Spojitost a limita funkce
|
|
- Miloslav Kučera
- před 5 lety
- Počet zobrazení:
Transkript
1 Spojitost a ita funkce Okolí bodu Značení: a R ε > 0 označujeme O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a) \ {a} x a ε-ové prstencové okolí bodu a P + ε (a) = (a, a + ε) pravé okolí, P ε (a) = (a ε, a) levé okolí x se "blíží"k a x nabývá hodnot libovolně blízkých k a x a+, x a, x +, x Spojitost funkce (1) Definice: Necht funkce f je definovaná v jistém okolí bodu a. Říkáme, že f je spojitá v bodě a D(f), jestliže ekvivalentně: O ε (f(a)) O δ (a) : f(o δ (a)) O ε (f(a)) ε > 0 δ > 0 : x a < δ f(a) < ε Definice: Říkáme, že funkce f je spojitá na otevřeném intervalu (a, b), je-li spojitá v každém bodě tohoto intervalu. Spojitost funkce (2) Definice: Říkáme, že funkce f je spojitá zprava/zleva v bodě a D(f), jestliže O ε (f(a)) O + δ (a) : O ε (f(a)) O δ (a) : f(o+ δ (a)) O ε(f(a)) f(o δ (a)) O ε(f(a)) Definice: Říkáme, že funkce f je spojitá na uzavřeném intervalu a, b, je-li 1
2 spojitá v každém bodě intervalu (a, b), spojitá zprava v bodě a, spojitá zleva v bodě b. Spojitost funkce (3) Věta: Jsou-li funkce f a g spojité v bodě a, pak jsou v tomto bodě spojité i funkce f, f ± g, f.g, a je-li g(a) 0 pak i f g. Věta: Je-li funkce y = spojitá v bodě x = a, funkce z = g(y) spojitá v bodě y = f(a), pak složená funkce h(x) = g() je spojitá v bodě x = a. Limita funkce Definice: Necht funkce f : D(f) R je definována v nějakém P(a) D(f). Říkáme, že funkce f má v bodě a itu A R, značíme = A, jestliže O ε (A) P δ (a) : f(p δ (a)) O ε (A) ekvivalentně ε > 0 δ > 0 : 0 < x a < δ A < ε Věta: Funkce f má v bodě a nejvýše jednu itu. Výpočet it (1) Věta: Funkce f je spojitá v bodě a = f(a). Věta: Necht f : D(f) R, g : D(g) R, a R. P(a) : ( x P(a) : = g(x)) = g(x) 2
3 Věta (o policajtech): Necht platí: x P(a) : g(x) h(x) g(x) = h(x) Potom existuje a rovná se g(x). Výpočet it (2) Věta: Necht = A a g(x) = B, kde A, B R. Platí: (i) ( ± g(x)) = ± g(x) = A ± B (ii) (.g(x)) =. g(x) = A.B (iii) je-li B 0, pak g(x) = ( )/( g(x)) = A B Věta (o itě složené funkce): Necht g(x) = A a necht funkce f je spojitá v bodě A. Potom platí f(g(x)) = f(a). Poznámka: []g(x) g(x) ln = e Jednostranné ity Definice: Necht funkce f : D(f) R je definována v nějakém P + (a) D(f). Říkáme, že ita funkce f v bodě a zprava je rovna A R, značíme = + A, jestliže O ε (A) P + δ (a) : f(p+ δ (a)) O ε(a) Definice: Necht funkce f : D(f) R je definována v nějakém P (a) D(f). Říkáme, že ita funkce f v bodě a zleva je rovna A R, značíme = A, jestliže O ε (A) P δ (a) : f(p δ (a)) O ε(a) 3
