách, proto nlz stabilitu garantovat obcn. 2. P ístup založný na torii stability Gradintní p ístup obsahuj jisté huristické prvky. Altrnativní možností j p ístup založný na torii stability. Ljapunov : Rovnovážný bod bud stabilní, jstliž lz nalézt fci v stavovém prostoru, jjíž hladinové k ivky obpínají rovnovážný bod tak, ž drivac stavových prom nných sm ují vždy do vnit ních k ivk. dx = f ( x, t), f (0, t) = 0, kd x j vktor stavu dimnz n. Rovnovážný bod j p dpokládán v po átku. Ljapunova v ta: Nch xistuj fc V:R n+1 R n 1. V(0,t)=0 t 2. V j difrncovatlná v x a v t 3. V j pozitivn dfinitní V(x,t) g( x )>0, kd g:r R j spojitá a rostoucí. Lim x g(x)=. Posta ující podmínka pro stjnosm rnou asymptotickou stabilitu j podmínka na ngativní dfinitnost fc. dv ( x, t) = f T ( x, t) gradv + dv < 0 pro x 0
SROVNÁNÍ KOLORIMETRICKÝCH ZKRESLENÍ SNÍMACÍCH SOUSTAV XYZ A RGB Jan Kaiser, Emil Košťál xkaiserj@feld.cvut.cz
SROVNÁNÍ KOLORIMETRICKÝCH ZKRESLENÍ SNÍMACÍCH SOUSTAV XYZ A RGB Jan Kaisr, Emil Košťál xkaisrj@fld.cvut.cz ČVUT, Fakulta lktrotchnická, katdra Radiolktroniky Tchnická 2, 166 27 Praha 6 1. Úvod Článk s
6 Elektronový spin. 6.1 Pojem spinu
6 Elktronový spin Elktronový spin j vličina poněkud záhadná, vličina, ktrá nmá obdoby v klasickém svět. Do kvantové mchaniky s spin dostal jako xprimntální fakt: z řady xprimntů totiž vyplývalo, ž kromě
Metody ešení. Metody ešení
Mtod šní z hldiska kvalit dosažného výsldku ) p ř sné mtod p ř ímé ř šní difrnciálních rovnic, většinou pro jdnoduché konstrukc nap ř. ř šní ohbu prutu p ř ímou intgrací ) p ř ibližné mtod náhrada hldané
základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie
Tori v strojírnské tchnologii Ing. Oskar Zmčík, Ph.D. základní pojmy používaná rozdělní vztahy, dfinic výpočty základní pojmy žádnou součást ndokážm vyrobit s absolutní přsností při výrobě součásti dochází
Univerzita Tomáše Bati ve Zlíně
Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační
Obr.1 Schéma tvaru haly a jejího umístění v terénu
Příklad P1.4 - Zatížní větrm Zadání příkladu Stanovt atížní větrm působící na výrobní halu s plochou střchou. Výška haly h= m, šířka b=18m, délka l=7 m. Hala j umístěna v svažitém trénu u hřbn v okolí
část 8. (rough draft version)
Gntika v šlchtění zvířat TGU 006 9 Odhad PH BLUP M část 8. (rough draft vrsion V animal modlu (M s hodnotí každé zvíř samostatně a současně v závislosti na užitkovosti příbuzných jdinců hodnocné populac.
2. Frekvenční a přechodové charakteristiky
rkvnční a přchodové charaktristiky. rkvnční a přchodové charaktristiky.. Obcný matmatický popis Přchodové a frkvnční charaktristiky jsou důlžitým prostřdkm pro analýzu a syntézu rgulačních obvodů a tdy
Tepelné soustavy v budovách - Výpočet tepelného výkonu ČSN EN 12 831 Ing. Petr Horák, Ph.D.
