ELEKTRICKÉ POMĚRY NA KABELOVÝCH ROZVODECH

Rozměr: px
Začít zobrazení ze stránky:

Download "ELEKTRICKÉ POMĚRY NA KABELOVÝCH ROZVODECH"

Transkript

1 ELETRIÉ POMĚRY NA ABELOVÝH ROZVODEH Lumí BAJGAR Ig. Lumí BAJGAR, ČD TÚD EM, Peucká 3, Paha ABSTRAT V případě apájeí eového vedeí 6 kv, 50 Hz z přípojic kv takčí apájecí staice (TNS) byy zjištěy oačí jevy. Čáek popisuje řešeí použitím L- čeu, kteý sižuje oačí ekveci pod 550 Hz. kíčová sova:usměňovač, L- obvod, e, oace,hamoické ÚVOD abeové ozvody 6 kv, 50 (75) Hz v sítích ČD jsou učey především k apájeí zabezpečovacích zařízeí a v posedí době také k apájeí žeezičích uzů. Jsou apájey z tasomátoů /6 kv, kteé jsou připojey a přípojici kv. Na tuto přípojici jsou ověž připojey takčí usměňovače TNS soustavy 3 kv D (ob.). Z tohoto vypývá, že přípojice kv bude ovivěa poudovými hamoickými geeovaými takčími usměňovači (., 3. popříp. 3., 5. hamoická) a přes tasomáto /6 kv se můžou dostat tyto hamoické do eového ozvodu 6 kv a způsobit v ěm ebezpečé oace, kteé mohou ovivit ukčost zabezpečovacích zařízeí (výpadky jistících pvků a přeušeí dodávky poudu po eeová zabezpečovací zařízeí zkeseím tvau siusovky apětí). NÁHRADNÍ SHÉMA ZÁLADNÍH VÝONOVÝH PRVŮ. TRAČNÍ USMĚRŇOVAČ TNS Je u ČD povede ve dvaáctipuzím zapojeí (Yy0d). Toto zapojeí vykazuje po deší poměy eoceiteou vastost, že a pimáí staě takčího tasomátou má chaakte poudového zdoje hamoických sožek, přičemž ejižší z ich je až řádu (550 Hz). Násedující sožka pak je řádu 3 (650 Hz) (ob.). Tím se zapojeí takčího usměňovače a ČD iší apř. od usměňovačů po MHD, kteé mají šestipuzí zapojeí s dodatečou podukcí poudových hamoických sožek počíaje řádem 5 (50 Hz) ásedovaým řádem 7 (350 Hz). Absoutí veikosti těchto poudových sožek ostou s výkoovým zatížeím takčího usměňovače. Jejich poměé obsahy I vztažeé k obsahu zákadí sožky 50 Hz jsou dáy vemi přibižě tzv. ampitudovým zákoem I 00 [%] (A) kde je řád hamoické [-] To začí daší výhodu ašeho dvaáctipuzího zapojeí takčího usměňovače, potože zde sožka. hamoické dosahuje pouze asi 9 % zákadí sožky 50 Hz, zatím co po šestipuzí usměňovač MHD má 5. hamoická obsah asi 0 % zákadí sožky 50 Hz. Zkeseí siusovky poudu odebíaého takčím usměňovačem ČD je tedy podstatě meší ež v případě MHD.

2 0 kv~ 0/ kv 0/ kv kv~ Yy0d /(3) kv Yy0d /(3) kv /6 kv ~ ~ ~ ~ 3 kv e 6 kv ob. Obsah poudových hamoických dvaáctipuzího usměňovače 0 8 [ % ] řád hamoické ob.. NAPÁJEÍ SOUSTAVA 0/ kv Napájecí soustava 0/ kv, kteou se přivádí eektická eegie a přípojice kv TNS, se skádá především z tasomátou 0/ kv připojeého vzdušým vedeím 0 kv do vzdáeé ozvody REASu.

3 .3. NÁHRADNÍ SHÉMA TRANSFORMÁTORU 0/ kv Je běžou paxí, že áhadí schéma tasomátou 0/ kv je tvořeo po, jejíž tzv. eegetické hamoické pouze podéou idukčostí ( R 0) L tas 0 / hodota vztažeá a stau kv je učováa především jeho apětím akátko pode výazu kde L tas 0 / u 00 p U jme 00 S [H] u je apětí akátko tasomátou [%] U je apětí sítě kv S jme je typový výko tasomátou [MVA] této áhadí idukčosti ze pak připočítat idukčost vzdušého vedeí 0 kv, jejíž hodota se však po přepočtu a stau kv již upatí pouze okajově. Podobě ze zaedbat v pvím přibížeí i přepočteou vitří impedaci vzdáeé ozvody 0 kv, ze kteé je vzdušé vedeí apájeo. Podobě ze tuto idukčost odvodit i ze zkatového výkou a přípojicích kv, kteé udá REAS. Zkatový výko je dá vztahem S 3 U I [VA] () kde U je apětí pimáí stay tasomátou [V] I je poud [A] Úpavou vzoce () dostaeme vztah po poud I S 3 U (B) [A] (D) dáe pode Ohmova zákoa vypočítáme impedaci U Z I [W] (E) X >> R a využitím vztahu Z X p L [W] (F) zaedbáím čiého odpou ( ) dostaeme vztah po idukčost X L p kde je ekvece [Hz] Podstaté je, že a takto deiovaé áhadí idukčosti vzikají pode Ohmova zákoa a přípojicích kv apěťové hamoické, jejichž hodota závisí stejou měou: jak a zatížeí TNS, kteé učuje absoutí veikost geeovaých poudových hamoických počíaje řádem, tak i a áhadí idukčosti, učující vitří eaktaci apájecí soustavy kv a kmitočtech hamoických geeovaých takčím usměňovačem TNS, opět počíaje řádem. Z uvedeého vypývá pozatek, že apětí přípojic kv obsahuje mimo zákadí sožku. hamoické (50 Hz) ještě sožky. hamoické (550 Hz), dáe pak 3. hamoické (650 Hz), kteé zkesují jeho časový půběh. [H] (G).4 NÁHRADNÍ SHÉMA TRANSFORMÁTORU /6 kv Daším výzamým pvkem áhadího schématu je v případě apájeí eu 6 kv, 50 Hz tasomáto /6 kv připojeý a přípojice kv. Také teto tasomáto 3