4 Věta: existuje + = Pak = = + Věty u oboustranných it platí i pro jednostranné ity: (i) f má v bodě a nejvýše jednu itu zprava/zleva (ii) f je spojitá v bodě a zprava/zleva = f(a) ± (iii) = g(x) pro x P ± (a) = g(x) ± ± x P ± (a) : g(x) (iv) Věta o policajtech:[-1mm] g(x) ± h(x) g(x) = h(x) ± ± ± = (v) (vi) ( ±g(x)) = ± g(x) ± ± ± ± g(x) = ( )/( g(x)), pokud g(x) 0 ± ± ± (vii) g(x) = A ± f spojitá v bodě A zprava/zleva f(g(x)) = f(a) ± Nevlastní ity = L I. Je-li a, L R říkáme vlastní ita ve vlastním bodě II. Je-li a R, L = ± říkáme nevlastní ita ve vlastním bodě III. Je-li a = ± L R říkáme vlastní ita v nevlastním bodě IV. Je-li a = ±, L = ± říkáme nevlastní ita v nevlastním bodě 4
5 Případ I. jsme objasnili v předchozích odstavcích. Nyní probereme případy II., III. a IV. Nevlastní ity II. Definice: Necht je definována v P(a) potom (i) = jestliže K > 0 P δ (a) takové, že x P δ (a) je > K (ii) = jestliže L < 0 P δ (a) takové, že x P δ (a) je < L Poznámka: Použijeme-li P + δ (a) nebo P δ ity ve vlastním bodě: (a) dostáváme jednostranné nevlastní (i) (ii) Věta: = + = + = = (i) = = = + (ii) = = = + Věta: (i) Necht = a + g(x) = g(x) =, potom g(x) =. (ii) Necht = a + g(x) = g(x) =, potom g(x) =. 5
6 (iii) Necht = a g(x) =, potom g(x) = (iv) Necht = A R, A > 0 a g(x) = ±, potom g(x) = ±. (v) Necht = A R a g(x) = ±, potom g(x) = 0. Věta: Necht funkce f je omezená na nějakém P (a), pak platí (i) Je-li g(x) = ±, pak = 0. g(x) (ii) Je-li g(x) = 0 pak, g(x) = 0. Věta: Necht = A > 0 a (i) Je-li g(x) > 0 na P(a), platí g(x) = 0, pak (ii) Je-li g(x) < 0 na P(a), platí g(x) = +. g(x) =. (iii) Jestliže funkce g(x) nabývá na každém P (a) kladných i záporných hodnot, potom g(x) neexistuje. 6
7 Nevlastní ity III. Definice: Necht je definována na (0, ) (resp. (, 0) ). Říkáme, že funkce f má v nevlastním bodě (resp. ) itu L 1 (resp. L 2 ) a píšeme jestliže (resp. = L 1 (resp. = L 2) x O ε (L 1 ) x 1 > 0 takové, že x > x 1 platí O ε (L 1 ) O ε (L 2 ) x 2 < 0 takové, že x < x 2 platí O ε (L 2 )) Nevlastní ity III. (2) Věta (o policajtech): Necht platí: x (a, ) : g(x) h(x) g(x) = h(x) Potom existuje a rovná se g(x). Věta: Necht (i) (ii) = A a g(x) = B, kde A, B R. Platí: ( ± g(x)) = ± g(x) = A ± B (.g(x)) =. g(x) = A.B (iii) je-li B 0, pak g(x) = ( )/( g(x)) = A B 7
8 Nevlastní ity IV. Definice: Necht je definována na (0, ) nebo (, 0). (i) Říkáme, že funkce f má v nevlastním bodě itu a píšeme = jestliže K > 0 x 1 > 0 takové, že x > x 1 platí > K. (ii) Říkáme, že funkce f má v nevlastním bodě itu a píšeme = jestliže L < 0 x 1 > 0 takové, že x > x 1 platí < L. (iii) Říkáme, že funkce f má v nevlastním bodě itu a píšeme x = jestliže K > 0 x 2 < 0 takové, že x < x 2 platí > K. (iv) Říkáme, že funkce f má v nevlastním bodě itu a píšeme x = jestliže Věta: L < 0 x 2 < 0 takové, že x < x 2 platí < L. (i) Necht = a g(x) =, potom + g(x) = g(x) =. (ii) Necht = a g(x) =, potom + g(x) = g(x) =. 8
