6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI
|
|
- Libuše Müllerová
- před 6 lety
- Počet zobrazení:
Transkript
1 6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.. ČÍSELNÉ POSLOUPNOSTI V této kpitole se dozvíte: jk defiujeme posloupost reálých ebo komplexích čísel; defiici vlstí evlstí limity poslouposti; defiici pojmů souvisejících s omezeostí (ohričeostí) mootóostí posloupostí; důležité teoretické věty, př. kritéri kovergece posloupostí věty použitelé při kokrétích výpočtech; defiici ritmetické geometrické poslouposti včetě řešeí problému jejich kovergece; jk vypočítt Eulerovo číslo jko limitu jisté poslouposti. Klíčová slov této kpitoly: posloupost, limit poslouposti vlstí evlstí, kovergece divergece poslouposti, posloupost ohričeá zdol, ohričeá shor, ohričeá, posloupost klesjící, rostoucí, eklesjící, erostoucí, mootóí, ryze mootóí, podmík Bolzov-Cuchyov, kritéri kovergece posloupostí, limit součtu, rozdílu, bsolutí hodoty, součiu podílu posloupostí, ritmetická posloupost, geometrická posloupost, Eulerovo číslo. Čs potřebý k prostudováí učiv kpitoly: 0,75 +,0 hodiy (teorie + řešeí příkldů)
2 Poslouposti. Defiice. Posloupost je zobrzeí, které kždému přirozeému číslu přiřzuje číslo (reálé ebo. komplexí). Zčíme ji,,...,,... ebo stručě { } Ukázkový příkld. 3 Předpisem = je dá posloupost 0,,,, Defiice. Limitou poslouposti { } zýváme číslo právě tehdy, jestliže k libovolému číslu ε > 0 existuje tkové přirozeé číslo 0 (závislé volbě ε ), že pro všech > 0 je < ε. Zpisujeme: lim =. Defiice. O poslouposti, která má koečou (vlstí) limitu říkáme, že koverguje k, je kovergetí. V opčém přípdě je posloupost divergetí. Pozámk. Populárě řečeo, číslo je limitou poslouposti { } blíží k., pokud se s rostoucím eomezeě Ukázkový příkld. Posloupost z předchozího příkldu { }, kde =, má limitu. K dému ε stčí zvolit jko 0 libovolé přirozeé číslo >. Pk totiž pro > 0 pltí: ε = = < < ε. 0 Defiice. Posloupost { } diverguje k + (má evlstí limitu + ), jestliže k libovolému číslu K existuje tkové přirozeé číslo 0 (závislé volbě K), že pro všech > 0 je > K. Zpisujeme: lim =+. Obdobě defiujeme evlstí limitu. Defiice. Posloupost { } se zývá shor ohričeá, resp. zdol ohričeá, resp. ohričeá, existuje-li koečé číslo K, resp. K, resp. M tkové, že pro všech pltí: < K, resp. > K, resp. < M. Místo ázvu ohričeá se používá tké termí omezeá. Defiice. Posloupost { } se zývá rostoucí, resp. klesjící, resp. erostoucí, resp. eklesjící, je-li pro všech > +, resp. < +, resp. +, resp. +. Všechy tyto poslouposti se zývjí mootóí, prví dvě ryze mootóí.