4 ze po eegetické hamoické ahadit podéou idukčostí L tas / 6, po kteou patí v podstatě výše uvedeý výaz (B). Vzhedem k daším odvozeím však přepočteme čtvecem převodu p tuto hodotu a stau 6 kv. L tas / 6 00 p u U 00 S p [H] (H).5 NÁHRADNÍ SHÉMA ABELU 6 kv abeové vedeí 6 kv, 50 Hz můžeme v pvím přibížeí ahadit jeho povozí kapacitou, potože idukčost eu v je ve sováí s jeho povozí kapacitou zaedbateá. Povozí kapacita je zákadí vastostí eu a udává se vždy a jedotku jeho déky, apř. ve pov m F / km. Z toho pye, že ceková kapacita kokétího eového ozvodu přímo úměá jeho déce pov bude [mf] (I) Zde uto upozoit a skutečost, že teto e je odběem zabezpečovacího zařízeí v tao-kioscích zatíže vemi máo ve sováí s jeho přeosovou schopostí daou apětím 6 kv. 3 POZNATY Z áhadího schématu vypývají ásedující pozatky: existuje systém tasomáto /6 kv - e 6 kv, mající chaakte séiového obvodu L-, poměě máo tumeého odběem zabezpečovacími zařízeími, teto systém je připoje a esiusové apětí přípojic kv, kteé obsahuje hamoické sožky řádu ejíže a 3, apětí po apájeí zabezpečovacích zařízeí v tao-kioskách je odebíáo v podstatě z kapacity séiového obvodu L-. 4 POROVNÁNÍ DEFORMAE NAPĚTÍ NAPÁJEÍHO A NA ONDEZATORU L- OBVODU simuace: L 0,085 mh, R 0,0W, 35 µf (ob.3) hoí křivka apájecí apětí supeposice 5 % apětí s kmitočtem 50 Hz THD5 % 4

5 doí křivka apětí a THD(Uc) 43 apájecí apětí apětí a % ob.3 5 REZONANE 5. REZONANČNÍ MITOČET SYSTÉMU TRANSFORMÁTOR /6 kv ABEL 6 kv aždý eektický obvod L-, pokud je máo tumeý čiými sožkami (odpoem v L a ztátami v ), vykazuje jistý vastí kmitočet oace, a kteý je aadě. Teto kmitočet je v pvím přibížeí (při pém zaedbáí tumeí) dá výazem [Hz] (J) p L Podstaté je, že teto kmitočet je dá pouze paamety L a obvodu a emá tedy žádou vazbu a kmitočet sítě 50 Hz či a jeho ásobky. V ašem případě jsou jeho pvky dáy takto: jeho idukčost L je dáa áhadí podéou idukčostí tasomátou /6 kv L, začeou tas / 6 jeho kapacita je dáa cekovou kapacitou eového vedeí 6 kv, 50 Hz začeou. pov Dosadíme-i do výazu (J), dostaeme [Hz] () p L tas / 6 pov íem je staovit závisost především a déce eového ozvodu 6 kv, 50 Hz, začeé. Po teto úče ze ve výazu () považovat pvky L tas / 6 a pov za kostaty. Potože ezávise poměá () a duhou a upavíme a tva Ltas / 6 p je ve výazu () pod odmociou, umocíme výaz p (L) pov Daší úpava spočívá v zavedeí eaktace X tas / 6, a admitace Y pov, pode vzoců, patících po zákadí sožku 50 Hz 5

6 u U jme X tas / 6, p 50 Ltas / 6 (M) 00 S Y 50 pov pov, p (N) Po ázoost dašího odvozeí použijeme po vyjádřeí oačího kmitočtu jeho řádové číso začeé pode vztahu [-] (O) 50 a dostaeme po úpavě výaz X tas / 6, Y pov, Hedáme závisost veičiy především a déce eového ozvodu. Z výazu (P) však pye, že tato hodota závisí pochopiteě i a vastostech apájecího tasomátou /6 kv, představovaých jeho áhadí idukčostí L tas / 6 a tedy pode výazu (M) i a X tas / 6,. Jediě veičiu Y pov, můžeme pokádat pode výazu (N) za kostatu, potože je dáa vastostí eu 6 kv. V příkadu bya voea hodota 0,39 µf/km. pov Po ázoost situace poožíme v ovici (P) obě stay ovy pomocé veičiě A a vyeseme do gau majícím a vodoové ose hodoty (s ieáím děeím) a a svisé ose (po ázoost v ogaitmickém děeí) hodoty pomocé veičiy A dvě soustavy křivek, a to: A X tas / 6, po zvoeé hodoty X tas / 6, (Q) A Y pov, [W] po zvoeé hodoty (P) (R) Pví soustava křivek pode deiice (Q) patí po výkoovou řadu tasomátoů /6 kv daou jmeovitým zdáivým výkoem (00, 60, 50, 400 a 630 kva), po kteé bya zvoea hodota apětí akátko u 5 %. Duhá soustava křivek pode deiice (R) patí po déky eového ozvodu začeé z řady 5, 0, 5, 0, 5 a 30 km. Po měou povozí kapacitu eu bya použita hodota pov 0,39 µf/km (ob.4). Ve smysu výchozího výazu (P) pak patí, že vastí oačí kmitočet systému tasomáto /6 kv e 6 kv vyjádřeý pode výazu (O) veičiou bude dá vždy půsečíkem křivky áežející výkou tasomátou /6 kv s křivkou áežející daé déce eového ozvodu. 6

