TAH-TLAK. Autoři: F. Plánička, M. Zajíček, V. Adámek R A F=0 R A = F=1500N. (1) 0.59
|
|
- Adam Pavlík
- před 5 lety
- Počet zobrazení:
Transkript
1 Autoři:. Plánička, M. Zajíček, V. Adámek 1.3 Řešené příklady Příklad 1: U prutu čtvercového průřezu o straně h vyrobeného zedvoumateriálů,kterýjezatížensilou azměnou teploty T (viz obr. 1) vyšetřete a zakreslete reakce,rozloženívnitřnísíly N,napětí σaprodloužení l podél jeho osy, je-li dáno: a=0.5m, b=0.3m, c =0.m, h = 0mm, α 1 = C 1, α = C 1, =1.5kN, T =40 C, E 1 = Pa, E = Pa. a b c E 1, α 1 E, α Obr.1 N [N] σ [MPa] l [mm] A a b c B C D 0.5 Obr Jako první vyšetříme reakce, které vznikají vevetknutíprutu.vzhledemktomu,žeje prut namáhán pouze osovou silou, vzniká ve vetknutívbodě Apouzereakce.Jejísměr volmenapř.vsouladusobr..velikosttéto reakce určíme ze silové podmínky rovnováhy vesměruosyprutu =0 = =1500N. (1) V dalším kroku řešení vyšetříme rozložení vnitřních statických účinků vznikajících v libovolném řezu v důsledku působení vnějšího zatížení. Vzhledem k charakteru vnějšího zatížení bude v libovolném řezu kolmém na osu prutu vznikat pouze normálová vnitřní síla N. Její velikost určíme z rovnováhy vnitřních sil vřezusvnějšímiúčinkypojednéstraněřezu. Díky tomu, že se vnější zatížení podél prutu mění, nebude zřejmě možné hledanou vnitřní sílu N popsat podél celého prutu stejnou funkcí.zatímtoúčelemjevhodnérozdělitprutna příslušný počet částí tak, aby v každé části byla vnitřní síla popsána jedinou funkcí. Stejná úvaha bude nutná i při vyšetřování normálového napětí σ, kdy ale samozřejmě počet částí, na kterých bude napětí popsáno jedinou 1
2 Autoři:. Plánička, M. Zajíček, V. Adámek funkcí,nemusíobecněsouhlasitspočtemčástívpřípaděnormálovésíly N.Vtomtopřípadě je při vyšetřování N i σ nutné díky proměnnému zatížení a konstantnímu průřezu pruturozdělitprutpouzenačásti(část ACa CDnaobr.). Nyní tedy z podmínek rovnováhy mezi vnitřními účinky v daném řezu a vnějšími účinky pojednéstraněřezustanovímefunkce N 1 a N popisujícívnitřnísílyvjednotlivýchpolích prutu. Poloha obecného řezu, v němž budeme formulovat příslušné podmínky rovnováhy, bude přitom dána souřadnicí, kterou v každém poli kótujme například z volného konce prutu,vizobr.. PoleI: 0,c A B N () 1 Vedeme řez v obecném místě a zaorientujeme vnitřní sílu N 1 vesměruvnějšínormálykřezu(vizobr.3). Nyní formulujeme podmínku rovnováhy pro levou nebo pravou část prutu, z obou podmínek musíme získat stejnoufunkci N 1 (): Podmínka rovnováhy na levé části prutu: Obr.3 N () 1 N 1 ()=0 N 1 () = () N 1 () = =0N. Podmínka rovnováhy na pravé části prutu: N 1 ()=0. (3) Jakjezřejmé,pomocíoboupodmínekrovnováhyzískámeshodně N 1 ()=0N.Analogickýmzpůsobemvyšetřímevnitřnísíluvčásti AC,tj.funkci N (). PoleII: c,abc. A B N () N () D Podmínka rovnováhy na levé části prutu(viz obr. 4): N ()=0 N ()= =1500N. (4) Podmínka rovnováhy na pravé části prutu: N () =0 N ()==1500N. (5) Výsledné rozložení vnitřní síly N je zakresleno na obr.. Poznámka: Zápis vnitřních sil jako funkcí proměnné, Obr.4 tj. N 1 ()an (),jevtomtopřípaděpouzeformální, neboť, jak jsme si ověřili, vnitřní síla na daném intervalu je rovna příslušné konstantě, tj. N 1 ()=N 1 =0N, N ()=N =1500N.