9 (iii) Necht = a g(x) =, potom g(x) = (iv) Necht = A R, A > 0 a g(x) = ±, g(x) = ±. (v) Necht = A R a g(x) = ±, potom g(x) = 0. Nevlastní ity IV. (2) Věta: Necht funkce f je omezená na nějakém (x 0, ), resp. (, x 0 ) pak platí (i) Je-li (ii) Je-li g(x) = ±, pak = 0. g(x) g(x) = 0 pak, g(x) = 0. Věta: Necht = A > 0 a g(x) = 0, pak (i) Je-li g(x) > 0 na (a, ) nebo (, a), platí g(x) = +. (ii) Je-li g(x) < 0 na (a, ) nebo (, a), platí g(x) =. 9
10 Limita posloupností Definice: n N definujeme číslo a n R. Potom říkáme, že čísla a 1, a 2, a 3,... tvoří posloupnost reálných čísel. Číslo a n nazýváme n tý člen posloupnosti, n je index čísla a n. Posloupnost zkráceně zapisujeme {a n } n=1. Předpis, jak z indexu n dostaneme a n se nazývá vzorec pro n tý člen: Aritmetická posloupnost: a n = f(n), f : N R. a n = a 1 + (n 1)d, kde d R je diference. Geometrická posloupnost: kde q R je kvocient. a n = q n, Limita posloupností (2) Definice: Říkáme, že posloupnost {a n } n=1 má itu A, píšeme n a n = A, jestliže a n = ± jestliže n O ε (A) n 0 N takové, že n > n 0 platí a n O ε (A). K > 0 n 0 N takové, že n n 0 platí a n > K, L < 0 n 0 N takové, že n n 0 platí a n < L. Posloupnost {a n } n=1 nazýváme konvergentní, jestliže n a n = A R (vlastní ita). Jestliže posloupnost nemá vlastní itu nebo ita neexistuje, říkáme, že posloupnost je divergentní. 10
11 Limita posloupností (3) Definice: Mějme posloupnost {a n } n=1 (i) Jestliže n N platí a n < a n+1 (resp. a n a n+1 ) říkáme, že posloupnost je rostoucí (resp. neklesající). (ii) Jestliže n N platí Věta: a n > a n+1 (resp. a n a n+1 ) říkáme, že posloupnost je klesající (resp. nerostoucí). Je-li posloupnost {a n } n=1 neklesající a shora omezená, potom má vlastní itu. Je-li posloupnost {a n } n=1 nerostoucí a zdola omezená, potom má vlastní itu. Eulerovo číslo Dá se dokázat, že existuje vlastní ita n ( n) n. Definice: Označme ( e = n. n n) Číslo e nazýváme Eulerovo číslo. 11
Kapitola 2: Spojitost a limita funkce 1/20
Kapitola 2: Spojitost a limita funkce 1/20 Okolí bodu 2/20 Značení: a R, ε > 0 O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a)
VíceLimita posloupnosti, limita funkce, spojitost. May 26, 2018
Limita posloupnosti, limita funkce, spojitost May 26, 2018 Definice (Okolí bodu) Okolím bodu a R (také ε- okolím) rozumíme množinu U(a, ε) = {x R; x a < ε} = (a ε, a + ε), bod a se nazývá střed okolí a
VíceIV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
Více1 Posloupnosti a řady.