Tplné soustavy v budovách - Výpočt tplného výkonu ČSN EN 12 831 Ing. Ptr Horák, Ph.D. Platnost normy ČSN 060210 - Výpočt tplných ztrát budov při ústřdním vytápění Pozbyla platnost 1.9 2008. ČSN EN 12 831
L HOSPITALOVO PRAVIDLO
Difrnciální počt funkcí jdné rálné proměnné - 7 - L HOSPITALOVO PRAVIDLO LIMITY TYPU 0/0 PŘÍKLAD Pomocí L Hospitalova pravidla určt sin 0 Ověřní přdpokladů L Hospitalovy věty Přímočarým použitím věty o
Rekurzivní delta identifikace mnoharozměrového systému
MODELLING, SIMULAION, AND IDENIFIAION OF PROESSES Rkurzivní dlta idntifikac mnoharozměrového systému Radk Dokoupil, Ptr Dostál Abstrakt Příspěvk rozbírá postup při sstavní algoritmu pro rkurzivní idntifikaci
REGULACE. Rozvětvené regulační obvody. rozvětvené regulační obvody dvoupolohová regulace regulační schémata typických technologických aparátů
REGULACE (pokračování 2) rozvětvné rgulační obvody dvoupolohová rgulac rgulační schémata typických tchnologických aparátů Rozvětvné rgulační obvody dopřdná rgulac obvod s měřním poruchy obvod s pomocnou
IMITANČNÍ POPIS SPÍNANÝCH OBVODŮ
IMITANČNÍ POPIS SPÍNANÝCH OBVODŮ Doc. Ing. Dalibor Biolk, CSc. K 30 VA Brno, Kounicova 65, PS 3, 6 00 Brno tl.: 48 487, fax: 48 888, mail: biolk@ant.f.vutbr.cz Abstract: Basic idas concrning immitanc dscription
Navrhování osvětlení pro interiérové květiny
Navrhování osvětlní pro intriérové květiny účinky a užití optického zářní Ing. Stanislav Haš, CSc., Agronrgo, Bc. Luci Fikarová, Mndlova univrzita v Brně, Zahradnická fakulta v Ldnici V článku Osvětlní
Vyvážené nastavení PI regulátorù
Vyvážné nastavní PI rgulátorù doc. Ptr Klán, Ústav informatiky AV ÈR Praha a Univrzita Pardubic, Prof. Raymond Gorz, Cntr for Systms Enginring and Applid Mchanics, Univrsity d Louvain PI nbo PID rgulátory
ε, budeme nazývat okolím bodu (čísla) x
Množinu ( ) { R < ε} Okolím bodu Limit O :, kd (, ) j td otvřný intrval ( ε ε ) ε, budm nazývat okolím bodu (čísla).,. Bod R j vnitřním bodm množin R M, jstliž istuj okolí O tak, ž platí O( ) M. M, jstliž
INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál)
INTERGRÁLNÍ POČET Motivac: Užití intgrálního počtu spočívá mj. v výpočtu obsahu rovinného obrazc ohraničného různými funkcmi příp. čarami či v výpočtu objmu rotačního tělsa, vzniklého rotací daného obrazc
Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.
INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodc studim V kapitol Difrnciální počt funkcí jdné proměnné jst s sznámili s drivováním funkcí Jstliž znát drivac lmntárních
LINEÁRNÍ MOTORY. Typ Type Typ. 1.3.1. T y p e L1S L1SK L2SK L3S L3SK LTSK LNS. 1.1. Úvod. v problémech technického rázu : větší rychlost posuvu;
1. Obcně 1.1. Úvod LINEÁRNÍ MOTORY K vlkému rozvoji výrob a k praktickému uplatnění linárních motorů a pohonů došlo až v posldních dsti ltch,přstož princip jjich konstrukc jsou znám stjně dlouhou dobu
4. PRŮBĚH FUNKCE. = f(x) načrtnout.
Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.
ZJIŠŤOVÁNÍ FREKVENČNÍCH VLASTNOSTÍ OTEVŘENÉHO OBVODU V UZAVŘENÉ REGULAČNÍ SMYČCE
Nové mtod a postp v olasti přístrojové tchnik, atomatického řízní a informatik Ústav přístrojové a řídicí tchnik ČVUT v Praz odorný sminář Jindřichův Hradc, 28. až 29. května 2009 ZJIŠŤOVÁNÍ FREKVENČNÍCH
Měrný náboj elektronu
Fyzikální praktikum FJFI ČVUT v Praz Úloha č. 12 : Měřní měrného náboj lktronu Jméno: Ondřj Ticháčk Pracovní skupina: 7 Kruh: ZS 7 Datum měřní: 8.4.2013 Klasifikac: Měrný náboj lktronu 1 Zadání 1. Sstavt
Vektor náhodných veli in - práce s více prom nnými
Vektor náhodných veli in - práce s více prom nnými 12. kv tna 2015 N kdy k popisu n jaké situace pot ebujeme více neº jednu náhodnou veli inu. Nap. v k, hmotnost, vý²ku. Mezi t mito veli inami mohou být