3 Posloupost může mít ejvýše jedu limitu. Posloupost je kovergetí tehdy je tehdy, splňuje-li tuto podmíku (Bolzovu Cuchyovu): Ke kždému (libovolě mlému) ε > 0 existuje tkové číslo 0 (závislé volbě ε ), že pro kždé m> 0, > 0 je m < ε Pozámk. ) Jméo Cuchy se čte koši. b) Vět populárě řečeo tvrdí, že čley kovergetí poslouposti se s rostoucím eomezeě stále více blíží sobě vzájem. Jedoduchá kritéri (postčující podmíky) kovergece posloupostí. Nechť { }, { } b jsou kovergetí poslouposti, lim =, lim b posloupost, pro kterou pltí <= c <= b. Pk tké lim c =. = echť { c } je Pozámk. Jedá se tedy o přípd, kdy posloupost { c } leží mezi dvěm posloupostmi { }, { } které mjí touž limitu. Pk musí mít i tto posloupost { c } stejou limitu. Kždá eklesjící ( tedy i kždá rostoucí) shor ohričeá posloupost je kovergetí (má limitu). Obdobě kždá erostoucí ( tedy i kždá klesjící) zdol ohričeá posloupost je kovergetí (má limitu). Vybré věty pro práci s posloupostmi. Jsou-li { }, { } ( ) b kovergetí poslouposti lim =, lim b = b, pk pltí: lim ± b = ± b, lim k = k, lim b, =, lim b = b, lim = pro b 0. b Pozámk. ) Kždá z uvedeých posloupostí je tedy kovergetí. V posledím přípdě vyecháváme všechy čley, pro které je b = 0 jichž je pouze koečý počet. b) Uvedeá vět slouží v prxi k přímému výpočtu limit ze zlosti jiých (jedodušších) limit. Slově řečeo, jedá se o limity součtu rozdílu, k -ásobku, bsolutí hodoty, součiu podílu posloupostí. c) Větu lze zobecit i přípd evlstích limit, le pouze tehdy, evede-li výpočet tzv. eurčité výrzy typu, 0,. b
4 Nechť lim =, lim b = b. Je-li pro kždé b (ebo i < b), pk b. Je-li > 0, lim b = b, pk lim b b b lim = =. Aritmetická geometrická posloupost. Aritmetická posloupost, + d, + d,..., + d,... je pro kždé d 0 divergetí. Veliči d se zývá diferece. Geometrická posloupost, q, q,..., q,... má pro q < limitu 0, pro q = limitu pro q > diverguje (předpokládáme 0 ). Veliči q se zývá kvociet. Eulerovo číslo jko limit poslouposti. Pro kždé pltí: lim ( + ) = e speciálě lim ( ) logritmů (Eulerovo číslo). + = e, kde e je zákld přirozeých
5 Shrutí kpitoly: Posloupostí reálých ebo komplexích čísel rozumíme zobrzeí, které kždému přirozeému číslu přiřzuje určité reálé ebo komplexí číslo. Vlstí limitou poslouposti defiujeme koečé číslo lim, ke kterému se (zjedodušeě řečeo, viz přesou defiici v textu!) blíží čley poslouposti při vzrůstjícím. Poslouposti mjící vlstí limitu zýváme kovergetími, osttí pk divergetími. U divergetích posloupostí rozlišujeme víc poslouposti s evlstí limitou ±. Poslouposti mohou být omezeé zdol, omezeé shor, omezeé, klesjící, rostoucí, eklesjící, erostoucí, mootóí, ryze mootóí. Uvedeá termiologie odpovídá zvedeé termiologii v teorii fukcí reálé proměé. Pro poslouposti pltí důležité teoretické věty, které je třeb zát. Jedá se buď o kritéri kovergece ebo o věty použitelé při kokrétích výpočtech. Aritmetická posloupost je dá předpisem, kdy kždý dlší čle je o difereci d větší ež předcházející. Je vždy divergetí kromě triviálího přípdu d = 0. Geometrická posloupost je dá předpisem, kdy kždý dlší čle je q - krát větší ež předcházející. Pro q < má limitu 0, pro q = limitu pro q > diverguje (předpokládáme 0 ). Veliči q se zývá kvociet. Otázky: Jk zí přesá defiice poslouposti? Uveďte defiici vlstí evlstí limity poslouposti. Objsěte hlví ideu těchto defiic. Co zmeá, že posloupost koverguje, resp. diverguje? Defiujte posloupost omezeou zdol, omezeou shor omezeou. Defiujte posloupost klesjící, rostoucí, eklesjící, erostoucí, mootóí, ryze mootóí. Může mít posloupost více limit? Čeho se týká jk přesě zí Bolzov Cuchyov podmík kovergece. Co můžeme s určitostí říci o kovergeci př. erostoucí poslouposti omezeé zdol? Co víte o limitách součtu rozdílu, k -ásobku, bsolutí hodoty, součiu podílu posloupostí? Jk je defiová ritmetická geometrická posloupost? Jk je to s jejich kovergecí? Umíte vyjádřit Eulerovo číslo jko limitu ějké poslouposti?