3 Autoři:. Plánička, M. Zajíček, V. Adámek V následujícím kroku stanovíme velikosti napětí v jednotlivých částech prutu jako intenzitu příslušných vnitřních sil. PoleI: 0,c PoleII: c,abc σ 1 ()= N 1() A =0 A =0MPa. (6) σ = N () A = h = = Pa=3.75MPa. (7) Rozložení napětí je opět zakresleno do obr.. Na závěr řešení vyšetříme rozložení posuvů podél prutu a jeho celkové prodloužení l. Rozložení prodloužení(posuvů) podél osy prutu stanovíme pomocí určení prodloužení prutuvcharakteristickýchbodech A,B,Ca D.Vzhledemktomu,žemezitěmitobody jevnitřnísílakonstantní(vizvyšetřenísil N 1 a N )aprutmákonstantníprůřezimechanické vlastnosti, bude prodloužení mezi těmito body rozloženo lineárně. Při stanovování lvjednotlivýchbodech A,B,Ca Dmusímejižbrátvúvahuivlivteplotyarozdílné vlastnosti obou materiálů. Jezřejmé,že l A =0(vetknutíprutu).Prodloužení(posuv) l B vbodě Burčíme jakoprodlouženíčásti ABvlivempůsobenísíly azměnyteploty T,tj. l B = N a E 1 A aα 1 T= a E 1 h aα 1 T= = = m=0.5mm Výslednéprodloužení(posuv) l C vbodě Curčímejakosoučetprodloužení l B aprodlouženíčásti BCvlivem a T,tj. l C = l B N b E A bα T= = = m=0.46mm anakonecprodloužení(posuv) l D vbodě Durčímejakosoučet l C aprodlouženíčásti CD vlivem změny teploty l D = l C cα T= = m=0.59mm (10) Výsledné rozložení prodloužení l je znázorněno na obr.. (8) (9) 3
4 Autoři:. Plánička, M. Zajíček, V. Adámek Příklad : Pro prut znázorněný na obr. 1 vyšetřete a nakreslete průběh účinků vnitřních sil podél prutu, průběh napětí podél prutu a průběh prodloužení prutu, je- -li dáno: a = 600mm, b = 500mm, c = 700mm, d 1 = 30mm, d =15mm, 1 =5kN, =70kN, E= 10 5 MPa. d 1 a c b d 1 N [kn] 45 σ [MPa] 63.7 l [mm] A a B d C c 1 Obr. b d 0.09 D Obr.1 Při řešení zadaného příkladu je nutné nejprve vyšetřit všechny neznámé reakce, které spolu se zatížením splňují podmínky statickérovnováhytělesa.jakjevidětnaobr.1, všechnyvnějšízatěžujícíúčinky,síly 1 a,působínajednénositelce.jetedyzřejmé, žeidoposudneznámáreakce,kterápůsobívevetknutí,ležínadanénositelce-ose prutu. Její směr můžeme zvolit libovolně, dálevizvolbadleobr..prouvedenítělesa do stavu statické rovnováhy tedy postačujeurčitreakce zesilovépodmínky rovnováhy ve směru osy prutu 1 =0 = 1 = 45kN.(1) Pomocí metody řezu následně vyšetříme vnitřní silové účinky vyvolané vnějšími silami 1, a (reakce počítáme mezi vnější účinky). Splňuje-li těleso podmínky statické rovnováhy, rovnice(1), pak v libovolném myšleném řezu působí vnitřní síly, které uvádějí danou část tělesa do stavu statické rovnováhy. Vzhledem k vnějšímu zatížení je opět zřejmé, že i výslednice vnitřních silových účinků musí působit na stejné nositelce jako zátěžné síly. Směr vnitřní síly můžeme volit libovolně. Volme ji však tak, aby směřovala ve směru vnější normály k povrchu řezu. Tato síla, bude-li potom kladná, způsobuje v místě řezu tahové napětí. 4
