Přijímací zkouška na navazující magisterské studium 2016
|
|
- Miloš Dušek
- před 5 lety
- Počet zobrazení:
Transkript
1 Přijímací zkouška a avazující magiserské sudium 2016 Sudijí program: Sudijí obor: Maemaika Fiačí a pojisá maemaika Variaa A Řešeí příkladů pečlivě odůvoděe. Věuje pozoros ověřeí předpokladů použiých maemaických vě. Příklad 1 25 bodů Odůvoděe, proč exisuje iegrál M y 2 dxdydz, kde M {x, y, z R : 2 < x < 2, 0 < y < x 2 1, 0 < z < 2y}. Spočěe ho. Příklad 2 25 bodů Defiujme fukci f : R 2 R předpisem fx, y x x 2 y + xy 2 y. Určee její oálí difereciál všude, kde exisuje. V bodech, kde eexisuje, odůvoděe proč. Příklad 25 bodů Uvažujme áhodý výběr X 1, Y 1,..., X, Y z rozděleí s husoou fx, y; β βx exp { βxy} I{x 0, 1, y > 0}, β > 0. a Najděe maximálě věrohodý odhad pro ezámý paramer β > 0. b Odvoďe asympoické rozděleí maximálě věrohodého odhadu pro ezámý paramer β. c Sesave i es poměrem věrohodosi, ii Raoův skórový es, iii Waldův es pro ulovou hypoézu H 0 : β β 0 oproi aleraivě H 1 : β β 0. Příklad 4 25 bodů Uvažuje dluhopis s omiálí hodoou F, ročí kupóovou sazbou c, splaosí le a rží ceou P. Nechť i je oceňovací úroková míra. i Co je spravedlivá cea počáečí hodoa P V ohoo dluhopisu? ii Napiše rovici pro výpoče výososi do splaosi i YTM ohoo dluhopisu. iii Dokaže vrzeí: P < F zv. prodej pod par, právě když i > c.
2 Přijímací zkouška a avazující magiserské sudium 2016 Sudijí program: Maemaika Sudijí obor: Fiačí a pojisá maemaika Variaa A řešeí Příklad 1 25 bodů Iegrál exisuje, proože iegrujeme měřielou, ezáporou fukci přes měřielou možiu. Můžeme použí Fubiiho věu. Je pro ás výhodé psá Nyí M M 1 M 2 { 2 < x < 1, 0 < y < x 2 1, 0 < z < 2y} M 1 y 2 dxdydz Velmi podobý výpoče vede a {1 < x < 2, 0 < y < x 2 1, 0 < z < 2y}. x 2 1 2y 0 0 y 2 dz dy dx x 2 1 x 2 [ z 2 ] 2y 1 x y 2 2 dy dx [ 2 2x 4 2x 2 dx 5 x5 2 x] M 2 y 2 dxdydz x 2 dy dx Proo M 124 dxdydz y
3 Příklad 2 25 bodů Proože x x 2 y + xy 2 y x yx 2 + y 2, a možiě R 2 \ {x y} máme a x x, y x 2 2xy + y 2 x x 2 y + xy 2 y 2 y x, y x 2 + 2xy y 2. x x 2 y + xy 2 y 2 Obě parciálí derivace jsou spojié a uvažovaé možiě. Proo zde oálí difereciál exisuje a splňuje x 2 2xy + y 2 x 2 + 2xy y 2 dfx, yh 1, h 2 h x x 2 y + xy 2 y h x x 2 y + xy 2 y 2 2. Dále a možiě {x, x: x 0} máme fx +, x fx, x x, x lim x 0 x + lim x + 2 x + x + x 2 x 0 0 lim 0 x x 2 lim 0 2x 2 + 2x Proo zde oálí difereciál eexisuje. Zbývá vyšeři chováí v počáku. Máme a f0 +, 0 f0, 0 0, 0 lim lim x 0 0 f0, 0 + f0, 0 0, 0 lim lim y Proo jediým kadidáem a oálí difereciál je lieárí fukce L: h 1, h 2 h 1 h 2. Ověřme, zda splňuje defiici oálího difereciálu f0 + h 1, 0 + h 2 f0, 0 Lh 1, h 2 lim h 0 h lim h 0 h 1 h 2 1 h 2 + h 1 h 2 2 h 2 h 1 + h 2 h Tao limia se však erová ule, proože pro h 2 h 1 < 0 máme. h 1 h 2 1 h 2 + h 1 h 2 2 h 2 h 1 + h 2 h 4h 1 2h 1 2h Proo oálí difereciál v počáku eexisuje.