Zjednodušený výpočet tranzistorového zesilovače
Přsný výpočt tranzistorového zsilovač vychází z urční dvojbranových paramtrů tranzistoru a pokračuj sstavním matic obvodu a řšním této matic. Při použití vybraných rovnic z matmatických modlů pro programy
Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5)
pyromtrm - vrz 01 Úloha č. 11 Měřní tplotní vyzařovací charaktristiky wolframového vlákna žárovky optickým pyromtrm 1) Pomůcky: Měřicí zařízní obsahující zdroj lktrické nrgi, optický pyromtr a žárovku
Hodnocení tepelné bilance a evapotranspirace travního porostu metodou Bowenova poměru návod do praktika z produkční ekologie PřF JU
Hodnocní tlné bilanc a vaotransirac travního orostu mtodou Bownova oměru návod do raktika z rodukční kologi PřF JU Na základě starších i novějších matriálů uravil a řiravil Jakub Brom V Čských Budějovicích,
Zvýšení bezpečnosti provozu na vrátnici
P OD N I KOVÁ VRÁTN I C E Spolhlié a fktiní řšní. N ÁKLAD OVÁ VRÁTN I C E Zásadní zrychlní odbaní ozidl Průkazná idnc průjzdu ozidl a pěších náště Díky snímání SPZ možnost dalších automatických funkcí
Trivium z optiky 37. 6. Fotometrie
Trivium z optiky 37 6. Fotomtri V přdcházjící kapitol jsm uvdli, ž lktromagntické zářní (a tdy i světlo) přnáší nrgii. V této kapitol si ukážm, jakými vličinami j možno tnto přnos popsat a jak zohldnit
Fyzikální podstata fotovoltaické přeměny solární energie
účinky a užití optického zářní yzikální podstata fotovoltaické přměny solární nri doc. In. Martin Libra, CSc., Čská změdělská univrzita v Praz a Jihočská univrzita v Čských Budějovicích, In. Vladislav
1. Okrajové podmínky pro tepeln technické výpo ty
1. Okrajové podmínky pro tpln tchncké výpo ty Správné stanovní okrajových podmínk j jdnou z základních součástí jakéhokol tchnckého výpočtu. Výjmkou njsou an tplně tchncké analýzy. V násldující kaptol
Jednokapalinové přiblížení (MHD-magnetohydrodynamika)
Jdnokapalinové přiblížní (MHD-magntohydrodynamika) Zákon zachování hmoty zákony zachování počtu lktronů a iontů násobny hmotnostmi a sčtny n t div nu ni divnu i i t div u M M (1) t i m n M n u u M i i
4.3.2 Vlastní a příměsové polovodiče
4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si
I. MECHANIKA 8. Pružnost
. MECHANKA 8. Pružnost Obsah Zobcněný Hookův zákon. ntrprtac invariantů. Rozklad tnzorů na izotropní část a dviátor. Křivka dformac. Základní úloha tori pružnosti. Elmntární Hookův zákon pro jdnoosý tah.
PŘÍKLAD 2 1. STANOVENÍ ÚSPOR TEPLA A ROČNÍ MĚRNÉ POTŘEBY TEPLA 1.1. GEOMETRICKÉ VLASTNOSTI BUDOVY 1.2. CHARAKTERISTIKA STAVEBNÍCH KONSTRUKCÍ
PŘÍKLAD 2 1. STANOVENÍ ÚSPOR TEPLA A ROČNÍ MĚRNÉ POTŘEBY TEPLA pro clkové zatplní panlového domu Běhounkova 2457-2462, Praha 5 Objkt má dvět nadzmní podlaží a jdno podlaží podzmní, částčně pod trénm. Objkt
11. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA. slide 0
11. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA slid 0 Přdmětm přdnášky jsou tři modly agrgátní nabídky, v ktrých v krátkém období výstup pozitivně závisí na cnové hladině. Krátkodobý invrzní vztah mzi inflací
(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ
Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa Tplotní zářní a Plankův vyzařovaí zákon Intnzita vyzařování (misivita) v daném místě na povrhu zdroj j dfinována jako podíl zářivého toku
Odhad stavu matematického modelu křižovatek
Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita
Doc. RNDr. Libor Čermák, CSc. Algoritmy
UČEBNÍ TEXTY VYSOKÝCH ŠKOL Vysoké uční tchnické v Brně Fakulta strojního inžnýrství Doc. RNDr. Libor Črmák, CSc. Algoritmy mtody končných prvků Přdmluva k rvidovanému lktronickému vydání Tato skripta jsou
Team Engineering. New in V13. TIA Portal news. Restricted / Siemens AG 2014. All Rights Reserved.