5 Autoři:. Plánička, M. Zajíček, V. Adámek Mezi místy, kde působí osamělé silové účinky a místy, kde dochází ke změně průřezu, bude zřejmě možné popsat hledané vnitřní účinky různými funkcemi. V souladu s tímto rozdělímetělesona3části,vizobr.. PoleI: 0,b d N () 1 Proveďme tedy řez v libovolném místě intervalu (0,b)(vizobr.3).Potomzpodmínky rovnováhy mezi vnějšími a vnitřními silami platí Obr.3 N () 1 1 N 1 () 1 =0 N 1 ()= 1 =5kN, () nebo N 1 ()=0 N 1 ()= = 5kN.(3) Vnitřní síly na zbývajících intervalech určíme obdobně: PoleII: b,c RA N () N () 1 nebo N () 1 =0 N ()= 1 =5kN, (4) N ()=0 N ()= = 5kN. (5) Obr.4 PoleIII: c,ba RA N () 3 N 3 () 1 =0 N 3 ()= 1 = 45kN,(6) nebo N () 3 1 N 3 ()=0 N 3 ()= = 45kN. (7) Obr.5 Výsledné rozložení vnitřních sil podél osy prutu je zobrazeno na obr.. 5
6 Autoři:. Plánička, M. Zajíček, V. Adámek Nyní můžeme přistoupit k vyšetření napětí v jednotlivých částech prutu. Při jejich stanovení uvažujme, že vnitřní síly jsou rovnoměrně rozložené po jednotlivých průřezech. Potom bude platit: PoleI: 0,b PoleII: b,c PoleIII: c,ba σ 1 ()= N 1() A 1 = 4N 1() πd σ ()= N () A = 4N () πd 1 = MPa (8) = 35.4 MPa (9) σ 3 ()= N 3() A = 4N 3() πd 1 = 63.7 MPa (10) Ve vztazích(8) až(10) odpovídá kladná hodnota tahovému napětí a záporná tlakovému napětí.průběhnapětípodélosyprutujeopětzobrazennaobr.. Pro úplné splnění zadání příkladu nám ještě zbývá stanovení prodloužení prutu. Protože na jednotlivých částech prutu 1, a 3 je vždy poměrná deformace konstantní, můžeme prodloužení těchto částí vypočítat jako l 1 = σ 1() E b=0.3537mm, l = σ () (c b)=0.0354mm, E l 3 = σ 3() (ab c)= 0.174mm. (11) E Uvážíme-li,ževzhledemkvetknutílevéstranyprutuvbodě Ajeprodloužení l A =0, můžeme pro prodloužení v ostatních bodech prutu psát: BodB: =ab c BodC: =b BodD: =0 l B = l 3 = 0.174mm (1) l C = l 3 l = 0.09mm (13) l D = l 3 l l 1 =0.617mm. (14) Průběh prodloužení mezi těmito body je lineární, viz obr. 6
7 Autoři:. Plánička, M. Zajíček, V. Adámek Příklad 3: Ocelovýprutkruhovéhoprůřezu d=15mmal 0 =800mmjevyrobenzocelismodulem pružnosti E= 10 5 MPaasmezíkluzu Re=40MPa.Jakoumaimálnísilou může být zatížen, má-li být bezpečnost vůči mezi kluzu k = 1.5? Jaké bude poměrné prodloužení ε a absolutní prodloužení prutu l? Zadaná hodnota meze kluzu Re a k ní vztažená hodnota součinitele bezpečnosti k vypovídá o tom, že se jedná o houževnatý materiál. V takovém případě pak určíme dovolené napětí jako σ D = Re k =40 =160MPa. (1) 1.5 Toto napětí odpovídá maimální síle, kterou lze ocelový prut namáhat a jejíž velikost určíme ze vztahu = σ D A=σ D πd 4 = =8.74kN. () Dálepomocíhodnoty σ D apomocíhookeovazákonaprojednoosounapjatosturčímeodpovídající poměrnou deformaci a pomocí ní absolutní prodloužení Příklad 4: ε= σ D E = = (3) l=ε l 0 =0.64mm. (4) Stanovte průměr d článku řetězu(viz obr. 1), je- -lidovolenézatíženířetězu =50kN.Řetězje vyrobenzoceliomezikluzu Rp0.=500MPa, součinitelbezpečnostimábýt k=. d Obr.1 Vzhledem ke geometrii článku řetězu(viz obr. 1) přenáší každý ze dvou průřezů článku sílu.tatovnějšísílavyvolávnitřnísílu N=, kteréodpovídánapětí σ= N A. (1) Z pevnostní podmínky plyne, že toto napětí musí být nejvýše rovno dovolenému napětí σ D,tj. σ= σ D, () 7