1 Posloupnosti a řady. 1.1 Posloupnosti reálných čísel. Definice 1.1: Posloupností reálných čísel nazýváme zobrazení f množiny N všech přirozených čísel do množiny R všech reálných čísel. Pokud nemůže
VícePŘEDNÁŠKA 2 POSLOUPNOSTI
PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému
VíceLimita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1]
KAPITOLA 3: Limita a spojitost funkce [MA-8:P3.] 3. Úvod Necht je funkce f definována alespoň na nějakém prstencovém okolí bodu 0 R. Číslo a R je itou funkce f v bodě 0, jestliže pro každé okolí Ua) bodu
Více1. Posloupnosti čísel
1. Posloupnosti čísel 1.1. Posloupnosti a operace s nimi Definice 1.1 Posloupnost reálných čísel ( = reálná posloupnost ) je zobrazení, jehož definičním oborem je množina N a oborem hodnot je nějaká podmnožina
VíceVII. Limita a spojitost funkce
VII. Limita a spojitost funkce VII.1. Limita funkce Úvodní poznámky: Limita funkce f v bodě c R hodnota a R, k níž se přibližují hodnoty f(x), jestliže x se blíží k hodnotě c; funkce f nemusí být definovaná
VíceLIMITA A SPOJITOST FUNKCE
PŘEDNÁŠKA 5 LIMITA A SPOJITOST FUNKCE 5.1 Spojitost funkce 2 Řekneme, že funkce f(x) je spojitá v bodě a D f, jestliže ke každému ε > 0 existuje δ > 0 takové, že pro každé x (a δ, a + δ) D f platí nerovnost:
Více1 Množiny, výroky a číselné obory
1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou
VíceLimita posloupnosti a funkce
Limita posloupnosti a funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Limita posloupnosti a funkce MA I (M1101) 1 / 90 Obsah 1 Posloupnosti reálných čísel Úvod Limita posloupnosti
VíceLimita a spojitost LDF MENDELU
Limita a spojitost Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VíceFunkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární
Více2.6. Limita funkce. Nechť c R jevnitřnínebokrajníbodintervaludefiničníhooborufunkce
2.6. Limita funkce Nechť c R jevnitřnínebokrajníbod intervalu definičního oboru funkce f.(funkce v něm může, ale nemusí být definovaná.) Jestliže vzorům x blízkým bodu c, ale různýmod c, (tedy x (c d,
VícePřednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce
Přednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce Zápisem f : M R rozumíme, že je dána funkce definovaná na neprázdné množině M R reálných čísel, což je množina dvojic f =
Více1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.
1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle
VíceLimita a spojitost funkce a zobrazení jedné reálné proměnné
Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé
Více0.1 Úvod do matematické analýzy
Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Limita a spojitost funkce Lineární funkce Lineární funkce je jedna z nejjednodušších a možná i nejpoužívanějších funkcí. f(x) = kx + q D(f)
VíceMATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy
MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy 1 Matematika I. I. Lineární algebra II. Základy matematické analýzy III. Diferenciální počet IV. Integrální počet 2 Matematika
Více5. Limita funkce a spojitost strana 1/5 2018/KMA/MA1/přednášky. Definice 5.1. Mějme funkci f : D R a bod x 0 R.
5. Limita funkce a spojitost strana 1/5 2018/KMA/MA1/přednášky Definice 5.1. Mějme funkci f : D R a bod 0 R. a) Číslo c R je částečná ita funkce f v bodě 0, pokud eistuje posloupnost ( n ) taková, že platí
VíceLimita a spojitost funkce
Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu
VícePOSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
VícePosloupnosti a jejich limity
KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny
Více3. LIMITA A SPOJITOST FUNKCE
3. LIMITA A SPOJITOST FUNKCE Okolí reálného čísla a 3.1. Deinice Okolím reálného čísla a nazýváme otevřený interval a, a, kde je libovolné kladné číslo. Je to tedy množina reálných čísel x, která vyhovují
VíceLimita a spojitost funkce
Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném
VícePOSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
VíceČíselné posloupnosti
Číselné posloupnosti Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 43 Pojem posloupnosti Každé zobrazení N do R nazýváme číselná posloupnost. 1 a 1, 2 a 2, 3 a
Více30. listopadu Derivace. VŠB-TU Ostrava. Dostupné: s1a64/cd/index.htm.