Team TIA Portal news siemens.com/s7-1500 Teamengineering jak pracovat v týmu PLC proxy pro práce v týmu pro a PLC inženýry lze uplatnit také v prost edí Classic Kopie a slou ení projekt vzájemné sdílení
MATEMATICKÝ MODEL POHODLÍ CESTUJÍCÍCH NA LINCE VEŘEJNÉ HROMADNÉ DOPRAVY
MATEMATICKÝ MODEL POHODLÍ CESTUJÍCÍCH NA LINCE VEŘEJNÉ HROMADNÉ DOPRAVY Jaroslav Klprlík 1 Anotac: Článk uvádí algoritmus pro přiřazní dopravních prostřdků na linky s cílm dosáhnout maximální pohodlí cstujících.
Lokální extrémy. 1. Příklad f(x, y) = x 2 + 2xy + 3y 2 + 5x + 2y. Spočteme parciální derivace a položíme je rovny nule.
Lokální xtrémy - řšné příklady 1 Lokální xtrémy Vyštřt lokální xtrémy násldujících funkcí víc proměnných: 1 Příklad fx, y = x + xy + 3y + 5x + y Spočtm parciální drivac a položím j rovny nul Vznikn soustava
INSTITUT FYZIKY VŠB-TU OSTRAVA NÁZEV PRÁCE
Studnt Skupina/Osob. číslo INSTITUT FYZIKY VŠB-TU OSTRAVA NÁZEV PRÁCE 5. Měřní ěrného náboj lktronu Číslo prác 5 Datu Spolupracoval Podpis studnta: Cíl ěřní: Pozorování stopy lktronů v baňc s zřděný plyn
MA1: Cvičné příklady funkce: D(f) a vlastnosti, limity
MA: Cvičné příklady funkc: Df a vlastnosti, ity Stručná řšní Na zkoušc j samozřjmě nutné své kroky nějak odůvodnit. Rozsáhljší pomocné výpočty s tradičně dělají stranou, al bývá také moudré nějak naznačit
10. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA. slide 1
10. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA slid 1 Přdmětm přdnášky jsou tři modly agrgátní nabídky, v ktrých v krátkém období výstup pozitivně závisí na cnové hladině. Krátkodobý invrzní vztah mzi inflací
Funkce hustoty pravděpodobnosti této veličiny je. Pro obecný počet stupňů volnosti je náhodná veličina
Přdnáša č 6 Náhodné vličiny pro analyticou statistiu Při výpočtch v analyticé statistic s používají vhodné torticé vličiny, tré popisují vlastnosti vytvořných tstovacích charatristi Mzi njpoužívanější
02 Systémy a jejich popis v časové a frekvenční oblasti
Modul: Analýza a modlování dynamických biologických dat Přdmět: Linární a adaptivní zpracování dat Autor: Danil Schwarz Číslo a názv výukové dnotky: Systémy a ich popis v časové a frkvnční oblasti Výstupy
ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.
ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. Vybraný příklad průběhu výroby elektřiny do sítě ČR. Zastoupeny jednotlivé
Projekt organizace hromadné dopravy osob v pražském regionu na rok 2000. prosinec 1999
Projkt organizac hromadné ravy osob v pražském rgionu na rok 2000 prosinc 1999 PROJEKT ORGANIZACE HROMADNÉ DOPRAVY OSOB V PRAŽSKÉM REGIONU NA ROK 2000 I. ZÁSADY ORGANIZACE SYSTÉMU PID V ROCE 2000 1. Smluvní
1. Difuze vodní páry a její kondenzace uvnit konstrukcí
ř 1. Difuz vodní páry a jjí kondnzac uvnit konstrukcí Hodnocní ší ř ní vodní páry konstrukcí j jdnou z vlmi dů lžitých úloh stavbní tplné tchniky. Slouží k ově ní charaktru dlouhodobého tplně vlhkostního
ř ý ř ř É Í ý ř úř ř š ý ú Ť š ř ž š ř ú Ť ř Ž ž ž ú ř šú ú ř ř ř ú ř ž š Ž ý š ú ř ř š ú š ú ř ýš ř ř ú ň ý ý ý Í ž ý š ú ď ú ý ú ř š š ý Ž ř ý š š ý ž ý ř ý ý š ř ý š ř š Ž š ř ř ř ž š š ú ř ř Ť ý ř
Pracovní listy s komponentou ICT
Téma: Dálkový průzkum Země Časová dotace: 3 hodiny Pracovní listy s komponentou ICT Cíl: Pochopení principu dálkového průzkumu Země, práce se snímkem v prostředí programu MultiSpec, zobrazování snímku
H - Řízení technologického procesu logickými obvody
H - Řízní tchnologického procsu logickými ovody (Logické řízní) Tortický úvod Součástí řízní tchnologických procsů j i zjištění správné posloupnosti úkonů tchnologických oprcí rozhodování o dlším postupu