6 Příkld. Určete limitu poslouposti zdé -tým čleem: ) = 3 + ; b) + + = ; c) = + ; d) + =. Návod. Vhodě uprvte (kráceím mociou ) využijte vět o součtu, součiu podílu limit dále toho, že lim = 0. Příkld. Rozhoděte, zd posloupost zdá -tým čleem koverguje ebo diverguje: + ) = ; b) = ; c) = ; d) = e ; e) ( ) 3 =.! Návod. Využijte vět o kovergeci mootóích omezeých (ohričeých) posloupostí, věty pro kovergeci geometrické poslouposti, příp. dlších vět z teorie. Řešeí příkldů: ) ; b) ; c) 0 ; d). ) diverguje ; b) koverguje ; c) koverguje ; d) diverguje ; e) koverguje. Dlší zdroje:. POLÁK, J. Přehled středoškolské mtemtiky. 6. vyd. Prh: Prometheus, POLÁK, J. Středoškolská mtemtik v úlohách I.. vyd. Prh: Prometheus, POLÁK, J. Středoškolská mtemtik v úlohách II.. vyd. Prh: Prometheus, REKTORYS, K. spol. Přehled užité mtemtiky. 6. přepr. vyd. Prh: Prometheus, 995. ZÁVĚR:
6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte:
6.2. ČÍSELNÉ ŘADY V této kpitole se dozvíte: jk defiujeme číselou řdu; defiici kovergece řdy jejího součtu; jk vypdá ritmetická, geometrická hrmoická řd jk je to s jejich kovergecí; jk zí utá podmík kovergece
11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel
KAPITOLA : Číselé řdy MA-8:P.] Ozčeí: R {, +} R R C {} C rozšířeá komplexí rovi evlstí hodot, číslo, bod U ε {x C x < ε } pro C, ε > 0 U K {x C x > K } pro K 0 defiujeme pro C: ±, je pro 0, edefiujeme:
DUM č. 19 v sadě. 13. Ma-1 Příprava k maturitě a PZ algebra, logika, teorie množin, funkce, posloupnosti, řady, kombinatorika, pravděpodobnost
projekt GML Bro Doces DUM č. 9 v sdě. M- Příprv k mturitě PZ lgebr, logik, teorie moži, fukce, poslouposti, řdy, kombitorik, prvděpodobost Autor: Jrmil Šimečková Dtum:.0.0 Ročík: mturití ročíky Aotce DUMu:
Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a }
Nekoečé řdy. Nekoečé číselé řdy.. Defiice ) Ozčme { } { } = L L ekoečou posloupost reálých čísel.,,,,, Nekoečá číselá řd je součet tvru = + + + L+ + L. Jedotlivá čísl,,, L,, L se zývjí čley řdy, čle obvykle
M - Posloupnosti VARIACE
M - Poslouposti Autor: Mgr Jromír Juřek - http://wwwjrjurekcz Kopírováí jkékoliv dlší využití výukového mteriálu je povoleo pouze s uvedeím odkzu wwwjrjurekcz VARIACE Teto dokumet byl kompletě vytvoře,
STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ
STEJNOMĚRNÁ KONVERGENCE Ztím ebylo v těchto textech věováo příliš pozorosti kovergeci fukcí, t jko limit poslouposti ebo součet řdy. Jik byl kovergece poslouposti fukcí ebo řdy brá jko bodová kovergece.
Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a
Kpitol Nekoečé číselé řdy Defiice. Nechť { } je posloupost reálých čísel. Symbol ebo + 2 + 3 +... zýváme ekoečou číselou řdou. s = i= i = + 2 +... + zveme -tý částečý součet řdy {s } posloupost částečých
Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+
Neurčité výrzy (lgebr s posloupostmi divergujícími k ekoeču), zvedeí pojmu číselé řdy, defiice POSLOUPNOST ČÁSTEČNÝCH SOUČTŮ, součet řdy, TVRZENÍ O NUTNÉ PODMÍNCE KONVERGENCE ŘADY, kokrétí příkldy výpočtu
1.2. MOCNINA A ODMOCNINA
.. MOCNINA A ODMOCNINA V této kpitole se dozvíte: jk je defiová oci s přirozeý, celý, rcioálí oecý reálý epoete jké jsou její vlstosti; jk je defiová přirozeá odoci, jké jsou její vlstosti jk se dá vyjádřit
6. Posloupnosti a jejich limity, řady
Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme
Vlastnosti posloupností
Vlstosti posloupostí Nekoečá posloupost je fukce defiová v oboru přirozeých čísel Z toho plye, že kždá posloupost má prví čle (zčíme ), koečé poslouposti mjí i čle posledí Př Vypište prví čtyři čley poslouposti
8.2.7 Geometrická posloupnost
87 Geometrická posloupost Předpokldy: 80, 80, 80, 807 Pedgogická pozámk: V hodiě rozdělím třídu dvě skupiy kždá z ich dělá jede z prvích dvou příkldů Větši studetů obou skupi potřebuje pomoc u tbule Ob
8. Elementární funkce
Moderí techologie ve studiu plikové fzik CZ.1.07/2.2.00/07.0018 8. Elemetárí fukce Historie přírodích věd potvrzuje, že většiu reálě eistujících dějů lze reprezetovt mtemtickými model, které jsou popsá
1.2. NORMA A SKALÁRNÍ SOUČIN
2 NORMA A SKALÁRNÍ SOUČIN V této kapitole se dozvíte: axiomatickou defiici ormy vektoru; co je to ormováí vektoru a jak vypadá Euklidovská orma; axiomatickou defiici skalárího (také vitřího) součiu vektorů;
POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde
POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti
1.3. POLYNOMY. V této kapitole se dozvíte:
1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí
Posloupnosti a řady. Obsah
Poslouposti řdy Poslouposti řdy Obsh. Poslouposti... 8. Úvod do posloupostí... 8. Aritmetická geometrická posloupost... 9. Limit poslouposti... 9. Řdy... 0. Nekoečá geometrická řd... 0 Strák 7 Poslouposti
je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost
Číselé řady Defiice (Posloupost částečých součtů číselé řady). Nechť (a ) =1 je číselá posloupost. Pro všecha položme s = ak. Posloupost ( s ) azýváme posloupost částečých součtů řady. Defiice (Součet
D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n
/9 POSLOUPNOSTI Zákldí pojmy: Defiice poslouposti Vlstosti poslouposti Určeí poslouposti Aritmetická posloupost Geometrická posloupost Užití poslouposti. Defiice poslouposti Př. Sestrojte grf fukce y =.x
8.3.1 Pojem limita posloupnosti
.3. Pojem limit poslouposti Předpokldy: 30, 0 Pedgogická pozámk: Limit poslouposti eí pro studety sdo strvitelým pojmem. Hlvím problémem je podle mých zkušeostí edorozuměí s tím, zd mezi posloupostí její
Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Fukce RNDr. Yvetta Bartáková Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Limita poslouposti a fukce VY INOVACE_0 9_M Gymázium, SOŠ a VOŠ Ledeč ad Sázavou A) Limita poslouposti Říkáme, že posloupost a je kovergetí,
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;
n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0
Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada
PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:
Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z
Základní elementární funkce.
6. předášk Zákldí elemetárí fukce. Defiice: Elemetárími fukcemi zveme všech fukce, které jsou vtvoře koečým počtem zákldích opercí ze zákldích elemetárích fukcí. Zákldí operce s fukcemi jsou:. Sčítáí dvou
Univerzita Karlova v Praze Pedagogická fakulta
Uverzt Krlov v Prze Pedgogcká kult SEMINÁRNÍ PRÁCE Z POLYNOMICKÉ ALGEBRY POLYNOM / CIFRIK Zdáí: Vyšetřete všem probrým prostředky polyom Vyprcováí: Rcoálí kořey Podle věty: Nechť p Q je koře polyomu q
Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
POSLOUPNOSTI A ŘADY,
POSLOUPNOSTI A ŘADY, ÚVOD DO INTEGRÁLNÍHO POČTU Obsh Poslouposti řdy. Poslouposti reálých čísel................................ Aritmetická geometrická posloupost........................ 4.3 Nekoečé číselé
Posloupnosti na střední škole Bakalářská práce
MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které
Analytická geometrie
Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí
6. FUNKCE A POSLOUPNOSTI
6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat
2.4. INVERZNÍ MATICE
24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:
je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že
je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí
PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.
Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205
8.2.6 Geometrická posloupnost
8.. Geometricá posloupost Předpoldy: 80, 80, 80, 807 Pedgogicá pozám: V hodiě rozdělím třídu dvě supiy ždá z ich dělá jede z prvích dvou příldů. Př. : Poločs rozpdu (dob z terou se rozpde polovi existujícího
Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl
Středí průmyslová škol sdělovcí techiky Pská 3 Prh Jroslv Reichl, 00 Jroslv Reichl OBSAH Poslouposti, Jroslv Reichl, 00 Poslouposti jejich vlstosti 3 Pojem posloupost 3 Připomeutí fukcí 3 Defiice poslouposti
1 Nekonečné řady s nezápornými členy
Nekoečé řady s ezáporými čley Příklad.. Rozhoděte o kovergeci ásledující řady Řešeí. Pro každé N platí Řada tg. tg. diverguje, a proto podle srovávacího kritéria diverguje také řada tg. Příklad.. Určete
Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Ivaa Pultarová Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1
[M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2018
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T DUBNA 08 : 8. dub 08 D : 884 P P P S M. M. M. : 0 : 5,5 % : 0 : 7,8 : -7,5 M.. P : -6,0 : 9,7 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí
1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů
.8. Mohočley, sčítáí odčítáí mohočleů Předpokldy: 7 Mohočle = zvláští typ výrzů. Jk je pozáme? Mohočley obshují pouze přirozeé mociy ezámých (jedé ebo více) kostty. Př. : Rozhodi, které z ásledujících
(3n + 1) 3n Příklady pro samostatnou práci
... 4. 5. 6. 0 0 0 a q koverguje pro q < geometrická řada diverguje harmoická řada koverguje srovejte s teleskopickou řadou + + utá podmíka kovergece + 4 + + 7 ití srovávací kritérium, srováí s ití podílové
Posloupnosti. a a. 5) V aritmetické posloupnosti je dáno: a
Poslouposti ) Prví čle ritmetické poslouposti je diferece Určete prvích pět čleů této poslouposti ) Prví čle ritmetické poslouposti je 8 diferece Určete prvích pět čleů této poslouposti ) V ritmetické
3.2. LOGARITMICKÁ FUNKCE
.. LOGARITMICKÁ FUNKCE V této kpitole se dovíte: jk je definován ritmická funkce (ritmus) jké má ákldní vlstnosti; důležité vorce pro práci s ritmickou funkcí; co nmená ritmovt odritmovt výr. Klíčová slov
8.1 Úvod. Definice: [MA1-18:P8.1] výpočet obsahu plochy pod grafem funkce. (nejdříve jen pro a < b ) a = x 0 < x 1 <... < x n = b.
KPITOL 8: určitý itegrál Riemův itegrál [M-8:P8.] motivce: výpočet oshu plochy pod grfem fukce 8. Úvod ejdříve je pro < ) řekeme, že moži D, je děleím itervlu,, jestliže je koečá, D. Prvky děleí D {x,
Masarykova univerzita Přírodovědecká fakulta
Masarykova uiverzita Přírodovědecká fakulta Zuzaa Došlá, Vítězslav Novák NEKONEČNÉ ŘADY Bro 00 c Zuzaa Došlá, Vítězslav Novák, Masarykova uiverzita, Bro, 998, 00 ISBN 80-0-949- 3 Kapitola 3 Řady absolutě
p = 6. k k se nazývá inverze v permutaci [ ] MATA P7 Determinanty Motivační příklad: Řešte soustavu rovnic o dvou neznámých: Permutace z n prvků:
ATA P Determity otivčí příkld: Řešte soustvu rovic o dvou ezámých: x + x = b x + x = b Permutce z prvků: Je dá moži = {,,, }, kde N Kždá uspořádá -tice [ k, k, k ] vytvořeá z všech prvků možiy se zývá
Znegujte následující výroky a rozhodněte, jestli platí výrok, nebo jeho negace:
. cvičeí Příklady a matematickou idukci Dokažte:.! . Návody:. + +. + i i i i + + 4. + + + + + + + + Operace s možiami.