KMA/MAT1 Přednáška a cvičení č. 11 30. listopadu 2017 [KS] Jaromír Kuben Petra Šarmanová: Diferenciální počet funkcí jedné proměnné. VŠB-TU Ostrava. Dostupné: http://homel.vsb.cz/ s1a64/cd/inde.htm. 1
VíceDodatek 2: Funkce dvou proměnných 1/9
Dodatek 2: Funkce dvou proměnných 1/9 2/9 Funkce dvou proměnných Definice: Reálnou funkcí dvou reálných proměnných, definovanou na množině M R 2, rozumíme předpis f, který každé uspořádané dvojici reálných
Více(,b)={x IR;x < b} (otevřenýinterval) a,b ={x IR;a x b} (uzavřenýinterval)
A definice a tvrzení 1 c phabala 2010 Definice a tvrzení Reálná osa Značení(populární číselné množiny. IN přirozenáčísla1,2,3,4,... IN 0 = IN {0}={0,1,2,3,4,...} Z celáčísla0,1,-1,2,-2,3,-3,... IQ racionální
VíceKapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
Více1 Topologie roviny a prostoru
1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se
Více3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim
3 a b s = (a + b) 2 f(s) 3,46 4,680 3,93-2,9422 3,93 4,680 4,2962-2,034 4,2962 4,680 4,4886-0,0954 4,4886 4,680 4,5848 3,2095 4,4886 4,5848 4,5367,0963 4,4886 4,5367 4,526 0,427 4,4886 4,526 4,5006 0,508
VíceMatematická analýza III.
1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )
Vícei=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice
I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných
VíceLimita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39
Limita funkce FIT ČVUT v Praze 3.týden (FIT) Limita funkce 3.týden 1 / 39 Definice funkce. Zobrazení (f, D f ), jehož definiční obor D f i obor hodnot H f je podmnožinou množiny reálných čísel, se nazývá
VíceMetody výpočtu limit funkcí a posloupností
Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou
Více2. LIMITA A SPOJITOST FUNKCE
. LIMITA A SPOJITOST FUNKCE Průvodce studiem Funkce y = je definována pro ( ) (>. Z grafu funkce (obr. 3) a z tabulky (a) je vidět že čím více se hodnoty blíží k -3 tím více se funkční hodnoty blíží ke
VíceJe založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =
0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si
VíceKapitola 1: Reálné funkce 1/13
Kapitola 1: Reálné funkce 1/13 Číselné množiny N, N 0, Z, Q, I, R, C Definice: Kartézský součin M N množin M a N je množina všech uspořádaných dvojic, ve kterých je první složka prvkem množiny M a druhá
VícePosloupnosti a řady. 28. listopadu 2015
Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj
VíceMatematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky
Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.
Více7.1 Extrémy a monotonie
KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x
VíceMATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M05, GA01 M04 LIMITA A SPOJITOST FUNKCE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA0 M05, GA0 M04 DIFERENCIÁLNÍ POČET I LIMITA A SPOJITOST FUNKCE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 0 Typeset
Vícea = a 0.a 1 a 2 a 3...