Spolehlivost programového vybavení pro obvody vysoké integrace a obvody velmi vysoké integrace
48 INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES, VOL. 8, NO., JUNE 0 Spolhlivost programového vybavní pro obvody vysoké intgrac a obvody vlmi vysoké intgrac Artm GANIYEV.1, Jan VITÁSEK 1 1 Katdra
Praha technic/(4 -+ (/T'ERATU"'P. ))I~~
Jaroslav Baláte Praha 2003 -technic/(4 -+ (/T'ERATU"'P ))I~~ @ ZÁKLADNí OZNAČENí A SYMBOLY 13 O KNIZE 24 1 SYSTÉMOVÝ ÚVOD PRO TEORII AUTOMATICKÉHO iízení 26 11 VYMEZENí POJMU - SYSTÉM 26 12 DEFINICE SYSTÉMU
Č š Ú ÚŘ š ž ď Ž ž š š ď Í Č š ž Í ž š ť Í ď š š ž š ž Ž Í š šť š ť ž ž ž ž Ú Í ž š š š ž ž ď ž Ž š š Ú ď š Ž ž Ž Ž ť ž ž š ž ď ž ž ž ž š ž š ď Ť ž š ž š Ž Č ť š ž ž ž ž Í Í š Í Í ž š š Í š ž ž ž š š š
Univerzální istá voda, akciová spole nost Strojírenská 259, 155 21 Praha 5 - Zli ín
Univerzální istá voda, akciová spole nost Strojírenská 259, 155 21 Praha 5 - Zli ín FILTRY A ZA ÍZENÍ NA ÚPRAVU VODY katalog ************************************************** Praha, ervenec 2003 Obsah
F=F r1 +F r2 -Fl 1 = -F r2 (l 1 +l 2 )
Stvbní mchnik A1 K132 SMA1 Přdnášk č. 3 Příhrdové konstrukc Co nás čká v čtvrté přdnášc? Příhrdové konstrukc Zákldní přdpokldy Sttická určitost/nurčitost Mtody výpočtu Obcná mtod styčných bodů Nulové pruty
Struktura a architektura počítačů
Struktura a architktura počítačů Logické skvnční obvody (bloky) a budič používané v číslicovém počítači Čské vysoké uční tchnické Fakulta lktrotchnická Vr..3 J. Zděnk / M. Chomát 24 st d in d d d 2 d 3
Monitorovací systémy imisí
R pr mysl Monitorovací systémy imisí MMS Multiparamtrová monitorovací stanic Monitorované prvky: NOx, CO, CO2, O3, (pvné ástic). Sstava pro monitoring 4 plyn. K dispozici stacionární / mobilní varianta.
hledané funkce y jedné proměnné.
DIFERCIÁLNÍ ROVNICE Úvod Df : Občjnou difrniální rovnií dál jn DR rozumím rovnii, v ktré s vsktují driva hldané funk jdné proměnné n n Můž mít pliitní tvar f,,,,, n nbo impliitní tvar F,,,,, Řádm difrniální
Decentrální větrání bytových a rodinných domů
1. Úvod Větrání představuje systém, který slouží k výměně vzduchu v místnostech. Může být přirozené, založené na proudění vzduchu v důsledku jeho rozdílné hustoty, která odpovídá tlakovým poměrům (podobně
Ladění regulátorů v pokročilých strategiích řízení
KONTAKT 2010 Ladění regulátorů v pokročilých strategiích řízení Autor: Petr Procházka (prochp16@fel.cvut.cz) Vedoucí: Vladimír Havlena (Vladimir.Havlena@Honeywell.com) Katedra řídicí techniky FEL ČVUT
1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.
Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností
2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami
Tplo skrz okna pracovní poznámky Jana Hollana Přnos okny s skládá z přnosu zářním, vdním a prouděním. Zářivý přnos Zářivý výkon E plochy S j dl Stfanova-Boltzmannova vyzařovacího zákona kd j misivita plochy
Sev.en EC, a. s. (dříve Elektrárna Chvaletice a.s.) K Elektrárně 227 533 12 Chvaletice IČO: 28786009
DODATEČNÉ INFORMACE K ZADÁVACÍM PODMÍNKÁM Č. 6 ZADAVATEL: ZÁSTUPCE: Sev.en EC, a. s. (dříve Elektrárna Chvaletice a.s.) K Elektrárně 227 533 12 Chvaletice IČO: 28786009 PELIKÁN KROFTA KOHOUTEK advokátní
KLIMATIZAČNÍ SYSTÉM SPLIT
Příručka pro uživatele KLIMATIZAČNÍ SYSTÉM SPLIT Kazetové klimatizační jednotky s ekologickým chladivem R-410a Vážený zákazníku! Před použitím klimatizačního systému si, prosím, přečtěte tuto příručku.