4 Příklad 25 bodů a Nejdříve vyjádříme věrohodos L β; [X, Y] β X i exp { β i1 i1 } X i Y i, X i 0, 1, Y i > 0, i. Logarimická věrohodos je pak l β; [X, Y] log β + log X i β i1 Následě zderivováím dosaeme skórovou saisiku U β; [X, Y] β X i Y i. i1 X i Y i. Maximálě věrohodý odhad je řešeím věrohodosí rovice l β; [X, Y]/ β 0 vzhledem k ezámému parameru β, j. ˆβ i1 X. iy i Pozorovaá výběrová iformačí maice je i1 I β; [X, Y] 1 U β; [X, Y] 1 β β 2, kerá po vyčísleí v maximálě věrohodém odhadu abývá kladé hodoy I ˆβ; i1 [X, Y] X 2 iy i > 0. Tím pádem je alezeý maximálě věrohodý odhad právě jede. b Fisherovu iformačí maici spočíáme jako I β EI β; [X, Y] 1 β 2. Pak plaí, že ˆβ β D N 0, β 2,. c,i Tes podílem věrohodosi pro ulovou hypoézu H 0 : β β 0 oproi aleraivě H 1 : β β 0 je založe a esové saisice D 2 log L ˆβ; [X, Y] 2 log L β 0 ; [X, Y] β 0 i1 X 2 β 0 X i Y i iy i a H 0 zamíáme ve prospěch H 1, když D > χ α, kde χ2 1 1 α je 1 α-kvail χ2 rozděleí o jedém supi volosi. i1
5 c,ii Raoův skórový es pro ulovou hypoézu H 0 : β β 0 oproi aleraivě H 1 : β β 0 je založe apříklad a esové saisice R [U β 0 ; [X, Y]] 2 Iβ 0 1 a H 0 zamíáme ve prospěch H 1, když R > χ α. β 0 2 X i Y i i1 c,iii Waldův es pro ulovou hypoézu H 0 : β β 0 oproi aleraivě H 1 : β β 0 je založe apříklad a esové saisice 2 W ˆβ β0 I ˆβ 1 β 0 a H 0 zamíáme ve prospěch H 1, když W > χ α. 2 X i Y i i1
6 Příklad 4 25 bodů i Spravedlivá cea je počáečí hodoa všech fiačích oků spojeých s daým dluhopisem:. ii Rovice má var ebo ebo ebo kde v 1 1+i, a i 1 v i. iii Posupě dosáváme: P V P Proože 1 v > 0, plye odud, že C 1 + i + C 1 + i 1 + C + F 1 + i. cf 1 + i + + cf cf + F 1 + i i P cf v + + cf v + F v P F [c 1 v i ] + v P F [ ca i + v ], P F [c 1 v i ] + v P F 1 c i [1 v ] [1 v ] P c F 1 i 1 [1 v ]. P F 1 < 0 právě když c i 1 < 0.