8 Autoři:. Plánička, M. Zajíček, V. Adámek kde hodnotu dovoleného napětí určíme ze vztahu Podosazení(1)a(3)do()můžemepsát σ D = Rp0. k. (3) N A = Rp0. k A = Rp0. k A= k Rp0.. (4) Jezřejmé,žeobsahprůřezu Amůžemevyjádřitjako A= πd.potomzrovnice(4)plyne 4 k d= =11.8mm =11.3mm. (5) πrp0. Příklad 5: Pomocí dvou zděří mají být spojena dvě absolutně tuhá tělesa tak, aby mezi nimi vznikla přítlačná síla =.10 4 N (viz obr. 1). Vzdálenost absolutně tuhých kolíkůje l=300mm.jakámusíbýtvzdálenost otvorů nezatížených zděří, je-li dáno: h=30mm, b=5mm, E= 10 5 Nmm. Předpokládejme, že se vliv přítlačné síly rovnoměrně přenese na horní a dolní zděř. Sílu 1 působícínajednuzděřlzepotom určit jako r d b l Obr.1 1 = =1 104 N. (1) Abymohlavobouzděříchvzniknouttakovásíla,musísekaždázděřprodloužito l. Označíme-lipůvodnídélkuzděřepředdeformací l 0,lzepropoměrnéprodloužení εpsát l=εl 0 = ε(l l). () Vzhledemktomu,žeje l << l,můžeme lvůčidélce lzanedbatarovnici()takpřepsat do tvaru l=εl= σ E l= 1l =0.1mm. (3) Ebh Vzdálenostotvorůzděřípředmontážímusítedybýt l 0 =99.9mm. h 8
OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )
3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =
Více3.2 Základy pevnosti materiálu. Ing. Pavel Bělov
3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je
VíceKˇriv e pruty Martin Fiˇser Martin Fiˇ ser Kˇ riv e pruty
Obsah Dimenzování křivého tenkého prutu zde Deformace v daném místě prutu zde Castiglianova věta zde Dimenzování křivého tenkého prutu Mějme obecný křivý prut z homogeního izotropního materiálu. Obrázek:
VíceTLUSTOSTĚNNÉ ROTAČNĚ SYMETRICKÉ VÁLCOVÉ NÁDOBY. Autoři: M. Zajíček, V. Adámek
1.3 Řešené příklady Příklad 1: Vyšetřete a v měřítku zakreslete napjatost v silnostěnné otevřené válcové nádobě zatížené vnitřním a vnějším přetlakem, viz obr. 1. Na nebezpečném poloměru, z hlediska pevnosti
VíceStřední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
VíceObecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
VíceIng. Jan BRANDA PRUŽNOST A PEVNOST
Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 2013 Aktualizováno: 2015 Použitá
VíceIng. Jan BRANDA PRUŽNOST A PEVNOST
Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická
VícePRUŽNOST A PLASTICITA I
Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice
VíceOTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011
OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:
Více3. kapitola. Průběhy vnitřních sil na lomeném nosníku. Janek Faltýnek SI J (43) Teoretická část: Příkladová část: Stavební mechanika 2
3. kapitola Stavební mechanika Janek Faltýnek SI J (43) Průběhy vnitřních sil na lomeném nosníku Teoretická část: Naším úkolem je v tomto příkladu vyšetřit průběh vnitřních sil na lomeném rovinném nosníku
VíceNamáhání v tahu a ohybu Příklad č. 2
Číslo projektu CZ.1.07/ 1.1.36/ 02.0066 Autor Pavel Florík Předmět Mechanika Téma Složená namáhání normálová : Tah (tlak) a ohyb 2 Metodický pokyn výkladový text s ukázkami Namáhání v tahu a ohybu Příklad
Víceb) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm
b) Početní řešení Na rozdíl od grafického řešení určíme při početním řešení bod, kterým nositelka výslednice bude procházet. Mějme soustavu sil, která obsahuje n - sil a i - silových dvojic obr.36. Obr.36.