7 km A [-] km 5 km 0 km 00 kva 60 kva 50 kva 400 kva 0 5 km 30 km 630 kva 7, oačí kmitočet [-] ob.4 6 PŘÍLADY Mějme tasomáto /6 kv s výkoem 400 kva. Déka eového ozvodu 6 kv, 50 Hz budiž 30 km. Z diagamu vypývá, že vastí kmitočet tohoto systému daý půsečíkem křivky 30 km a křivky 400 kva je přibižě 7,8 (ob.4) (čemuž odpovídá 390 Hz). Potože teto kmitočet je dosti vzdáeý od ejižšího kmitočtu podukovaého takčím usměňovačem ČD (550 Hz), edojde pavděpodobě z důvodu zkeseí časového půběhu apětí 6 kv v eovém ozvodu k obtížím. Hodota pode výazu () je 389 Hz. Změňme yí déku eového ozvodu z původí hodoty 30 km a pooviu, tedy a 5 km. Diagam v tomto případě ukazuje půsečíkem křivek 400 kva a 5 km hodotu (ob.4) (čemuž odpovídá 550 Hz). Díky zkáceí déky eového ozvodu ze opávěě očekávat, že při zachováí ostatích okoostí může dojít k zvětšeé deomaci časového půběhu apětí 6 kv, a to pakticky v ceé déce eového ozvodu 6 kv. Hodota pode výazu () je stejá. 7 ZÁVĚR Odpomoc ze chaakteizovat těmito body:. hodotu povozí kapacity pvího úseku eu 6 kv až po ejbižší místo možého podéého ozpojeí tohoto eu dopíme tvae připojeým tzv. ozaďovacím kodezátoem (tab.), mi. kapacitu tohoto ozaďovacího kodezátou zvoíme tak, aby s povozí kapacitou ejkatšího úseku eu 6 kv vytvořia spou s áhadí eaktací tasomátou /6 kv T L obvod aaděý pod kmitočet. hamoické, tedy pod 550 Hz, 3. jakékoiv podoužeí déky eu 6 kv v tomto případě síží oačí kmitočet dáe pod 550 Hz, 7

8 4. po zabáěí přechodu TNS jako ceku v případě záiku takčího odběu do kapacitího účiíku je uto paaeě k ozaďovacímu kodezátou připojit tvae tumivku, jejíž jaový výko bude kompezovat eje jaový výko ozaďovacího kodezátou, ae i jaový výko povozí kapacity ejkatšího úseku eu 6 kv, 5. patí zákadí předpokad, že povozí kapacita daších úseků eu 6 kv bude ve svých odpojiteých dékách kompezováa samostatými tumivkami, umístěými vždy v každém odpojiteém úseku eu 6 kv. S L T mi [kva] [mh] [mf] 00 57,3, ,8,34 50,9 3, ,3 5, ,9 9, tab. tasomáto /6 kv, u 5 % ELETRI SITUATION ON ABLE DISTRIBUTION Summay The esoat eect i the 6 kv A e ies o eedig o the sigaig system was oud out i the case o eedig om the kv A busbas o the D tactio substatio. The pape descibes the soutio based o usig a L - cicuit that cuts dow the esoat equecy beow 550 Hz. Liteatua Vezich V.: Rezoačí jevy v apájecích vedeích 6 kv, 50 Hz po eéová zabezpečovací zařízeí ČD a ŽSR Nová žeezičí techika, č.4/994, st Vachoušek J.: Viv takčích apájecích staic 3 kv a apájeí zabezpečovacího zařízeí ČD (se zaměřeím a poměy a kocích eového vedeí) Dipomová páce Západočeské uivezity v Pzi, akuty eektotechické, 998, (vedoucí. Hava) Doeček R.: Viv takčích apájecích staic 3 kv a apájeí zabezpečovacího zařízeí ČD (se zaměřeím a půběh apětí podé eového vedeí) Dipomová páce Uivezity Padubice, Dopaví akuty Jaa Peea, 999, (vedoucí Hava) Hava.:Pobematika apájeí odběů z přípojic kv TNS stejosměé Soustavy Sboík předášek Modeizace eektických zařízeí a II. žeezičím koidou st

Měření na D/A a A/D převodnících

Měření na D/A a A/D převodnících Měřeí a D/A a A/D převodících. Zadáí A. Na D/A převodíku ealizovaém pomocí MDAC 8: a) Změřte závislost výstupího apětí převodíku v ozsahu až V a zvoleé vstupí kombiaci sousedích kódových slov. Měřeí poveďte

Více

ÚBYTKY NAPĚTÍ V ES Jednoduchá ss vedení nn, vn Dvouvodičový rozvod. Předpoklad konst. průřezu a rezistivity. El. trakce, elektrochemie, světelné

ÚBYTKY NAPĚTÍ V ES Jednoduchá ss vedení nn, vn Dvouvodičový rozvod. Předpoklad konst. průřezu a rezistivity. El. trakce, elektrochemie, světelné ÚBYTKY NAPĚTÍ V ES Jedoduchá ss vedeí, v Dvouvodičový rozvod. Předpoad ost. průřezu a rezistivity. E. trace, eetrochemie, světeé zdroje, dáové přeosy, výoová eetroia. Osaměé zátěže apájeé z jedé stray

Více

ÚBYTKY NAPĚTÍ V ES Jednoduchá ss vedení nn, vn Dvouvodičový rozvod. Předpoklad konst. průřezu a rezistivity. El. trakce, elektrochemie, světelné

ÚBYTKY NAPĚTÍ V ES Jednoduchá ss vedení nn, vn Dvouvodičový rozvod. Předpoklad konst. průřezu a rezistivity. El. trakce, elektrochemie, světelné ÚBYTKY NAPĚTÍ V ES Jedoduchá ss vedeí, v Dvouvodičový rozvod. Předpoad ost. průřezu a rezistivity. E. trace, eetrochemie, světeé zdroje, dáové přeosy, výoová eetroia. Osaměé zátěže apájeé z jedé stray