Reálná čísla Definice 1 Nekonečným desetinným rozvojem čísla a nazýváme výraz a = a 0.a 1 a 2 a 3... kde a 0 je celé číslo a každé a i, i =1, 2,... je jedna z číslic 0,...,9. Pokud existuje m N takové,
VíceFunkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Funkce a limita Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VíceFunkce. Limita a spojitost
Funkce. Limita a spojitost skriptum J. Neustupa text Funkce (úvod) na této web stránce III.2 Fce - základní pojmy 1. Definice, def. obor D(f), obor hodnot H(f), graf 2. Fce složená, omezená, 3. Fce sudá,
VíceKapitola 1: Reálné funkce 1/20
Kapitola 1: Reálné funkce 1/20 Funkce jedné proměnné 2/20 Definice: Necht M R. Jestliže každému x M je přiřazeno jistým předpisem f právě jedno y R, říkáme, že y je funkcí x. x... nezávisle proměnná (neboli
VíceReálné posloupnosti 1. Reálné posloupnosti
Reálné posloupnosti Reálné posloupnosti Intervaly otevřený interval (a, b) = {x R, a < x < b}; polouzavřený interval (a, b = {x R, a < x b}; uzavřený interval a, b = {x R, a x b}; otevřený neomezený interval
Více(1) Limity. Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Limity 1 / 27
(1) Limity Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Limity 1 / 27 Proč studovat matematiku Zdroje: http://www.karlin.mff.cuni.cz/ pick/2018-10-02-prvni-prednaska-z-analyzy.pdf https://www.youtube.com/watch?v=6ec3ndnr86s
VíceTexty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
VíceMatematická analýza pro informatiky I. Derivace funkce
Matematická analýza pro informatiky I. 7. přednáška Derivace funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 31. března 2011 Jan Tomeček, tomecek@inf.upol.cz
VíceZobecněný Riemannův integrál
Zobecněný Riemannův integrál Definice (Zobecněný Riemannův integrál). Buď,,. Nechť pro všechna existuje určitý Riemannův integrál. Pokud existuje konečná limita, říkáme, že zobecněný Riemannův integrál
Vícef(c) = 0. cn pro f(c n ) > 0 b n pro f(c n ) < 0
KAPITOLA 5: Spojitost a derivace na intervalu [MA-8:P5] 5 Funkce spojité na intervalu Věta 5 o nulách spojité funkce: Je-li f spojitá na uzavřeném intervalu a, b a fa fb < 0, pak eistuje c a, b tak, že
VíceMatematika (KMI/PMATE)
Matematika (KMI/PMATE) Přednáška druhá aneb Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) 1 / 30 Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam
VíceMatematická analýza pro informatiky I. Limita funkce
Matematická analýza pro informatiky I. 5. přednáška Limita funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 18. března 2011 Jan Tomeček, tomecek@inf.upol.cz
VíceZimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva
VíceOrganizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část
Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova
Více4. Topologické vlastnosti množiny reálných
Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině
VíceKapitola 1: Reálné funkce 1/13
Kapitola 1: Reálné funkce 1/13 Číselné množiny 2/13 N = {1, 2, 3, 4,... }... přirozená čísla N 0 = N {0} = {0, 1, 2, 3, 4,... } Z = {..., 2, 1, 0, 1, 2, 3, 4,... }... celá čísla Q = { p q p, q Z}... racionální
VícePřednáška 3: Limita a spojitost
3 / 1 / 17, 1:38 Přednáška 3: Limita a spojitost Limita funkce Nejdříve je potřeba upřesnit pojmy, které přesněji popisují (topologickou) strukturu množiny reálných čísel, a to zejména pojem okolí 31 Definice
VíceLIMITA FUNKCE, SPOJITOST FUNKCE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA LIMITA FUNKCE, SPOJITOST FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin
VíceMATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik
MATEMATIKA Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik P. Rádl, B. Černá, L. Stará: Základy vyšší matematiky, skriptum MZLU Text přednášky na user.mendelu.cz/marik,
VíceIX. Vyšetřování průběhu funkce
IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde
VíceFunkce, elementární funkce.
Kapitola 2 Funkce, elementární funkce. V této kapitole si se budeme věnovat studiu základních vlastností funkcí jako je definiční obor, obor hodnot. Připomeneme si pojmy sudá, lichá, rostoucí, klesající.
VíceKapitola 4: Průběh funkce 1/11
Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající
VíceOznačení derivace čárkami, resp. římskými číslicemi, volíme při nižším řádu derivace, jinak užíváme horní index v závorce f (5), f (6),... x c g (x).