Kvaterniony P ipome me, ºe kvaterniony jsou ty dimenzionální algebra K nad reálnými ísly generovaná prvky {1, l, j, k}, které spl ují
Kvatrniony P ipom m, º kvatrniony jsou ty dimnzionální algbra K nad rálnými ísly gnrovaná prvky {1, l, j, k}, ktré spl ují l 2 = j 2 = k 2 = ljk = 1. První z gnrátor bývá ozna ován i, al abychom s vyhnuli
M STSKÝ Ú AD VSETÍN Odbor územního plánování, stavebního ádu a dopravy
M STSKÝ Ú AD VSETÍN Odbor územního plánování, stavebního ádu a dopravy.j.: MUVS-S 12409/2012/OÚPS -280.4/Mar- Vy izuje: Bc. Mare ek Libor Vsetín, dne VE EJNÁ VYHLÁŠKA Návrh opat ení obecné povahy M stský
Electron Density. One-el. Functions. Traditional Ab initio. Model of independent electrons. Electron correlation neglected
CCSD(T) Stationary Schrödingr quation H Ψ = EΨ MP Elctron corrlation Expansion ovr Slatr dt. Φ= C0Ψ 0 + CSΨ S + CDΨ D + Non-rlativistic Hamiltonian Born-Oppnhimr approximaion occ Elctron Dnsity ρ( r) ϕ
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
ÁVD K MTÁŽI A UŽÍVÁÍ
FERDUS - MATERIÁLY A RAVY EUMATIK J. Fučíka 699, 6 11 Chr%&yně e-mail: inf%@ferdus.cz, tel./fax: 5 103 566, 53 356 390 E-BCHD : www.ferdus.cz. STAHVÁK RUŽI AUTMBILŮ ty& 2200 LBS R. No. 110.76 ÁVD K MTÁŽI
Měření hluku a vibrací zvukoměrem
Úloha 1 Měření hluku a vibrací zvukoměrem 1.1 Zadání 1. Zkalibrujte, respektive ověřte kalibraci zvukoměru 2. Proveďte třetinooktávovou analýzu hluku zadaného zdroje v jednom místě 3. Zkalibrujte zvukoměr
Příloha č. 3 VÝKONOVÉ UKAZATELE
Příloha č. 3 VÝKONOVÉ UKAZATELE OBSAH 0. ÚVODNÍ USTANOVENÍ... 3 0.1. Vymezení obsahu přílohy... 3 0.2. Způsob vedení evidencí... 3 0.3. Hodnocené období... 4 1. VÝKONOVÉ UKAZATELE ODPADNÍ VODA... 5 1.1.
MULTIMEDIÁLNÍ A HYPERMEDIÁLNÍ SYSTÉMY
MULTIMEDIÁLNÍ A HYPERMEDIÁLNÍ SYSTÉMY 4) Úprava nahraného zvuku Petr Lobaz, 6. 3. 2012 MIXÁŽ míchání signál jednoho nástroje regulace úrovn frekven ní úpravy ízení dynamiky odstran ní šumu asové korekce
1.1. Formulace. Hledáme rychlost u = (u 1, u 2 ) T splněna Stokesova rovnice. a tlak p ve dvourozměrné oblasti Ω tak, aby byla. µ u + p = f v Ω, (1.
Řšní nstlačitlného proudění tkutin mtodou spktrálních prvků Libor Črmák květn 2007 Abstrakt První kapitola obsahuj podrobný algoritmus pro řšní stacionárního Stoksova problému. Druhá kapitola j věnována
Nařízení č. 01/CZ/11. členů představenstva X-Trade Brokers DM S.A. z 12. ledna 2011
Nařízní č. 01/CZ/11 člnů přdstavnstva X-Trad Brokrs DM S.A. z 12. ldna 2011 V souladu s ustanovními v Obchodních podmínkách o poskytování zprostřdkovatlských služb a provádění příkazů při obchodování s
MATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TEHNIKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADEH VIČENÍ Č. Ing. Ptra Schribrová, Ph.D. Ostrava Ing. Ptra Schribrová, Ph.D. Vsoká škola báňská Tchnická univrzita
Obvodová ešení snižujícího m ni e
1 Obvodová ešení snižujícího m ni e (c) Ing. Ladislav Kopecký, únor 2016 Obr. 1: Snižující m ni princip Na obr. 1 máme základní schéma zapojení snižujícího m ni e. Jeho princip byl vysv tlen v lánku http://free-energy.xf.cz\teorie\dc-dc\buck-converter.pdf
Exponenciální funkce a jejich "využití" - A (Tato doplňková pomůcka nemůže v žádném případě nahradit systematickou matematickou přípravu.