Více

1. Vztahy pro výpočet napěťových a zkratových

1. Vztahy pro výpočet napěťových a zkratových EE/E Eletráry ztahy pro výpočet apěťových a zratových poměrů. ztahy pro výpočet apěťových a zratových poměrů ýpočty lze provádět: ve fyziálích jedotách v poměrých jedotách v procetích jedotách Procetí

Více

Teorie kompenzace jalového induktivního výkonu

Teorie kompenzace jalového induktivního výkonu Teorie kompezace jalového iduktivího výkou. Úvod Prvky rozvodé soustavy (zdroje, vedeí, trasformátory, spotřebiče, spíací a jistící kompoety) jsou obecě vzato impedace a jejich áhradí schéma můžeme sestavit

Více

, která vznikla z matice A vynecháním i-tého řádku a j-tého sloupce nazýváme minorem matice A příslušnému k prvku

, která vznikla z matice A vynecháním i-tého řádku a j-tého sloupce nazýváme minorem matice A příslušnému k prvku Cvičeí z ieárí agebry 4 Vít Vodrák Cvičeí č Determiat a vastosti determiatů Výpočet determiat djgovaá a iverzí matice Cramerovo pravido Determiat Defiice: Nechť je reáá čtvercová matice řád Čtvercovo matici,

Více

Chyby měření: 1. hrubé chyby - nepozornost, omyl, únava pozorovatele... - významně převyšuje rozptyl náhodné chyby 2. systematické chyby - chybné

Chyby měření: 1. hrubé chyby - nepozornost, omyl, únava pozorovatele... - významně převyšuje rozptyl náhodné chyby 2. systematické chyby - chybné CHYBY MĚŘENÍ Opakovaé měřeí téže fyzkáí večy evede vždy k přesě stejým výsedkům. Této skutečost bychom se evyhu, kdybychom měřeí provádě s ejvětší důkadostí a precsostí aopak, čím ctvější a přesější jsou

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, měření elektrického odporu

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, měření elektrického odporu rčeo studetům středího vzděláváí s maturití zkouškou, druhý ročík, měřeí elektrického odporu Pracoví list - příklad vytvořil: Ig. Lubomír Koříek Období vytvořeí VM: říje 2013 Klíčová slova: elektrický

Více

a my chceme data proložit nějakou hladkou funkcí, která by vystihovala hlavní vlastnosti dat, ale ignorovala malé fluktuace a nepřesnosti.

a my chceme data proložit nějakou hladkou funkcí, která by vystihovala hlavní vlastnosti dat, ale ignorovala malé fluktuace a nepřesnosti. Vyováváí dat Naše pozoováí jsou dáa tabulkou čísel, kde y y y i často bývají časové údaje, a my chceme data položit ějakou hladkou fukcí, kteá by vystihovala hlaví vlastosti dat, ale igoovala malé fluktuace

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006 8 ELEKTRCKÉ STROJE TOČVÉ říklad 8 Základí veličiy Určeo pro poluchače akalářkých tudijích programů FS Aychroí motory g Vítězlav Stýkala, hd, úor 006 Řešeé příklady 3 fázový aychroí motor kotvou akrátko

Více

6A Paralelní rezonanční obvod

6A Paralelní rezonanční obvod 6A Paalelní ezonanční obvod Cíl úlohy Paktickým měřením ověřit základní paamety eálného paalelního ezonančního obvodu (PRO) - činitel jakosti Q, ezonanční kmitočet f a šířku pásma B. Vyšetřit selektivní

Více

2.1.2 Jaký náboj projde proudovodičem, klesá-li v něm proud z 18 A na nulu tak, že za každou sekundu klesne hodnota proudu na polovinu?

2.1.2 Jaký náboj projde proudovodičem, klesá-li v něm proud z 18 A na nulu tak, že za každou sekundu klesne hodnota proudu na polovinu? . LKTCKÝ POD.. lektický odpo, páce a výkon el. poudu.. Jaké množství el. náboje Q pojde vodičem za t = 0 s, jestliže a) poud = 5 A je stálý, b) poud ovnoměně oste od nuly do A?.. Jaký náboj pojde poudovodičem,

Více

Univerzita Karlova Přírodovědecká fakulta Katedra analytické chemie

Univerzita Karlova Přírodovědecká fakulta Katedra analytické chemie Uivezit ov Příodovědecká fkut ted ytické chemie Sttitické vyhodoceí výedků Picip: Výedky opkových zkoušek, kteé jou ztížey áhodými chybmi, mjí učité ozděeí (ditibuci). Rozděeím e zde ozumí záviot pvděpodoboti

Více

Geodézie 3 (154GD3) Téma č. 9: Hodnocení a rozbory přesnosti výškových měření.

Geodézie 3 (154GD3) Téma č. 9: Hodnocení a rozbory přesnosti výškových měření. Geodéze 3 (54GD3) Téma č. 9: Úvod o měřeí obecě. V geodéz měříme především déky, úhy, a dáe také apř. čas, vekost síy tíže apod. Výsedek měřeí je charakterzová čísem, závsým též a vobě jedotek. Ze zkušeost

Více

3.1.7 Kyvadlo. Předpoklady: 3106

3.1.7 Kyvadlo. Předpoklady: 3106 37 Kyvado ředpokady: 306 edaoická poznámka: Ceý obsah hodiny není možné stihnout za 45 minut Je třeba se ozhodnout, co je podstatné: testování vzoce paktickým sestojováním kyvade, povídání o kyvadových

Více

Přijímací zkoušky do navazujícího magisterského studia Učitelství fyziky pro 2. stupeň ZŠ a Učitelství fyziky pro SŠ pro akademický rok 2010/2011

Přijímací zkoušky do navazujícího magisterského studia Učitelství fyziky pro 2. stupeň ZŠ a Učitelství fyziky pro SŠ pro akademický rok 2010/2011 Přijíací zkoušky do avazujícího agiseského sudia čiesví fyziky po supeň ZŠ a čiesví fyziky po SŠ po akadeický ok / ) Při akceeačích závodech sauje závodí auoobi z kidu a ěří se čas, za keý uazí dáhu 4

Více

Podniková norma energetiky pro rozvod elektrické energie. Parametry kvality elektrické energie

Podniková norma energetiky pro rozvod elektrické energie. Parametry kvality elektrické energie Podiková orma eergetiky pro rozvod elektrické eergie REAS ČR ČEPS VSE Parametry kvality elektrické eergie ČÁST 6: OMEZENÍ ZPĚTNÝCH VLIVŮ NA HROMADNÉ DÁLKOVÉ OVLÁDÁNÍ PNE 33 3430-6 Druhé vydáí Odsouhlaseí

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

Souměrné složkové soustavy Rozklad nesymetrického napětí: Soustava sousledná (1), zpětná (2) a netočivá (0). Odtud (referenční fáze A) kde. 3 j.