Přednáška 7, 14. listopadu 2014
Předáška 7, 4. listopadu 204 Uvedeme bez důkazu klasické zobecěí Leibizova kritéria (v ěmž b = ( ) + ). Tvrzeí (Dirichletovo a Abelovo kritérium). Nechť (a ), (b ) R, přičemž a a 2 a 3 0. Pak platí, že.
Matematická analýza I
1 Matematická aalýza ity posloupostí, součty ekoečých řad, ity fukce, derivace Matematická aalýza I látka z I. semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia a další 2 Matematická
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2019
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 09 T á D P č P č ů ú P ů ě S á :. úor 09 : 004 : 0 M. M. M. á : 9, % ě č M.. P ů ě ž ó : 0 ž ž ó : 0 ó : -7,5 ž ó : -,8 ó : 4,4 Zopkujte si zákldí iformce ke zkoušce: Test
Matematická analýza III - funkční posloupnosti a. Ing. Leopold Vrána
Mtemtická lýz III - fukčí poslouposti řdy Ig. Leopold Vrá Obsh Předmluv 5 Část. Mocié řdy 7 Kpitol. Kovergece mocié řdy 9 Kpitol. Součtová fukce mocié řdy 7 Část. Fukčí poslouposti 3 Kpitol 3. Kovergece
f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )
DSM Cv 9 Vytvořující fukce Vytvořující fukcí ekoečé poslouposti a0, a,, a, reálých čísel mííme formálí ekoečou řadu =. f a i= 0 i i Příklady: f = + = + + + + + ) Platí: (biomická věta). To zameá, že fukce
Řešení písemné zkoušky z Matematické analýzy 1a ZS ,
Řešeí písemé zkoušky z Mtemtické lýzy ZS008-09,9009 Příkld : Spočtěte itu poslouposti 3 + + + 4 + 50 + 00 + 0 0 3 + + Řešeí:Ozčíme : +, b : 4 + 50 + 00 Zlomek,tvořící + 0 0,rozšířímevýrzem ++,čežvytkemeejvyššímociu
Základní věta integrálního počtu (Newton Leibnizova) nám umožní výpočet určitých integrálů. Poznáte základní vlastnosti určitých integrálů.
Mtemtik II Výpočet vlstosti určitého itegrálu Výpočet vlstosti určitého itegrálu Cíle Zákldí vět itegrálího počtu (Newto Leiizov) ám umoží výpočet určitých itegrálů Pozáte zákldí vlstosti určitých itegrálů
Opakovací test. Posloupnosti A, B
VY INOVACE_MAT_189 Opkovcí test Poslouposti A, B Mgr. Rdk Mlázovská Období vytvořeí: prosiec 01 Ročík: čtvrtý Temtická oblst: mtemtické vzděláváí Předmět: mtemtik, příprv k mturitě, příprv VŠ, opkováí,
P. Girg. 23. listopadu 2012
Řešeé úlohy z MS - díl prví P. Girg 2. listopadu 202 Výpočet ity poslouposti reálých čísel Věta. O algebře it kovergetích posloupostí.) Necht {a } a {b } jsou kovergetí poslouposti reálých čísel a echt
8.2.1 Aritmetická posloupnost
8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T BŘEZNA 08 :. břez 08 D : 0 P P P : 0 M. M. M. :,8 % S : 0 : 7,5 : -7,5 M. P : -,0 : 0,6 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90
Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.
Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti, sttických mometů, souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme, že
PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online
Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05
a 1 = 2; a n+1 = a n + 2.
Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot
Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.
8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl
5. Posloupnosti a řady
Matematická aalýza I předášky M. Málka cvičeí A. Hakové a R. Otáhalové Zimí semestr 2004/05 5. Poslouposti a řady 5.1 Limita a hromadé hodoty. Mějme posloupost x ) prvků Hausdorffova topologického prostoru
Univerzita Karlova v Praze Pedagogická fakulta
Uivrzit Krlov v Prz Pdgogická fkult SEMINÁRNÍ PRÁCE Z MATEMATICKÉ ANALÝZY KONVERGENCE ŘAD. přprcové vydáí / Cifrik, M-ZT Zdáí: Vyštřt kovrgci řdy, jstliž. ( ).!.. l ( ). 7.!. ( ). 8..! 4. 9. cos.. Vyprcováí:
Verze z 17. května 2018.