Přijímací zkouška na navazující magisterské studium 2017
Přijímací zkouška na navazující magisterské studium 27 Studijní program: Studijní obor: Matematika Finanční a pojistná matematika Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření
VíceOdezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti
Odezva a obecou periodickou budící fukci Iva Períková Kaedra mechaiky, pružosi a pevosi Obsah Fourierovy řady Odezva a polyharmoickou fukci Odezva a obecou periodickou fukci Odezva a jedokový skok Příklad
VícePRAVDĚPODOBNOST A STATISTIKA
SP Teováí hypoéz PRAVDĚPODOBNOST A STATISTIKA SP Teováí hypoéz Teováí hypoéz Nechť je áhodá proměá, kerá má diribučí fukci Fx, ϑ. Předpokládejme, že záme var diribučí fukce víme jaké má rozděleí a ezáme
VíceNelineární systémy. 3 / Matematické základy
Nelieárí sysémy 3 / Maemaické základy Přehled 1. Úvod 2. Příklady 3. Maemaické základy 4. Sabilia a Lyapuovova fukce 5. Řízeí NS pomocí přibližé liearizace. Gai schedulig 6. Řízeí NS pomocí srukurálích
Vícef(x) f(x 0 ) = a lim x x0 f f(x 0 + h) f(x 0 ) (x 0 ) = lim f(x + h) f(x) (x) = lim
KAPITOLA 4: 4 Úvod Derivace fkce [MA-8:P4] Moivačí příklady: okamžiá ryclos, směrice ečy Defiice: Řekeme, že fkce f má v bodě derivaci [ derivaci zleva derivaci zprava ] rov čísl a, jesliže exisje [ x
VíceUžitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové:
Užitečé zdroje příkladů jsou: Materiály ke cvičeím z Kalkulu 3 od Kristýy Kucové: http://www.karli.mff.cui.cz/~kucova/historie8. php K posloupostem řad a fukcí Ilja Čerý: Iteligetí kalkulus. Olie zde:
Více1.6. Srovnání empirických a teoretických parametrů (4.-5.předn.)
.6. rováí empirických a eoreických paramerů (4.-5.před.) Cíle: - pravděpodobosí zkoumáí výběrového saisického souboru: kvaifikace eoreických paramerů, srováí eoreických a empirických paramerů (Probable
Více3. Lineární diferenciální rovnice úvod do teorie
3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se
VícePosloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b
Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a
VíceDIFERENCIÁLNÍ ROVNICE
VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA Isiu maemaik a deskripiví geomerie DIFERENCIÁLNÍ ROVNICE Maemaika IV Jaroslav Vlček Jiří Vrbický Osrava Předmluva Skripum "Difereciálí rovice" keré vziklo
VíceFINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ
Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ
Vícen=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0
Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada
VíceNMAF061, ZS Zápočtová písemná práce skupina A 16. listopad dx
NMAF06, ZS 07 08 Zápočtová písemá práce skupia A 6. listopad 07 Jedotlivé kroky při výpočtech stručě, ale co ejpřesěji odůvoděte. Pokud používáte ějaké tvrzeí, ezapomeňte ověřit splěí předpokladů. Jméo
VíceParciální funkce a parciální derivace
Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci
VíceI. TAYLORŮV POLYNOM ( 1
I. TAYLORŮV POLYNOM Připomeňme si defiice elemetárích fukcí: a si( = 2+ = ( (2+! b cos( = 2 = ( (2! c e = =!. Dokažte, že Taylorův polyom k-tého řádu v bodě pro fukce f je rove polyomu P : (tyto výsledky
VíceMatematika 2 (BMA2 + KMA2)
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Maemaika BMA KMA Auoři eu: Prof RNDr Fraišek Melkes, CSc Mgr Mari Řeáč FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ
VíceNáhodný výběr 1. Náhodný výběr
Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti
Více8. Analýza rozptylu.
8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,
VíceBudeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
VíceNMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) =
NAF61, ZS 17 18 Zápočtová písemá práce VZOR 5. leda 18 Jedotlivé kroky při výpočtech stručě, ale co ejpřesěji odůvoděte. Pokud používáte ějaké tvrzeí, ezapomeňte ověřit splěí předpokladů. Jméo a příjmeí:
VíceObsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...
Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1
Více14. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
Více4. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
VíceDiferenciální počet funkcí více reálných proměnných SLOŽENÉ FUNKCE. PŘÍKLAD 1 t, kde = =
Diferenciální poče funkcí více reálných proměnných -- SLOŽENÉ FUNKCE PŘÍKLAD Určee derivaci funkce h ( = f( g( g( kde g ( = + g ( = f ( / = e Podle pravidla o derivování složených funkcí více proměnných
VíceUniverzita Karlova v Praze Matematicko-fyzikální fakulta. Pavel Pejřimovský. Katedra pravděpodobnosti a matematické statistiky
Uiverzita Karlova v raze Matematicko-fyzikálí fakulta BAKALÁŘSKÁ RÁCE avel ejřimovský rofilová věrohodost Katedra pravděpodobosti a matematické statistiky Vedoucí bakalářské práce : Studijí program : Studijí
VíceODHADY VARIABILITY POSLOUPNOSTÍ
ÚVOD MÍRY VARIABILITY, ODHADY VLASTNOSTI FF SEGMENTACE ZÁZNAMU MINIMALIZACE MSE SNÍŽENÍ ROZPTYLU ODHADY VARIABILITY POSLOUPNOSTÍ NEURONOVÝCH IMPULSŮ Kamil Rajdl Úsav maemaiky a saisiky Přírodovědecká fakula
Více4EK211 Základy ekonometrie
4EK Základy ekonomerie Heeroskedasicia Cvičení 7 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady. E(u) = 0 náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný
VíceMatematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
Více!!! #!! # % & ()!+ %& #( ) +,,!,!!./0./01 2 34 % 00 (1!#! #! #23 + )!!,,5,!+ 4)!005!! 6 )! %,76!,8, )! 44 %!! #! #236!!1 1 5 6 5+!!1 ( 9 9!5 6 + /+ # % 7 8 % : 4; 2,/! = %
VíceOdhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
VíceŘešení soustav lineárních rovnic
Řešeí sousv lieáríc rovic Sousv lieáríc rovic Sousvou m lieáríc rovic o ezámýc rozumíme sousvu : Kde ij i R M m m Čísl ij zýváme koeficiey sousvy čísl i soluí čley Uvedeou sousvu udeme zči Sm m M m Homogeí
Více=, kde P(x) a Q(x) jsou polynomy. Rozklad na parciální zlomky Parciální zlomky jsou speciální racionální lomené funkce. Rozlišujeme 2 typy:
3 předáš INTEGRAE RAIONÁLNÍ LOMENÉ FUNKE Důležiou supiu fucí, eré můžeme (spoň eoreicy) iegrov v možiě elemeárích fucí, voří rcioálí lomeé fuce Kždou rcioálí lomeou fuci vru P( ) f ( ) =, de P() Q() jsou
VíceNMAF063 Matematika pro fyziky III Zkoušková písemná práce 17. ledna 2019
Jméo: Příklad 2 3 Celkem bodů Bodů 0 8 2 30 Získáo 0 Uvažujte posloupost distribucí {f } + = D (R defiovaou jako f (x = ( δ x m, kde δ ( x m začí Diracovu distribuci v bodě m Najděte limitu f = lim + f
VíceI. TAYLORŮV POLYNOM. Taylorovy řady některých funkcí: Pro x R platí: sin(x) =
Taylorovy řady ěkterých fukcí: I. TAYLORŮV POLYNOM Pro R platí: si) = 2+ = ), cos) = 2 2+)! = ), 2)! e = =.! Pro, : log + ) = = ) Pro, ) a a R: + ) a = a ) =, kde ) a = a a ) a 2) a +).!. Nalezěte Taylorův
VíceFINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ
Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ
Více8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI
8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI Ča ke tudiu kapitoly: 60 miut Cíl: Po protudováí tohoto odtavce budete umět: charakterizovat další typy pojitých rozděleí: χ, Studetovo, Ficher- Sedocorovo -
VícePravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí
Více1 Základní pojmy a vlastnosti
Základí pojmy a vlastosti DEFINICE (Trigoometrický polyom a řada). Fukce k = (a cos(x) + b si(x)) se azývá trigoometrický polyom. Řada = (a cos(x) + b si(x)) se azývá trigoometrická řada. TVRZENÍ (Ortogoalita).