VícePružnost a pevnost I
Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická
VíceKapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1).
Kapitola 4 Vnitřní síly přímého vodorovného nosníku 4.1 Analýza vnitřních sil na rovinných nosnících Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena rekapitulace
Více4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
VíceNapětí v ohybu: Výpočet rozměrů nosníků zatížených spojitým zatížením.
Číslo projektu CZ.1.07/ 1.1.36/ 02.0066 Autor Pavel Florík Předmět Mechanika Téma Namáhání součástí na ohyb Metodický pokyn výkladový text s ukázkami Napětí v ohybu: Výpočet rozměrů nosníků zatížených
VíceBetonové konstrukce (S) Přednáška 3
Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární
VíceÚvod do soustav sil. 1. Axiom o rovnováze sil F 1 F 2. tuhém tělese na stejném paprsku jsou v rovnováze. Axiomy statiky. Statika 1. M. Vokáč.
1. cvičení Svazek sil & tlak Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 14. února 2018 do soustav sil Síla je vektor y tuhé těleso F & tlak působiště paprsek [0,0] α A[x A,y
VíceStřední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
Vícepísemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.
POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)
Více16. Matematický popis napjatosti
p16 1 16. Matematický popis napjatosti Napjatost v bodě tělesa jsme definovali jako množinu obecných napětí ve všech řezech, které lze daným bodem tělesa vést. Pro jednoznačný matematický popis napjatosti
Víceα = 210 A x =... kn A y =... kn A M =... knm
Vzorový příklad k 1. kontrolnímu testu Konzola Zadání: Vypočtěte složky reakcí a vykreslete průběhy vnitřních sil. A x A M A y y q = kn/m M = - 5kNm A α B c a b d F = 10 kn 1 1 3,5,5 L = 10 x α = 10 A
VícePružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled
VíceM A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)
5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete
VícePružnost a pevnost. zimní semestr 2013/14
Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:
VíceStatika soustavy těles.
Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho
Více1.1 Shrnutí základních poznatků
1.1 Shrnutí základních poznatků Pojmem nádoba obvykle označujeme součásti strojů a zařízení, které jsou svým tvarem a charakterem namáhání shodné s dutými tělesy zatíženými vnitřním, popř. i vnějším tlakem.sohledemnatopovažujemezanádobyrůznápotrubíakotlovátělesa,alenapř.i
VíceA x A y. α = 30. B y. A x =... kn A y =... kn B y =... kn. Vykreslení N, V, M. q = 2kN/m M = 5kNm. F = 10 kn A c a b d ,5 2,5 L = 10
Vzorový příklad k 1. kontrolnímu testu Prostý nosník Zadání: Vypočtěte složky reakcí a vykreslete průběhy vnitřních sil. A x A y y q = kn/m M = 5kNm F = 10 kn A c a b d 1 1 3,5,5 L = 10 α B B y x α = 30
VíceDeformace nosníků při ohybu.
Číslo projektu CZ.1.07/ 1.1.36/ 02.0066 Autor Pavel Florík Předmět Mechanika Téma Deformace nosníků při ohybu Metodický pokyn výkladový text s ukázkami Deformace nosníků při ohybu. Příklad č.2 Zalomený
Více4. Napjatost v bodě tělesa
p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.
VícePOŽADAVKY KE ZKOUŠCE Z PP I
POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze o vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)
VíceStřední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Spoje a spojovací součásti Pevnostní výpočet šroubů
Více7 Lineární elasticita
7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový
Více6. Statika rovnováha vázaného tělesa
6. Statika rovnováha vázaného tělesa 6.1 Rovnováha vázaného tělesa Těleso je vystaveno působení vnějších sil akčních, kterými mohou být osamělé síly, spojité zatížení a momenty silových dvojic. Akční síly
Více2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3.
obsah 1 Obsah Zde je uveden přehled jednotlivých kapitol a podkapitol interaktivního učebního textu Pružnost a pevnost. Na tomto CD jsou kapitoly uloženy v samostatných souborech, jejichž název je v rámečku
Více1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu
Měření modulu pružnosti Úkol : 1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu Pomůcky : - Měřící zařízení s indikátorovými hodinkami - Mikrometr - Svinovací metr
VíceZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ
7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní
VíceVe výrobě ocelových konstrukcí se uplatňují následující druhy svařování:
5. cvičení Svarové spoje Obecně o svařování Svařování je technologický proces spojování kovů podmíněného vznikem meziatomových vazeb, a to za působení tepla nebo tepla a tlaku s případným použitím přídavného
VíceVlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti
Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze
VíceNAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB
Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 12. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Nejdůleţitější konstrukční prvek pro ohyb je nosník.
VícePrizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění )
1 Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění ) 1. Rozšířený Hookeův zákon pro jednoosou napjatost Základním materiálovým vztahem lineární teorie pružnosti
VíceReologické modely technických materiálů při prostém tahu a tlaku
. lekce Reologické modely technických materiálů při prostém tahu a tlaku Obsah. Základní pojmy Vnitřní síly napětí. Základní reologické modely technických materiálů 3.3 Elementární reologické modely creepu
VíceCvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti
Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze
Vícegraficky - užití Cremonova obrazce Zpracovala: Ing. Miroslava Tringelová
Statické řešení zadané rovinné prutové soustavy graficky - užití Cremonova obrazce Zpracovala: Ing. Miroslava Tringelová Určení sil v prutech prutové soustavy - graficky U příkladu viz obr. (1) graficky
Více1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5.
Kapitola 5 Vnitřní síly přímého šikmého nosníku Pojem šikmý nosník je používán dle publikace [1] pro nosník ležící v souřadnicové rovině xz, který je vůči vodorovné ose x pootočen o úhel α. Pro šikmou
VíceK618 FD ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní charakter a bude v průběhu semestru
Poznámky k semináři z předmětu Pružnost pevnost na K68 D ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní carakter a bude v průběu semestru postupně doplňován. Autor: Jan Vyčicl E mail:
VíceStatika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.
Definování 4. přednáška prutech iroslav okáč miroslav.vokac@cvut.cz ČUT v Praze, Fakulta architektury 11. dubna 2016 prutech nitřní síly síly působící uvnitř tělesa (desky, prutu), které vznikají působením
VíceZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady
Teorie plasticity VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA PRUŽNOSTI A PEVNOSTI ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady 1. ŘEŠENÝ PŘÍKLAD NA TAH ŘEŠENÍ DLE DOVOLENÝCH NAMÁHÁNÍ
VíceK výsečovým souřadnicím
3. cvičení K výsečovým souřadnicím Jak již bylo řečeno, výsečové souřadnice přiřazujeme bodům na střednici otevřeného průřezu, jejich soustava je dána pólem B a výsečovým počátkem M 0. Velikost výsečové
VícePrvky betonových konstrukcí BL01 6 přednáška. Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk,
Prvky betonových konstrukcí BL01 6 přednáška Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk, Způsoby porušení prvků se smykovou výztuží Smyková výztuž přispívá
VíceStěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.
Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného
VíceDovolené napětí, bezpečnost Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková
Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
VíceCvičení 7 (Matematická teorie pružnosti)
VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:
VíceNávrh žebrové desky vystavené účinku požáru (řešený příklad)
Návrh žebrové desky vystavené účinku požáru (řešený příklad) Posuďte spřaženou desku v bednění z trapézového plechu s tloušťkou 1 mm podle obr.1. Deska je spojitá přes více polí, rozpětí každého pole je
Vícetrubku o délce l. Prut (nebo trubka) bude namáhán kroutícím momentem M K [Nm]. Obrázek 1: Prut namáhaný kroutícím momentem.
Namáhání krutem Uvažujme přímý prut neměnného kruhového průřezu (Obr.2), popřípadě trubku o délce l. Prut (nebo trubka) bude namáhán kroutícím momentem M K [Nm]. Obrázek : Prut namáhaný kroutícím momentem.