Souměrné složkové soustavy Rozklad nesymetrického napětí: Soustava sousledná (1), zpětná (2) a netočivá (0). Odtud (referenční fáze A) kde. 3 j. ouměré složové soustavy Rozlad esymetricého apětí: B B B B A A A A oustava sousledá (), zpětá () a etočivá (). Odtud (referečí fáze A) B A B A de 3 j e 3 j 3 4 j e 3 j Maticově B A AB verzě AB B A 3 3f

Více

Bezpečnostní technika

Bezpečnostní technika Bezpečostí techika Modul pro hlídáí otáčeí a kotrolu zastaveí BH 5932 safemaster Grafické zázorěí fukce splňuje požadavky ormy EN 60204-1, kocepčí řešeí se dvěma kaály, vstupy pro iiciátory (símače) pp,

Více

Návod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky.

Návod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky. Návod pro cvičeí předmětu Výkoová elektroika Návod pro výpočet základích iduktorů s jádrem a síťové frekveci pro obvody výkoové elektroiky. Úvod V obvodech výkoové elektroiky je možé většiu prvků vyrobit

Více

ÚVOD Energetika představuje souhrn procesů získávání různých forem energie ze všech zdrojů, procesů přeměn a dopravy energie až po její konečné

ÚVOD Energetika představuje souhrn procesů získávání různých forem energie ze všech zdrojů, procesů přeměn a dopravy energie až po její konečné ÚVOD Eegetia představuje souh pocesů zísáváí ůzých oem eegie ze všech zdojů, pocesů přemě a dopavy eegie až po její oečé využití Po vědecé stáce je eegetia vědou, teá zoumá a omuuje záoy jedotivých eegeticých

Více

ÚVOD Energetika představuje souhrn procesů získávání různých forem energie ze všech zdrojů, procesů přeměn a dopravy energie až po její konečné

ÚVOD Energetika představuje souhrn procesů získávání různých forem energie ze všech zdrojů, procesů přeměn a dopravy energie až po její konečné ÚVOD Eegetia představuje souh pocesů zísáváí ůzých oem eegie ze všech zdojů, pocesů přemě a dopavy eegie až po její oečé využití Po vědecé stáce je eegetia vědou, teá zoumá a omuuje záoy jedotivých eegeticých

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

Aplikace marginálních nákladů. Oceňování ztrát v distribučním rozvodu

Aplikace marginálních nákladů. Oceňování ztrát v distribučním rozvodu Apliace margiálích áladů Oceňováí ztrát v distribučím rozvodu Učebí text předmětu MES Doc. Ig. J. Vastl, CSc. Celové ročí álady a ztráty N P ( T ) z z sj z wj Kč de N z celové ročí álady a ztráty *Kč+

Více

HODNOTY, MĚŘENÍ STATOROVÝCH ODPORŮ

HODNOTY, MĚŘENÍ STATOROVÝCH ODPORŮ 1. ZÁKLADNÍ VLASTNOSTI ASYNCHRONNÍHO MOTORU, ŠTÍTKOVÉ HODNOTY, MĚŘENÍ STATOROVÝCH ODPORŮ 1. Kostrukce asychroího stroje Úkol: Sezámit se s kostrukčím uspořádáím a rozložeím viutí statoru a s možými variatami

Více

4. Napěťové poměry v distribuční soustavě

4. Napěťové poměry v distribuční soustavě Tesařová M. Průmyslová elektroeergetika, ZČU v Plzi 000 4. Napěťové poměry v distribučí soustavě 4.1 Napěťové poměry při bezporuchovém provozím stavu Charakteristickým zakem kvality dodávaé elektrické

Více

Přehled vztahů k problematice jednoduchého úročení a úrokové sazby

Přehled vztahů k problematice jednoduchého úročení a úrokové sazby Přehled vztahů k poblematice jedoduchého úočeí a úokové sazby Pozámka: Veškeé úokové sazby /předlhůtí i polhůtí/, diskotí sazby, míy iflace a sazby daě z příjmů je do uvedeých vzoců uto dosazovat v jejich

Více

Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky).

Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky). Statstka. Základí pojmy Statstcký soubo - daá koečá, epázdá moža M předmětů pozoováí, majících jsté společé vlastost (událost, věc,.) Jedotlvé pvky této možy se azývají pvky statstckého soubou (statstcké

Více

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu 1. Defiice elektrického pohou Pod pojmem elektrický poho rozumíme soubor elektromechaických vazeb a vztahů mezi pracovím mechaismem a elektromechaickou soustavou. Mezi základí tři části elektrického pohou

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

3 - Póly, nuly a odezvy

3 - Póly, nuly a odezvy 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 5 3--5 Automatické řízeí - Kyberetika a robotika Póly přeosu jsou kořey jmeovatele pro gs () = bs () as () jsou to komplexí čísla si: as ( i) = pokud

Více

Metodický postup pro určení úspor primární energie

Metodický postup pro určení úspor primární energie Metodický postup pro určeí úspor primárí eergie Parí protitlaká turbía ORGRZ, a.s., DIVIZ PLNÉ CHNIKY A CHMI HUDCOVA 76, 657 97 BRNO, POŠ. PŘIHR. 97, BRNO 2 z.č. Obsah abulka hodot vstupujících do výpočtu...3