Více5. Lineární diferenciální rovnice n-tého řádu
5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá
Více7. Soustavy lineárních diferenciálních rovnic.
7 837 4:3 Josf Hkrdla sousavy liárích difrciálích rovic 7 Sousavy liárích difrciálích rovic Příklad 7 3 + 5 + ( ) ξ 3 + ( ) ξ Maicový zápis 3 5 + 3 ( ) ξ ( ) ξ Dfiic 7 (sousava liárích difrciálích rovic
VíceOdhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
VíceLineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2
Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()
VíceŘešení písemné zkoušky z Matematické analýzy 1a ZS ,
Řešeí písemé zkoušky z Mtemtické lýzy ZS008-09,9..009 Příkld : Spočtěte limitu poslouposti lim + ) 7 + 8 5 + ) 4 4 +) 5). Ozčme : + 7 +, b 8 : 5 +) 4 4 +) 5,zjímáástedy lim b. Máme 7 8 + 7 + + 7 ) + 8
Více3. DIFERENCIÁLNÍ ROVNICE
3 DIFERENCIÁLNÍ ROVNICE Difereciálí rovice (dále je DR) jsou veli důležitou částí ateatické aalýz, protože uožňují řešit celou řadu úloh z fzik a techické prae Občejé difereciálí rovice: rovice, v íž se
VíceSprávnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).
37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým
Vícelistopadu 2016., t < 0., t 0, 1 2 ), t 1 2,1) 1, 1 t. Pro X, U a V najděte kvantilové funkce, střední hodnoty a rozptyly.
6. cvičení z PSI 7. -. lisopadu 6 6. kvanil, sřední hodnoa, rozpyl - pokračování příkladu z minula) Náhodná veličina X má disribuční funkci e, < F X ),, ) + 3,,), a je směsí diskréní náhodné veličiny U
Více3. Charakteristiky a parametry náhodných veličin
3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo
VíceOkruhy z učiva středoškolské matematiky pro přípravu ke studiu na Fakultě bezpečnostního inženýrství VŠB TU Ostrava
Okruhy z učiv sředoškolské memiky pro příprvu ke sudiu Fkulě ezpečosího ižeýrsví VŠB TU Osrv I Úprvy lgerických výrzů, zlomky, rozkld kvdrického rojčleu, mociy se záporým epoeem, mociy s rcioálím epoeem,
VíceDerivace funkce více proměnných
Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme
Víceodhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.
10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé
VíceKapitola 4 Euklidovské prostory
Kapitola 4 Euklidovské prostory 4.1. Defiice euklidovského prostoru 4.1.1. DEFINICE Nechť E je vektorový prostor ad tělesem reálých čísel R,, : E 2 R. E se azývá euklidovský prostor, platí-li: (I) Pro
VíceMezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.
ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém
Víceveličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou
1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i
VíceMetody odhadu poptávky a nabídky v podmínkách nerovnovážného modelu
4. eziárodí koferece Řízeí a odelováí fiačích rizik Osrava VŠB-TU Osrava, Ekooická fakula, kaedra Fiací.-. září 8 Meody odhadu popávky a abídky v podíkách erovovážého odelu Pavla Vodová Absrak Cíle ohoo
VíceŘADY Jiří Bouchala a Petr Vodstrčil
ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická
Více12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
Víceprocesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze
limití Náhodé limití Katedra pravděpodobosti a matematické statistiky Uiverzita Karlova v Praze email: praskova@karli.mff.cui.cz 9.4.-22.4. 200 limití Outlie limití limití efiice: Řekeme, že stacioárí
Více8. Laplaceova transformace
8 748 :9 Josef Hekrdl Llceov rsformce 8 Llceov rsformce Defiice 8 (Llceov rsformce) Nechť f je komlexí fukce jedé reálé roměé j f Zobrzeí L keré éo fukci řiřdí komlexí fukci komlexí roměé F j F vzhem L
VíceEntropie, relativní entropie a sdílená (vazební) informace
Etroie, relativí etroie a sdíleá vazebí iformace Pojem iformace je říliš rozsáhlý a to, abchom jej komleě osali jedoduchou defiicí. Pro libovolou distribuci ravděodobosti můžeme defiovat tzv. etroii, jež
VícePřijímací zkouška na navazující magisterské studium 2014
Přijímací zkouška na navazující magisterské studium 24 Příklad (25 bodů) Spočtěte Studijní program: Studijní obor: Matematika Finanční a pojistná matematika Varianta A M x 2 dxdy, kde M = {(x, y) R 2 ;
Více3. POJIŠTĚNÍ OSOB (ŽIVOTNÍ POJIŠTĚNÍ)
3. POJIŠTĚÍ OSOB (ŽIVOTÍ POJIŠTĚÍ) 3.. EMOELOVÝ PŘÍSTUP 3... ekremeí řád vymíráí populace Úmrosí abulky a) Smr je áhodým jevem, kerý se pojišťuje pro účely ŽP sačí pracova s průměrými hodoami záko velkých
VíceGeometrické modelování. Diferenciáln
Geomerické modelováí Difereciál lí geomerie křivekk Křivky v očía ačové grafice Geomerická ierreace Každý krok algorimu má svůj geomerický výzam Flexibilia korola ad růběhem křivky, možos iuiiví ediace
Více, neboť. Je patrné, že váhy splňují podmínku
Meoda expoeciálího vrováváí [RGBrow-RFMeer] Je dalším přísupů, kerý e řae (vedle meod klouavých průměrů) k adapivím echikám určeí redové složk časové řad Výchoí úvahou éo echik e, že se k predikci ové
VícePřírodovědecká fakulta NÁHODNÉ PROCESY. Ivan Křivý
Přírodovědecká fakula NÁHODNÉ PROCESY Iva Křivý OSTRAVSKÁ UNIVERZITA 5 OSTRAVSKÁ UNIVERZITA NÁHODNÉ PROCESY Iva Křivý ANOTACE Předkládaá disačí opora předsavue úvod do eorie áhodých procesů. Je určea
VíceSP NV Normalita-vlastnosti
SP - - NV Normala-vlasos Přpomeuí vlasosí Normálího rozděleí Charakerscká fukce Lévyho-Ldebergova věa - cerálí lmí věa -rozměré ormálí rozděleí -rozměré ormálí rozděleí Přpomeuí vlasosí Normálího rozděleí
VíceSekvenční logické obvody(lso)
Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách
VíceZkoušková písemná práce č. 1 z předmětu 01MAB3
Katedra matematiky Fakulty jaderé a fyzikálě ižeýrské ČVUT v Praze Příjmeí a jméo 1 2 3 4 5 BONUS CELKEM (13 bodů) Zkoušková písemá práce č. 1 z předmětu 01MAB3 14. leda 2016, 9:00 11:00 Pro kvadratickou
Vícec) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x),