Více12. Prostý krut Definice
p12 1 12. Prostý krut 12.1. Definice Prostý krut je označení pro namáhání přímého prizmatického prutu, jestliže jsou splněny prutové předpoklady, příčné průřezy se nedeformují, pouze se vzájemně natáčejí
VícePRUŽNOST A PLASTICITA
PRUŽNOST A PLASTICITA Ing. Vladimíra Michalcová LPH 407/1 tel. 59 732 1348 vladimira.michalcova@vsb.cz http://fast10.vsb.cz/michalcova Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená
VíceStatika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury.
ocelových 5. přednáška Vybrané partie z plasticity Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 2. prosince 2015 Pracovní diagram ideálně pružného materiálu ocelových σ
VícePružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových
VíceStatika 1. Prostý tah & tlak. Prostý smyk. ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Metody posuzování spolehlivosti
6. přednáška Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 19. května 2014 stavebních konstrukcí Vývoj metod pro posuzování stavebních konstrukcí: 1. Historické a empirické
Více1. Úvod do pružnosti a pevnosti
1. Úvod do pružnosti a pevnosti Mechanika je nejstarší vědní obor a její nedílnou součástí je nauka o pružnosti a pevnosti. Pružností nazýváme schopnost pevných těles získat po odstranění vnějších účinků
VíceNamáhání na tah, tlak
Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále
Vícea) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty.
Příklady: 24. Gaussův zákon elektrostatiky 1. Na obrázku je řez dlouhou tenkostěnnou kovovou trubkou o poloměru R, která nese na povrchu náboj s plošnou hustotou σ. Vyjádřete velikost intenzity E jako
Více2. kapitola. Co jsou to vnitřní síly, jakými způsoby se dají určit, to vše jsme se naučili v první kapitole.
2. kapitola Stavební mechanika 2 Janek Faltýnek SI J (43) Průběhy vnitřních sil Teoretická část: V tomto příkladu máme za úkol vyšetřit průběhy vnitřních sil na rovinné konstrukci zatížené libovolným spojitým
VícePetr Kopelec. Elektronická cvičebnice. Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/03.0027 Tvorba elektronických učebnic
Elektronická cvičebnice Petr Kopelec Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/03.0027 Tvorba elektronických učebnic O B S A H 1 Základní úlohy statiky... 3 2 Určení síly v rovině...
VíceTéma 2 Napětí a přetvoření
Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram
VíceJsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky.
7. Prutové soustavy Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. s styčník (ruší 2 stupně volnosti) každý
VíceIII/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy Název projektu Registrační číslo projektu Autor Název šablony třední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
VíceLibor Kasl 1, Alois Materna 2
SROVNÁNÍ VÝPOČETNÍCH MODELŮ DESKY VYZTUŽENÉ TRÁMEM Libor Kasl 1, Alois Materna 2 Abstrakt Příspěvek se zabývá modelováním desky vyztužené trámem. Jsou zde srovnány různé výpočetní modely model s prostorovými
VíceTeorie prostého smyku se v technické praxi používá k výpočtu styků, jako jsou nýty, šrouby, svorníky, hřeby, svary apod.
Výpočet spojovacích prostředků a spojů (Prostý smyk) Průřez je namáhán na prostý smyk: působí-li na něj vnější síly, jejichž účinek lze ekvivalentně nahradit jedinou posouvající silou T v rovině průřezu
Vícep + m = 2 s = = 12 Konstrukce je staticky určitá a protože u staticky určitých konstrukcí nedochází ke změně polohy je i tvarově určitá.