Více

Trojfázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cíl: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně

Trojfázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cíl: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně Trojázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cí: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně rozoženými parametry Homogenní vedení parametry R, L, G, C jsou

Více

Pøehled harmonizované legislativy ÈR ve vztahu k bezpeènosním prvkùm

Pøehled harmonizované legislativy ÈR ve vztahu k bezpeènosním prvkùm Pøehed harmoizovaé egisativy ÈR ve vztahu k bezpeèosím prvkùm 1. záko è. 22/1997/Sb., o techických požadavcích a výrobky a o zmìì a dopìí ìkterých zákoù 2. Naøízeí vády è. 168/1997 Sb., kterým se staoví

Více

Digitální učební materiál

Digitální učební materiál Číso projektu Název projektu Číso a ázev šaboy kíčové aktivity Digitáí učebí materiá CZ..7/.5./34.82 Zkvaitěí výuky prostředictvím ICT III/2 Iovace a zkvaitěí výuky prostředictvím ICT Příjemce podpory

Více

Trojfázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cíl: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně

Trojfázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cíl: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně Trojázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cí: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně rozoženými parametry Homogenní vedení parametry R, L, G, C jsou

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

Jednotkou tepla je jednotka energie, tj. 1 Joule (J). Z definice dále plyne, že jednotkou tepelného toku je 1 J/s ( neboli 1 W )

Jednotkou tepla je jednotka energie, tj. 1 Joule (J). Z definice dále plyne, že jednotkou tepelného toku je 1 J/s ( neboli 1 W ) 5. Sdíleí tepla. pomy: Pomem tepelá eergie ozačueme eergii mikroskopického pohybu částic (traslačího, rotačího, vibračího). Měřitelou mírou této eergie e teplota. Teplo e část vitří eergie, která samovolě

Více

Vztahy mezi základním souborem a výběry. Základní pojmy a symboly. K čemu to je dobré? Výběrové metody zkoumání

Vztahy mezi základním souborem a výběry. Základní pojmy a symboly. K čemu to je dobré? Výběrové metody zkoumání K čemu to je dobé? Obvyklým případem při zpacováí homadých jevů je, že máme poměě malý počet pozoováí ějaké veličiy a chceme učiit závěy o tom, co bychom obdželi, kdybychom měli pozoováí mohokát více.

Více

4. Tvorba náhradního schématu Před provedením výpočtu sítě nutno ji nadefinovat (i v případě, že využíváme počítačový program)

4. Tvorba náhradního schématu Před provedením výpočtu sítě nutno ji nadefinovat (i v případě, že využíváme počítačový program) 4. Torba áhradího schématu Před proedeím ýpočtu sítě uto ji adefioat (i případě, že yužíáme počítačoý program) Pro optimálí olbu řešeí jsou důležité zjedodušující předpoklady chceme sestait áhradí schéma

Více

4EK311 Operační výzkum. 4. Distribuční úlohy LP část 2

4EK311 Operační výzkum. 4. Distribuční úlohy LP část 2 4EK311 Operačí výzkum 4. Distribučí úlohy LP část 2 4.1 Dopraví problém obecý model miimalizovat za podmíek: m z = c ij x ij i=1 j=1 j=1 m i=1 x ij = a i, i = 1, 2,, m x ij = b j, j = 1, 2,, x ij 0, i

Více

ε ε [ 8, N, 3, N ]

ε ε [ 8, N, 3, N ] 1. Vzdálenost mezi elektonem a potonem v atomu vodíku je přibližně 0,53.10-10 m. Jaká je velikost sil mezi uvedenými částicemi a) elektostatické b) gavitační Je-li gavitační konstanta G = 6,7.10-11 N.m

Více

2.5.7 Šetříme si svaly I (kladka)

2.5.7 Šetříme si svaly I (kladka) 2.5.7 Šetříme si svay I (kadka) Předpokady: 020501 Pomůcky: kadky, akoěá rovia, šroub, smotateá akoěá rovia, švihada (ao), dvě košťata Př. 1: Uveď příkad situace, ve které se používá páka a: a) většeí

Více

NA-45P / NA-45L. VLL VLN A W var PF/cos THD Hz/ C. k M

NA-45P / NA-45L. VLL VLN A W var PF/cos THD Hz/ C. k M Multifukčíměřícípřístroje NA-45P / NA-45L VLL VLN A W var PF/cos THD Hz/ C k M Přístroje jsou určey pro měřeí a sledováí sdružeých a fázových apětí, proudů, čiých a jalových výkoů, účiíků, THD apětí a

Více

3.3 Soustavy sil a silových momentů. soustava sil a momentů = seskupení sil a momentů sil působících na těleso

3.3 Soustavy sil a silových momentů. soustava sil a momentů = seskupení sil a momentů sil působících na těleso 3.3 Soustav s a sových oetů soustava s a oetů sesupeí s a oetů s působících a těeso váští případ: svae s (paps všech s soustav se potíají v jedo bodě) soustava ovoběžých s (paps všech s soustav jsou aváje

Více

8.2.7 Vzorce pro geometrickou posloupnost

8.2.7 Vzorce pro geometrickou posloupnost 7 Vzoce po geometicou poloupot Předpoldy: 0, 0 Př : Po geometicou poloupot pltí ; q Uči čle, iž by učovl Mohli bychom pomocí vzoce po -tý čle učit čle p pomocí tejého vzoce učit i Teto potup je ložitější

Více

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa...