a) Vyslovte a dokažte Liouvillovu větu o šaté aroximovatelosti algebraického čísla řádu d b) Defiujte Liouvillovo číslo c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je trascedetí 2 a) Defiujte
Vícef ( x) = ψϕ ( ( x )). Podle vět o derivaci složené funkce
Funkce daná paramerick polárně a implicině 4 Funkce daná paramerick polárně a implicině Výklad Definice 4 Nechť jsou dán funkce ϕ() ψ () definované na M R a nechť ϕ () je prosá na M Složená funkce ψϕ definovaná
VícePři sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací
3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací
VícePravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,
VíceASYMPTOTICKÉ TESTY HYPOTÉZ V MODELECH S RUŠIVÝMI PARAMETRY
ROBUST 2000, 25 34 c JČMF 200 ASYMPTOTICKÉ TESTY HYPOTÉZ V MODELECH S RUŠIVÝMI PARAMETRY MICHAL KULICH Abstrakt. We discuss likelihood ratio, Wald ad Rao test statistics for testig several parameters i
VíceMATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická
VíceŘešení písemné zkoušky z Matematické analýzy 1a ZS ,
Řešeí písemé zkoušky z Matematické aalýzy a ZS008-09,0..009 Příklad : Spočtěte itu poslouposti 75 + 60 ) 75 60 + ) 0 + ) 0 +) 70 ) 70. 5 bodů) Řešeí:Ozačíme a : 75 + 60 75 60,dále b : + ) 0 + ) 0,akoečě
VíceStředoškolská technika 2015 ŘEŠENÍ DOKONALÉHO TVARU MOSTNÍHO NOSNÍKU Z HLEDISKA POTENCIÁLNÍ ENERGIE - ŘETĚZOVKA
Středoškolská techika 05 Setkáí a prezetace prací středoškolských studetů a ČVUT ŘEŠENÍ DOKONALÉHO TVARU MOSTNÍHO NOSNÍKU Z HLEDISKA POTENCIÁLNÍ ENERGIE - ŘETĚZOVKA Duša Köig Středí průmyslová škola strojická
VíceFINANČNÍ MATEMATIKA- ÚVĚRY
Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-
VíceKapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a
Kpitol Nekoečé číselé řdy Defiice. Nechť { } je posloupost reálých čísel. Symbol ebo + 2 + 3 +... zýváme ekoečou číselou řdou. s = i= i = + 2 +... + zveme -tý částečý součet řdy {s } posloupost částečých
VíceČíselné charakteristiky náhodných veličin
Číselé charakteristiky áhodých veliči Motivace Doposud jsme pozali fukcioálí charakteristiky áhodých veliči (apř. distribučí fukce, pravděpodobostí fukce, hustota pravděpodobosti), které plě popisují pravděpodobostí
VíceNUMP403 (Pravděpodobnost a Matematická statistika II) 1. Na autě jsou prováděny dvě nezávislé opravy a obě opravy budou hotovy do jedné hodiny.
Spojiá rozdělení I.. Na auě jou prováděny dvě nezávilé opravy a obě opravy budou hoovy do jedné hodiny. Předpokládejme, že obě opravy jou v akové fázi, že rozdělení čau do ukončení konkréní opravy je rovnoměrné.
Více,6 32, ,6 29,7 29,2 35,9 32,6 34,7 35,3
Př 7: S 95% polehlivotí odhaděte variabilitu (protředictvím odhadu měrodaté odchylky) a tředí hodotu obahu vitamíu C u rajčat. Záte-li výledky rozboru 0-ti vzorků rajčat: 3 4 5 6 7 8 9 0 9,6 3,4 30 3,6
VíceSeznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.
4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci
VíceIntervalové odhady parametrů některých rozdělení.
4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:
VícePřednáška 7, 14. listopadu 2014
Předáška 7, 4. listopadu 204 Uvedeme bez důkazu klasické zobecěí Leibizova kritéria (v ěmž b = ( ) + ). Tvrzeí (Dirichletovo a Abelovo kritérium). Nechť (a ), (b ) R, přičemž a a 2 a 3 0. Pak platí, že.