Verze z 7. květ 8. Úvodí pozámk Tto sbírk byl sepsá se záměrem vytvořit sezm výpočetích postupů triků pro řešeí úloh, které se probírjí ve druhém semestru kurzu mtemtické lýzy. Sezm, v ěmž s devdesátiprocetí
Řešení písemné zkoušky z Matematické analýzy 1a ZS ,
Řešeí písemé zkoušky z Mtemtické lýzy ZS008-09,9..009 Příkld : Spočtěte limitu poslouposti lim + ) 7 + 8 5 + ) 4 4 +) 5). Ozčme : + 7 +, b 8 : 5 +) 4 4 +) 5,zjímáástedy lim b. Máme 7 8 + 7 + + 7 ) + 8
ZÁPADOČESKÁ UNIVERZITA V PLZNI
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY MOCNINNÉ ŘADY - ŘEŠENÉ PŘÍKLADY BAKALÁŘSKÁ PRÁCE Kteři Bábíčková Přírodovědá studi, Mtemtická studi Vedoucí
Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...
Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1
8.2.1 Aritmetická posloupnost I
8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu
{} n n = 1 1. ŘADY Posloupnosti
ŘADY Poloupoti Kždá fukce, jejímž defiičím oborem je moži přirozeých číel ekoečá poloupot N, e zývá Kždá fukce, jejíž defiičí obor je moži všech přirozeých číel, kde je pevě dé přirozeé čílo, e zývá koečá
n 3 lim 3 1 = lim Je vidět, že posloupnost je neklesající, tedy z Leibnize řada konverguje, ( 1) k 1 k=1
3. cvičeí Přílady. (a) (b) (c) ( ) ( 3 ) = Otestujeme itu 3 = 3 = = 0. Je vidět, že posloupost je elesající, tedy z Leibize řada overguje, ( ) Řada overguje podle Leibizova ritéria, ebot je zjevě erostoucí.
Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.
Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti sttických mometů souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme že jste
Nové symboly pro čísla
Nové symboly pro čísl V pitole Ituitiví ombitori jsme řešili tyto dv typy příldů. Stále se v ich opují součiy přirozeých čísel, t j jdou z sebou, ědy ž do, ědy sočí dříve. Proto si zvedeme dv ové symboly
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2018
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T ÚNORA 08 :. úor 08 D : 96 P P P : 0 M. M. : 0 : 0 M. :,4 % S : -7,5 M. P : -,8 : 4,5 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90 miut
1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26
Zákld mtemtik Číselé oor ČÍSELNÉ OBORY 0 Některé pojm z mtemtické logik 0 Výroková logik 0 Moži vzth mezi imi Možiové operce Grfické zázorěí moži Číselé oor Čísl ázv jejich chrkteristik Chrkteristik číselých
Užitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové:
Užitečé zdroje příkladů jsou: Materiály ke cvičeím z Kalkulu 3 od Kristýy Kucové: http://www.karli.mff.cui.cz/~kucova/historie8. php K posloupostem řad a fukcí Ilja Čerý: Iteligetí kalkulus. Olie zde:
1. LINEÁRNÍ ALGEBRA. , x = opačný vektor
. LINEÁRNÍ LGEBR Vektorový prostor.. Defiice Nechť V e moži které sou defiováy operce sčítáí + : t. zobrzeí V V V ásobeí i : t zobrzeí R V V. Možiu V zýváme vektorovým prostorem, sou-li splěy ásleduící
Definice obecné mocniny
Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma
6 Stabilita lineárních diskrétních regulačních obvodů
6 Stbilit lieárích diskrétích regulčích obvodů Pro diskrétí systémy pltí stejá defiice stbility jko pro systémy spojité. Systém je stbilí, když se po odezěí vstupího sigálu vrátí zpět do rovovážého stvu.
jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých
9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie
Analytická geometrie
7..06 Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí
DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM
Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře
5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC
5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém
9. Racionální lomená funkce
@ 9. Rcioálí loeá fukce Defiice: Nechť P je poloická fukce -tého stupě... ) ( P kde R... A echť Q je poloická fukce -tého stupě... ) ( Q kde R... Rcioálí loeá fukce R je dá podíle ) ( ) ( ) ( Q P R pro
Content. 1. Úvodní opakování Mocnina a logaritmus. a R. n N n > 1
Cotet Úvodí opováí Moci logritmus Goiometricé fuce Zobrzeí jeho záldí vlstosti O možiě R 4 O možiě ompleích čísel 5 Oolí bodu (v R v C 6 Číselé poslouposti 6 Záldí vlstosti 6 Limit poslouposti 6 Aritmeti
KKKKKKKKKKKKKK. (i = 1,..., m; j = 1,..., n) jsou reálná čísla a x j jsou neznámé, se nazývá soustava m lineárních rovnic o
SOUSTAVY LINEÁRNÍCH ROVNIC Zákldí pojmy Defiice Soustv rovic m m m b b b m kde ij bi (i m; j jsou reálá čísl j jsou ezámé se zývá soustv m lieárích rovic o ezámých stručě soustv lieárích rovic Čísl ij
Mocninné řady - sbírka příkladů
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Mocié řady - sbírka příkladů Vedoucí bakalářské práce: Mgr. Iveta Bebčáková, Ph.D.
Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ Název zpracovaného celku: GEOMETRICKÁ POSLOUPNOST A JEJÍ UŽITÍ
Předmět: Ročík: Vytvořil: Dtum: MATEMATIKA TŘETÍ MGR JÜTTNEROVÁ Název zprcového celku: GEOMETRICKÁ POSLOUPNOST A JEJÍ UŽITÍ GEOMETRICKÁ POSLOUPNOST Defiice: Poloupot e zývá geometrická právě tehdy, když
Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
1 Základní pojmy a vlastnosti
Základí pojmy a vlastosti DEFINICE (Trigoometrický polyom a řada). Fukce k = (a cos(x) + b si(x)) se azývá trigoometrický polyom. Řada = (a cos(x) + b si(x)) se azývá trigoometrická řada. TVRZENÍ (Ortogoalita).
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY T BŘEZNA 9 D : 8. břez 9 Mx. možé skóre: Počet řešitelů testu: Mx. dosžeé skóre: Počet úloh: Mi. možé skóre: -7,5 Průměrá vyechost:, %Správé Mi. dosžeé skóre: -, odpovědi jsou
Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b
Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a
Spojitost a limita funkcí jedné reálné proměnné
Spojitost a limita fukcí jedé reálé proměé Pozámka Vyšetřeí spojitosti fukce je možo podle defiice převést a výpočet limity V dalším se proto soustředíme je problém výpočtu limit Pozámka Limitu fukce v
Posloupnosti ( 1) ( ) 1. Různým způsobem (rekurentně i jinak) zadané posloupnosti. 2. Aritmetická posloupnost
Poloupoti Růzým způobem (rekuretě i jik zdé poloupoti Urči prvích pět čleů poloupoti, ve které, + Urči prvích pět čleů poloupoti, je-li dáo:, + + Urči prvích pět čleů poloupoti, je-li dáo: 0,, Urči prvích
Zimní semestr akademického roku 2015/ listopadu 2015
Cvičeí k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikovaé matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičeí Zimí semestr akademického roku 2015/2016 20. listopadu 2015 Předmluva
Petr Šedivý Šedivá matematika
LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími
Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t.
ročík - loeý lgebrický výrz, lieárí rovice s ezáou ve jeovteli Loeý lgebrický výrz Lieárí rovice s ezáou ve jeovteli Doporučujee žáků zopkovt vzorce tpu ( + pod úprvu výrzu souči Loeý výrz Číselé výrz
U N I V E R Z I T A P A L A C K É H O V O L O M O U C I
U N I V E R Z I T A P A L A C K É H O V O L O M O U C I PEDAGOGICKÁ FAKULTA, KATEDRA MATEMATIKY N E K O N E Č N É Č Í S E L N É ŘADY V P Ř Í K L A D E C H Diplomová práce Autor: Lucie DVOŘÁKOVÁ Vedoucí