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa... IV- Eergie soustavy bodových ábojů... IV- Eergie elektrického pole pro áboj rozmístěý obecě a povrchu a uvitř objemu tělesa... 3 IV-3 Eergie elektrického pole v abitém kodezátoru... 3 IV-4 Eergie elektrostatického

Více

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6)

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6) Řešení úoh 1. koa 60. ročníku fyzikání oympiády. Kategorie B Autoři úoh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6) h 1.a) Protože vzdáenost bodů K a O je cos α, je doba etu kuičky z bodu K do bodu

Více

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ TŘEDNÍ ŠKOLA ELEKTROTECHNCKÁ, OTRAVA, NA JÍZDÁRNĚ 30, p. o. ROZVODNÁ ZAŘÍZENÍ g. Petr VAVŘŇÁK 05 Učebí texty pro urz ELEKTRKÁŘ OBAH:. PŘPOJENÍ OBJEKTU K ÍT DODAVATELE ELEKTRCKÉ ENERGE... 4.. Podmíy pro

Více

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy 3.1 Zadáí: 3. Sekvečí obvody 1. Navrhěte a realizujte obvod geerující zadaou sekveci. Postupujte ásledově: a) Vytvořte vývojovou tabulku pro zadaou sekveci b) Miimalizujte budící fukce pomocí Karaughovy

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, konstrukce a princip činnosti asynchronních strojů

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, konstrukce a princip činnosti asynchronních strojů Určeo tudetům tředího vzděláváí maturití zkouškou, druhý ročík, kotrukce a pricip čioti aychroích trojů Pracoví lit - příklad vytvořil: Ig. Lubomír Koříek Období vytvořeí VM: září 2013 Klíčová lova: aychroí

Více

3G3HV. Výkonný frekvenční měnič pro všeobecné použití

3G3HV. Výkonný frekvenční měnič pro všeobecné použití Výkoý frekvečí měič pro všeobecé použití APLIKACE Možství zabudovaých fukcí frekvečího měiče může být s výhodou použito v řadě aplikací Dopravíky (řízeí dopravíku) - Zlepšeí účiosti alezeím optimálího

Více

ZPĚTNÉ RUŠIVÉ VLIVY OSVĚTLOVACÍCH SOUSTAV NA NAPÁJECÍ SÍŤ DISTURBING INFLUENCES OF LIGHTING SYSTEMS TO THE SUPPLY NETWORK

ZPĚTNÉ RUŠIVÉ VLIVY OSVĚTLOVACÍCH SOUSTAV NA NAPÁJECÍ SÍŤ DISTURBING INFLUENCES OF LIGHTING SYSTEMS TO THE SUPPLY NETWORK VYSOKÉ UČEÍ TECHICKÉ V BRĚ FKULT ELEKTROTECHIKY KOMUIKČÍCH TECHOLOGIÍ Ig. Jiří Drápela ZPĚTÉ RUŠIVÉ VLIVY OSVĚTLOVCÍCH SOUSTV PÁJECÍ SÍŤ DISTURBIG IFLUECES OF LIGHTIG SYSTEMS TO THE SUPPLY ETWORK ZKRÁCEÁ

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

Podniková norma energetiky pro rozvod elektrické energie PARAMETRY KVALITY ELEKTRICKÉ ENERGIE ČÁST 1: HARMONICKÉ A MEZIHARMONICKÉ

Podniková norma energetiky pro rozvod elektrické energie PARAMETRY KVALITY ELEKTRICKÉ ENERGIE ČÁST 1: HARMONICKÉ A MEZIHARMONICKÉ Podiková orma eergetiky pro rozvod elektrické eergie REA ČR, ČEP, ZE, VE PARAMETRY KVALITY ELEKTRICKÉ ENERGIE ČÁT 1: HARMONICKÉ A MEZIHARMONICKÉ PNE 33 3430-1 Druhé vydáí Odsouhlaseí ormy Koečý ávrh podikové

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava MĚŘENÍ NA TŘÍFÁZOVÉM ASYNCHRONNÍM MOTORU S KOTVOU NAKRÁTKO (AM)

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava MĚŘENÍ NA TŘÍFÁZOVÉM ASYNCHRONNÍM MOTORU S KOTVOU NAKRÁTKO (AM) Katedra obecé elektrotechiky Fakulta elektrotechiky a iformatiky, VŠB - TU Ostrava MĚŘENÍ NA TŘÍFÁZOVÉM ASYNCHRONNÍM MOTORU S KOTVOU NAKRÁTKO (AM) Návody do měřeí 1. Měřeí statické mechaické charakteristiky

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Otázky EMC při napájení zabezpečovacích zařízení a rozvodů železničních stanic ČD

Otázky EMC při napájení zabezpečovacích zařízení a rozvodů železničních stanic ČD Jiří Krupica Otázky EMC při napájení zabezpečovacích zařízení a rozvodů železničních stanic ČD Klíčová slova: napájení zabezpečovacích zařízení ČD, univerzální napájecí zdroj (UNZ), zpětné působení UNZ

Více

FORT-PLASTY s.r.o., Hulínská 2193/2a, 767 01 Kroměříž, CZ tel.: +420 575 755 711, e-mail: info@fort-plasty.cz, www.fort-plasty.cz

FORT-PLASTY s.r.o., Hulínská 2193/2a, 767 01 Kroměříž, CZ tel.: +420 575 755 711, e-mail: info@fort-plasty.cz, www.fort-plasty.cz FORT-LASTY s.r.o., Hulíská 2193/2a, 767 01 Kroměříž, CZ NQA ISO 9001 0 7. Vetilátory řady a Vetilátory řady a slouží k odsáváí vzdušiy s obsahem agresivích látek, jako jsou kyseliy a louhy především z

Více

Elektrický náboj [q] - základní vlastnost částic z hlediska EM pole - kladný (nositel proton), záporný (nositel elektron) 19

Elektrický náboj [q] - základní vlastnost částic z hlediska EM pole - kladný (nositel proton), záporný (nositel elektron) 19 34 Elektomagnetické pole statické, stacionání, nestacionání zásady řešení v jednoduchých geometických stuktuách, klasifikace postředí (lineaita, homogenita, dispeze, anizotopie). Vypacoval: Onda, otja@seznam.cz