Víceje konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že
Více1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V
Předáška 1: Vektorové prostory Vektorový prostor Pro abstraktí defiici vektorového prostoru jsou podstaté vlastosti dvou operací, sčítáí vektorů a ásobeí vektoru (reálým číslem) Tyto dvě operace musí být
VíceKmitání tělesa s danou budicí frekvencí
EVROPSKÝ SOCIÁLNÍ FOND Kmiání ělesa s danou budicí frekvencí PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení echnické v Praze, Fakula savební, Kaedra maemaiky Posílení vazby eoreických předměů
Vícex udává hodnotu směrnice tečny grafu
Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je
VíceMocninné řady - sbírka příkladů
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Mocié řady - sbírka příkladů Vedoucí bakalářské práce: Mgr. Iveta Bebčáková, Ph.D.
VíceP Poznámka: Odpřednášená témata obarvuji žlutě. Přednášky jsou každý pátek, cvičení tedy vždy předcházejí přednášky.
ýde ozám: Odpředášeá ém obrvuji žluě ředášy jsou ždý páe, cvičeí edy vždy předcházejí předášy ) ojmy: Difereciálí rovice, obyčejá dif rovice, řád rovice, řešeí rovice ( eprázdé možiě, iervlu), iegrálí
VícePřijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika
Přijímací řízeí akademický rok 0/0 c. studium Kompletí zěí testových otázek matematika Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá. Které číslo doplíte místo 8? 6 6 8 C. Které číslo
VícePřijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika
Přijímcí řízeí kdemický rok /4 NvMg studium Kompletí zěí testových otázek mtemtik sttistik Koš Zěí otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správá odpověď efiičí obor fukce defiové předpisem f
VíceZáklady statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková
Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují
VícePřijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení
Přijímací řízeí akademický rok 0/0 Kompletí zěí testových otázek matematické myšleí Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá odpověď. Které číslo doplíte místo otazíku? 6 8 8 6?.
VíceTechnická kybernetika. Obsah. Laplaceova transformace. Akademický rok 2017/2018. Připravil: Radim Farana
8..8 kdemický rok 7/8 Připrvil: Rdim Fr Techická kyereik Lplceov rformce Oh Lplceov rformce Lplceov rformce Lplceov rformce L-rformce převuje velmi účiý ároj při popiu, lýze yéze pojiých lieárích yémů
VíceNEPARAMETRICKÉ METODY
NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost
VíceMatematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Ivaa Pultarová Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
Více, neboť. 1 Postup všech typů exponenciálního vyrovnávání je zevrubně popsán v monografii: i 1
Meoda expoeciálího vrováváí [Brow-Meer] Je dalším přísupů, kerý e řae (vedle meod klouavých průměrů k adapivím echikám určeí redové složk časové řad Výchoí úvahou éo echik e, že se k predikci ové hodo
VíceCvičení 1.1. Dokažte Bernoulliovu nerovnost (1 + x) n 1 + nx, n N, x 2. Platí tato nerovnost obecně pro všechna x R a n N?
1 Prví prosemiář Cvičeí 1.1. Dokažte Beroulliovu erovost (1 + x) 1 + x, N, x. Platí tato erovost obecě pro všecha x R a N? Řešeí: (a) Pokud předpokládáme x 1, pak lze řešit klasickou idukcí. Pro = 1 tvrzeí
VíceVolba vhodného modelu trendu
8. Splinové funkce Trend mění v čase svůj charaker Nelze jej v sledovaném období popsa jedinou maemaickou křivkou aplikace echniky zv. splinových funkcí: o Řadu rozdělíme na několik úseků o V každém úseku
VíceMasarykova univerzita Přírodovědecká fakulta
Masarykova uiverzita Přírodovědecká fakulta Zuzaa Došlá, Vítězslav Novák NEKONEČNÉ ŘADY Bro 00 c Zuzaa Došlá, Vítězslav Novák, Masarykova uiverzita, Bro, 998, 00 ISBN 80-0-949- 3 Kapitola 3 Řady absolutě
Více