TRIN_STT_P11.doc STTIK - SOUOR PŘNÁŠK 11. Prutové soustavy, základní pojmy, metody řešení. Teoreticky je PRUTOVÁ SOUSTV definována jako soustava složená z tuhých prutů, které jsou navzájem spojeny ideálními
VíceNauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti
Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající
VíceMechanika kontinua. Mechanika elastických těles Mechanika kapalin
Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování
VíceRelaxační metoda. 1. krok řešení. , kdy stáří betonu v jednotlivých částech konstrukce je t 0
PŘEDNÁŠKY Relaxační metoda 1. krok řešení V okamžiku t 0, kdy stáří betonu v jednotlivých částech konstrukce je t 0 a kdy je konstrukce namáhána vnitřními silami { }, nechť je konstrukce v celém svém rozsahu
VíceSTATIKA. Vyšetřování reakcí soustav. Úloha jednoduchá. Ústav mechaniky a materiálů K618
STATIKA Vyšetřování reakcí soustav Úloha jednoduchá Ústav mechaniky a materiálů K618 1 Zadání Posuďte statickou určitost a vyšetřete reakce rovinné soustavy zadané dle obrázku: q 0 M Dáno: L = 2 m M =
VíceNelineární problémy a MKP
Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)
Více1. Definiční obor funkce dvou proměnných
Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou
VíceNávrh a posudek osově namáhaného nosníku podle obou MS
Návrh a posudek osově namáhaného nosníku podle obou MS 1) Statický rozbor 2) Dobře pochopit zadání definovat, v jakých hodnotách počítat (charakteristické x návrh.) 2) MSÚ nutný průřez dle MSÚ a) pevnost
VícePRUŽNOST A PLASTICITA
PRUŽNOST A PLASTICITA Ing. Petr Konečný LPH 407/3 tel. 59 732 1384 petr.konecny@vsb.cz http://fast10.vsb.cz/konecny Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená literatura
VíceLinearní teplotní gradient
Poznámky k semináři z předmětu Pružnost pevnost na K68 D ČVUT v Praze (pracovní verze). Tento materiá má pouze pracovní charakter a ude v průěhu semestru postupně dopňován. utor: Jan Vyčich E mai: vycich@fd.cvut.cz
VíceUrčete plochu, statické momenty a souřadnice těžiště. Plocha je určena přímkami z=0, y= aaparabolou z= y2
Určete plochu, statické momenty a souřadnice těžiště. Plocha je určena přímkami z=0, y= aaparabolou z= y2 a. a=100mm. Příklad 102 Určete kvadratické momenty průřezu tvaru rovnoramenného trojúhelníkakosám
VíceOhyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.
Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech
VíceSPOJE OCELOVÝCH KONSTRUKCÍ
2. cvičení SPOJE OCELOVÝCH KONSTRUKCÍ Na spojování prvků ocelových konstrukcí se obvykle používají spoje šroubové (bez předpětí), spoje třecí a spoje svarové. Šroubové spoje Základní pojmy. Návrh spojovacího
VíceČásti a mechanismy strojů 1 KKS/CMS1
Katedra konstruování strojů Fakulta strojní Části a mechanismy strojů 1 KKS/CMS1 Podklady k přednáškám část A4 Prof. Ing. Stanislav Hosnedl, CSc. a kol. Tato prezentace je spolufinancována Evropským sociálním
VíceŠroubovaný přípoj konzoly na sloup
Šroubovaný přípoj konzoly na sloup Připojení konzoly IPE 180 na sloup HEA 220 je realizováno šroubovým spojem přes čelní desku. Sloup má v místě přípoje vyztuženou stojinu plechy tloušťky 10mm. Pro sloup
VícePředpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování.
Předpjatý beton Přednáška 9 Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Analýza napjatosti namáhání předpjatých prvků Analýza napjatosti namáhání předpjatých prvků Ohybový
VíceFAKULTA STAVEBNÍ. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
VíceObr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.
9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce
VíceMatematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.
3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě
VícePrvky betonových konstrukcí BL01 3. přednáška
Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování
VíceZtráta stability tenkých přímých prutů - vzpěr
Ztráta stability tenkých přímých prutů - vzpěr Motivace štíhlé pruty namáhané tlakem mohou vybočit ze svého původně přímého tvaru a může dojít ke ztrátě stability a zhroucení konstrukce dříve, než je dosaženo
VíceRovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83
Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice
VíceVYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: RÁMOVÝ ROH S OSAMĚLÝM BŘEMENEM V JEHO BLÍZKOSTI
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: RÁMOVÝ ROH S OSAMĚLÝM BŘEMENEM V JEHO BLÍZKOSTI Projekt: Dílčí část: Vypracoval: Vyztužování poruchových oblastí železobetonové konstrukce Návrh
VíceTENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému
TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -
VíceEXPERIMENTÁLNÍ MECHANIKA 2. Jan Krystek
EXPERIMENTÁLNÍ MECHANIKA 2 4. přednáška Jan Krystek 15. března 2018 ODPOROVÁ TENZOMETRIE Elektrická odporová tenzometrie je nepřímá metoda. Poměrné prodloužení je určováno na základě poměrné změny elektrického
VíceTéma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření
Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu
VícePrvky betonových konstrukcí BL01 3. přednáška
Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování
VíceKONSTITUČNÍ VZTAHY. 1. Tahová zkouška
1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební
VíceX = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)
.6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí
Více