Josf PUNČOCHÁŘ: Epociálí fukc a ich "využití" ld Epociálí fukc a ich "využití" - A (Tato doplňková pomůcka můž v žádém případě ahradit systmatickou matmatickou přípravu. Epociálí fukc dfiováa obcě vztahm
LWS při heteroskedasticitě
Stochastické modelování v ekonomii a financích Petr Jonáš 7. prosince 2009 Obsah 1 2 3 4 5 47 1 Předpoklad 1: Y i = X i β 0 + e i i = 1,..., n. (X i, e i) je posloupnost nezávislých nestejně rozdělených
VLIV MODIFIKACE MATICE HMOTNOSTI NA VÝSLEDKY MODÁLNÍ ANALÝZY
VLIV MODIFIKACE MAICE HMONOSI NA VÝSLEDKY MODÁLNÍ ANALÝZY omáš Brzobohatý, Alxadros Markopoulos Fakulta strojí, katdra mchaiky VŠB-U Ostrava, řída 7. listopadu, 78 Abstrakt Při řší dyamických úloh mtodou
Neuronová síť. x 2 x 3. σ j. x 4. x 5. Menu: QCExpert Prediktivní metody
Neuronová síť Menu: QCExpert Prediktivní metody Neuronová síť Neuronová síť (Artificial Neural Network, ANN, resp. NN) je velmi populární a výkonná metoda, která se používá k modelování vztahu mezi vícerozměrnou
ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4
ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 Ptr Dourmashkin MIT 6, přklad: Vítězslav Kříha (7) Obsah SADA 4 ÚLOHA 1: LIDSKÝ KONDENZÁTO ÚLOHA : UDĚLEJTE SI KONDENZÁTO ÚLOHA 3: KONDENZÁTOY ÚLOHA 4: PĚT KÁTKÝCH
VYUŽITÍ NEURONOVÝCH SÍTÍ PROSTŘEDÍ MATLAB K PREDIKCI HODNOT NÁKLADŮ PRO ELEKTRICKÉ OBLOUKOVÉ PECE
VYUŽITÍ NEURONOVÝCH SÍTÍ PROSTŘEDÍ MATLAB K PREDIKCI HODNOT NÁKLADŮ PRO ELEKTRICKÉ OBLOUKOVÉ PECE V. Hon VŠB TU Ostrava, FEI, K455, 17. Listopadu 15, Ostrava Poruba, 70833 Abstrakt Neuronová síť (dále
Napájení požárně bezpečnostních zařízení a vypínání elektrické energie při požárech a mimořádných událostech. Ing. Karel Zajíček
Napájení požárně bezpečnostních zařízení a vypínání elektrické energie při požárech a mimořádných událostech Ing. Karel Zajíček Vyhláška č. 23/ 2008 Sb. o technických podmínkách požární ochrany staveb.
Obsah. Gain scheduling. Obsah. Linearizace
Regulace a řízení II Řízení nelineárních systémů Regulace a řízení II Řízení nelineárních systémů - str. 1/29 Obsah Obsah Gain scheduling Linearizace Regulace a řízení II Řízení nelineárních systémů -
Požárn bezpe nostní ešení stavby zm na stavby
Ing. Vlastimil Brtní ek technickoorganiza ní innost v oblasti PO T. 17. listopadu 2358, 734 01 Karviná - Mizerov : 603 476 272 I O: 659 00 707 e-mail: v.brtnicek@cbox.cz http://www.volny.cz/vlast.brtnicek
ZAŘÍZENÍ PRO ODBĚR VZORKŮ VZ
Technické podmínky 1 RK 12 1075 R A Y M A N spol. s r. o. KLADNO ZAŘÍZENÍ PRO ODBĚR VZORKŮ VZ RK 12 1075 Obr. 1 Zařízení pro odběr vzorků LEGENDA: 1. Pneumatický válec 2. Těleso vzorkovacího zařízení 3.