9 Využití derivace 9.1 Derivace vyšších řádů Definice 1. Nechť funkce má derivaci v nějakém okolí bodu c D(f). Nechť funkce ϕ() =f () máderivacivboděc. Pak hodnotu ϕ (c) nazýváme derivací 2. řádu (2. derivací)
Více1/15. Kapitola 2: Reálné funkce více proměnných
1/15 Kapitola 2: Reálné funkce více proměnných Vlastnosti bodových množin 2/15 Definice: ε-ové okolí... O ε (X) = {Y R n ρ(x, Y ) < ε} prstencové ε-ové okolí... P ε (X) = {Y R n 0 < ρ(x, Y ) < ε} Definice:
VíceDerivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
VícePřednáška 6, 6. listopadu 2013
Přednáška 6, 6. listopadu 2013 Kapitola 2. Posloupnosti a řady funkcí. V dalším jsou f, f n : M R, n = 1, 2,..., reálné funkce jedné reálné proměnné definované na (neprázdné) množině M R. Co to znamená,
VícePřednáška 11, 12. prosince Část 5: derivace funkce
Přednáška 11, 12. prosince 2014 Závěrem pasáže o spojitých funkcích zmíníme jejich podtřídu, lipschitzovské funkce, nazvané podle německého matematika Rudolfa Lipschitze (1832 1903). Fukce f : M R je lipschitzovská,
VíceI. Úvod. I.1. Množiny. I.2. Výrokový a predikátový počet
I. Úvod I.1. Množiny Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Značení. Symbol x A značí, že element x je prvkem množiny A. Značení x
VíceSpojitost funkce. Spojitost je nejdůležitější obecná vlastnost funkcí. Umožňuje aproximace různých řešení.
funkce je nejdůležitější obecná vlastnost funkcí. Umožňuje aproximace různých řešení. Je důležité vědět, kdy se malá změna nějakého měření projeví málo na konečném výsledku. Zpřesňuje-li se měření, měl
VícePetr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57
Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost
VíceMatematická analýza pro informatiky I. Limita posloupnosti (I)
Matematická analýza pro informatiky I. 3. přednáška Limita posloupnosti (I) Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 25. února 2011 tomecek@inf.upol.cz
VíceMatematická analýza 1
VŠB TECHNICKÁ UNIVERZITA OSTRAVA, FAKULTA ELEKTROTECHNIKY A INFORMATIKY Matematická analýza 1 Pracovní listy Martina Litschmannová 2015 / 2016 Definice, věty i mnohé příklady jsou převzaty z: KUBEN, Jaromír
VíceNejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou
4 Cíle Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou funkce, jejichž ita v bodě 0 je rovna funkční hodnotě v tomto bodě Seznámíme se s vlastnostmi takových funkcí
Více9. Limita a spojitost
OKOLÍ BODU, VNITŘNÍ A HRANIČNÍ BOD Okolí bodu a je libovolný interval (a r, a + r), kde r > 0; značí se O(a, r), případně jen O(a) (obr. 9..). Číslo r se nazývá poloměr okolí. O(a, r) 0 a r a a + r Obrázek
VíceKapitola 4: Průběh funkce 1/11
Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající
VíceHelena R ˇ ı hova (CˇVUT) Posloupnosti 5. rˇı jna / 17
Posloupnosti Helena Říhová FBMI 5. října 2012 Helena Říhová (ČVUT) Posloupnosti 5. října 2012 1 / 17 Obsah 1 Posloupnosti Definice, vlastnosti Vybraná, stacionární, oscilující, ohraničená posloupnost Monotónní
Více( + ) ( ) f x x f x. x bude zmenšovat nekonečně přesný. = derivace funkce f v bodě x. nazýváme ji derivací funkce f v bodě x. - náš základní zápis
1.. Derivace elementárních funkcí I Předpoklad: 1 Shrnutí z minulé hodin: Chceme znát jakým způsobem se mění hodnot funkce f ( f ( + f ( přibližná hodnota změn = přesnost výpočtu se bude zvětšovat, kdž
Více22. & 23. & 24. Vlastnosti funkcí a jejich limita a derivace
22. & 23. & 24. Vlastnosti funkcí a jejich ita a derivace Základní vlastnosti Definiční obor Definiční obor je množina neznámých, pro něž je funkce definována. Obor hodnot Obor hodnot je množina všech
Vícep 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že
KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =
VícePoznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.