5. Minimální kostry. Minimální kostry a jejich vlastnosti. Definice:
5. Minimální kostry Tato kapitola uvd problém minimální kostry, základní věty o kostrách a klasické algoritmy na hldání minimálních kostr. Budm s inspirovat Tarjanovým přístupm z knihy[1]. Všchny grafy
{ } ( ) ( ) ( ) ( ) r 6.42 Urč ete mohutnost a energii impulsu
Systé my, procsy a signály I - sbírka příkladů Ř EŠENÉPŘ ÍKLADY r 64 Urč t mohutnost a nrgii impulsu s(k 8 k ( ( s k Ab k, A, b, 6 4 4 6 8 k Obr6 Analyzovaný diskrétní signál Mohutnost impulsu k A M s(
M ě ř e n í o d p o r u r e z i s t o r ů
M ě ř n í o d p o r u r z s t o r ů Ú k o l : Proměřt sadu rzstorů s nznámým odporm různým mtodam a porovnat přsnost jdnotlvých měřní P o t ř b y : Vz sznam v dskách u úlohy na pracovním stol Obcná část:
Laserový eza 01. Funk ní vzorek
Laserový eza 01 Funk ní vzorek prof. Ing. P emysl Pokorný, CSc. Ing. Petr Zelený, Ph.D. Ing. Petr Keller, Ph.D. Ing. Martin Lachman, Ph.D. Ing. Ji í Šafka V Liberci dne 30. listopadu 2012 Oblast techniky
KIRSTEN BIEDERMANNOVÁ ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMAOVÁ TLAKEM POD
40 KIRSTEN BIEDERMANNOVÁ ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMAOVÁ TLAKEM POD POD TLAKEM míč, hmotnost, rovnováha, pumpička, tlak, idální plyn, pružná srážka, koficint rstituc
Demonstrace skládání barev
Vltrh nápadů učitlů fyziky I Dmonstrac skládání barv DENĚK NAVRÁTIL Přírodovědcká fakulta MU Brno Úvod Studnti střdních škol si často stěžují na nzáživnost nzajímavost a matmatickou obtížnost výuky fyziky.
V polovině roku nabyla tlčinnosti nnvá Vyhláška i,.2312008 - přináňí garance větsí bezpečnosti byd ení z h ediska pořární ochrany Dne 1' července 2008 nabyla Účinnosti nová vyh!áška ě.23l2008sb., o technických
1. (18 bod ) Náhodná veli ina X je po et rub p i 400 nezávislých hodech mincí. a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost
(8 bod ) Náhodná veli ina X je po et rub p i nezávislých hodech mincí a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost P ( X EX < ) (9 bod ) b) Formulujte centrální limitní v tu a pomocí ní vypo
VYUŽITÍ PO ÍTA OVÉHO MODELOVÁNÍ JAKO PODPORY PROVOZNÍCH KONTROL ULTRAZVUKEM A V PROCESU NDT KVALIFIKACÍ
VYUŽITÍ PO ÍTA OVÉHO MODELOVÁNÍ JAKO PODPORY PROVOZNÍCH KONTROL ULTRAZVUKEM A V PROCESU NDT KVALIFIKACÍ P. Vl ek, P. Mareš ÚJV EŽ, A.S., ESKÁ REPUBLIKA ABSTRAKT Modelování a simulace ultrazvukového zkoušení
Navazující magisterské studium MATEMATIKA 2016 zadání A str.1 Z uvedených odpovědí je vždy
Navazující magistrské studium MATEMATIKA 16 zadání A str.1 Příjmní a jméno: Z uvdných odpovědí j vžd právě jdna správná. Zakroužkujt ji! V násldujících dsti problémch j z nabízných odpovědí vžd právě jdna
PROGRAMOVÁ PODPORA SYNTÉZY REGULAČNÍCH OBVODU POMOCÍ PROGRAMU MATLAB - SIMULINK. ing. Roman MIZERA. Katedra ATŘ-352, VŠB-TU Ostrava
PRORAMOVÁ PODPORA YNTÉZY REULAČNÍCH OBVODU POMOCÍ PRORAMU MATLAB - IMULINK ing. Roman MIZERA Katdra ATŘ-35, VŠB-TU Otrava Abtrat: Tnto přípěv zabývá programovou podporou yntézy rgulačních obvodů pomocí
TELEKOMUNIKAÈNÍ VÌSTNÍK
TELEKOMUNIKAÈNÍ VÌSTNÍK ÈESKÝ TELEKOMUNIKAÈNÍ ÚØAD Èástka 8 Roèník 2012 Praha 22. èervna 2012 OBSAH: Oddíl státní správy A. Normativní èást 24. Opatøení obecné povahy všeobecné oprávnìní è. VO-R/14/06.2012-8