2. ZOBRAZENÍ A FUNKCE 2.1 Zobrazení 2. 1. 1 Definice: Nechť A a B jsou množiny. Řekneme že f je zobrazení množiny A do množiny B jestliže (i) f A B (ii) ke každému z množiny A eistuje právě jedno y z množiny
VíceNekonečné číselné řady. January 21, 2015
Nekonečné číselné řady January 2, 205 IMA 205 Příklad 0 = 0 + 0 +... + 0 +... =? n= IMA 205 Příklad n= n 2 + n = 2 + 6 + 2 +... + n 2 +... =? + n s = 2 s 2 = 2 3... s 3 = 3 4 IMA 205 Příklad (pokr.) =
VíceOmezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina
Přednáška č. 5 Vlastnosti funkcí Jiří Fišer 22. října 2007 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 4 22. října 2007 1 / 1 Omezenost funkce Definice Funkce f se nazývá (shora, zdola) omezená
VíceText může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.
VíceDerivace úvod. Jak zjistit míru změny?
Derivace úvod P ČEZ Jak zjistit míru změny? Derivace nám dá odpověď jestli je funkce: rostoucí/klesající konkávní/konvení jak moc je strmá jak moc roste kde má maimum/minimum 1000 700 P ČEZ P ČEZ 3% 4%
Víceprof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010
Věty o přírustku funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické
Víceverze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu
Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové
Více10 Funkce více proměnných
M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y
Více3 Limita funkce Limitafunkcevbodě Jednostrannélimity Vlastnostilimitfunkcí Výpočetlimitfunkcí...
Obsah 3 Limita funkce 2 3.1 Limitafunkcevbodě... 2 3.2 Jednostrannéity... 3 3.3 Vlastnostiitfunkcí..... 4 3.4 Výpočetitfunkcí... 5 4 Spojitost funkce 6 4.1 Spojitostfunkcevbodě.... 6 4.2 Vlastnostifunkcíspojitýchvbodě.....
VícePavlína Matysová. 5. listopadu 2018
Soubor řešených úloh Vyšetřování průběhu funkce Pavlína Matysová 5. listopadu 018 1 Soubor řešených úloh Tento text obsahuje 7 úloh na téma vyšetřování průběhu funkce. Každé úloha je řešena dvěma způsoby
VícePoužití derivací L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT. Monotónie. Konvexita. V této části budou uvedena některá použití derivací.
V této části budou uvedena některá použití derivací. Použití derivací L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT Tvrzení je uvedeno pro jednostrannou itu zprava. Samozřejmě obdobné tvrzení platí pro itu zleva
VíceMatematická analýza I
Matematická analýza I Zápisky z přednášek Stanislava Hencla na MFF UK, zimní semestr, ak. rok 2007/2008 Adam Liška 2. ledna 206 http://www.karlin.mff.cuni.cz/~hencl/ http://www.adliska.com Obsah Úvod 3.
VíceZáklady matematické analýzy
Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Více5. Limita a spojitost
5. Limita a spojitost 5. Limita posloupnosti 5. Limita a spojitost Verze 16. prosince 2016 Diferenciální počet a integrální počet tvoří klasický základ Matematické analýzy. Diferenciální počet zkoumá lokální
VícePosloupnosti a jejich konvergence
a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace, integrály.
VíceVybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 8-9 Vybrané kapitoly z matematiky 8-9 / 6 Funkce více proměnných Vybrané kapitoly z matematiky 8-9 / 6 Definice Necht M R n, M. Funkcí n proměnných je zobrazení
Více1. Úvod Výroková logika Množiny a množinové operace
1. Úvod 1.1. Výroková logika Výrok je tvrzení, o kterém má smysl říci, že platí (je pravdivé) nebo že neplatí (je nepravdivé). Definice. Negací A výroku A rozumíme výrok: Není pravda, že platí A. Konjukcí
Více