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

Proudění plynu vakuovým potrubím

Proudění plynu vakuovým potrubím Poudění pynu vakuovým potubím - ozdí taků - poud pynu - vodivost, (odpo) potubí Jaká je anaogie s eektickými veičinami? Vacuum Technoogy J.Šandea, FEE, TU Bno Poudění pynu vakuovým potubím Je třeba znát

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

Měření na třífázovém asynchronním motoru

Měření na třífázovém asynchronním motoru 15.1 Zadáí 15 Měřeí a zatěžovaém třífázovém asychroím motoru a) Změřte otáčky, odebíraý proud, fázový čiý výko, účiík a fázová apětí a 3-fázovém asychroím motoru apájeém z třífázové sítě 3 x 50 V při běhu

Více

STANOVENÍ VÝHŘEVNOSTI U ŠTĚPKY RÉVÍ Z VINIC

STANOVENÍ VÝHŘEVNOSTI U ŠTĚPKY RÉVÍ Z VINIC ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY UNIVERZITY V BRNĚ Ročník LVIII 22 Číslo 1, 2010 STANOVENÍ VÝHŘEVNOSTI U ŠTĚPKY RÉVÍ Z VINIC J. Souček, P. Bug Došlo:

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Vícekanálové čekací systémy

Vícekanálové čekací systémy Vícekaálové čekací systémy taice obsluhy sestává z ěkolika kaálů obsluhy, racujících aralelě a avzájem ezávisle. Vstuy i výstuy systému mají oissoovský charakter. Jedotky vstuující do systému obsadí ejrve

Více

Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz

Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz . STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad.: V elektrickém obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

8.2.1 Aritmetická posloupnost

8.2.1 Aritmetická posloupnost 8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž

Více

I. Výpočet čisté současné hodnoty upravené

I. Výpočet čisté současné hodnoty upravené I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu EKONOMIKA V ZEMĚMĚŘICTVÍ A KATASTRU číslo úlohy 1. název úlohy NEMOVITOSTÍ Analýza

Více

Elektrotechnické materiály a výrobní procesy Příklady z části Materiály v elektrotechnice

Elektrotechnické materiály a výrobní procesy Příklady z části Materiály v elektrotechnice Útav elektotechologie FEKT VT v Bě Akademický ok 004/005 Bakalářký tudijí ogam,. očík Elektotechické mateiály a výobí ocey Příklady z čáti Mateiály v elektotechice A. Vybaé kotaty c,998.0 8 m. - ychlot

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Měření koaxiálních kabelů a antén

Měření koaxiálních kabelů a antén Jihočeská Univezita v Českých Budějovicích Pedagogická fakulta Kateda fyziky Měření koaxiálních kabelů a antén BAKALÁŘSKÁ PRÁCE České Budějovice 2010 Vedoucí páce: Ing. Michal Šeý Auto: Zdeněk Zeman Anotace

Více

E L E K T R I C K É S T R O J E II Měření synchronního stroje Fázování, V křivky, Potierova reaktance, stanovení buzení

E L E K T R I C K É S T R O J E II Měření synchronního stroje Fázování, V křivky, Potierova reaktance, stanovení buzení 1 TO - ŠB FE Datum měřeí E L E K T C K É S T O J E Měřeí sychroího stroje Fázováí, křivky, Potierova reaktace, staoveí buzeí 1. Zaáí úlohy : Příjmeí Jméo Skupia (hooceí) 1. Proveďte přifázováí sychroího

Více

2,3 ČTYŘI STANDARDNÍ METODY I, ČTYŘI STANDARDNÍ METODY II

2,3 ČTYŘI STANDARDNÍ METODY I, ČTYŘI STANDARDNÍ METODY II 2,3 ČTYŘI STADARDÍ METODY I, ČTYŘI STADARDÍ METODY II 1.1.1 Statické metody a) ARR - Average Rate of Retur průměrý ročí čistý zisk (po zdaěí) ARR *100 % ( 20 ) ivestic do projektu V čitateli výrazu ( 20

Více

PRAVIDLA PROVOZOVÁNÍ DISTRIBUČNÍCH SOUSTAV METODIKA URČOVÁNÍ PLYNULOSTI DISTRIBUCE ELEKTŘINY A SPOLEHLIVOSTI PRVKŮ DISTRIBUČNÍCH SÍTÍ

PRAVIDLA PROVOZOVÁNÍ DISTRIBUČNÍCH SOUSTAV METODIKA URČOVÁNÍ PLYNULOSTI DISTRIBUCE ELEKTŘINY A SPOLEHLIVOSTI PRVKŮ DISTRIBUČNÍCH SÍTÍ PRAVIDLA PROVOZOVÁNÍ DISTRIBUČNÍCH SOUSTAV PŘÍLOHA 2 METODIKA URČOVÁNÍ PLYNULOSTI DISTRIBUCE ELEKTŘINY A SPOLEHLIVOSTI PRVKŮ DISTRIBUČNÍCH SÍTÍ Zpracovatel: PROVOZOVATELÉ DISTRIBUČNÍCH SOUSTAV prosiec

Více

Fabryův-Perotův rezonátor

Fabryův-Perotův rezonátor Úvod do laseové tehniky KFE FJFI ČVUT Paha Pet Koanda, 00 Fabyův-Peotův ezonáto Fabyův-Peotův ezonáto je optiké zařízení tvořené dvěma plan-paalelními (ovnoběžnými) ovinnými částečně odaznými plohami (ideálně

Více

Určeno pro posluchače bakalářských studijních programů FS

Určeno pro posluchače bakalářských studijních programů FS rčeno pro posluchače bakalářských studijních programů FS 3. STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad 3.: V obvodě sestávajícím ze sériové kombinace rezistoru, reálné cívky a kondenzátoru vypočítejte požadované

Více

5. Měření vstupní impedance antén

5. Měření vstupní impedance antén 5. Měření vstupní impedance antén 5.1 Úvod Anténa se z hlediska vnějších obvodů chová jako jednoban se vstupní impedancí Z vst, kteou můžeme zjistit měřením. U bezeztátové antény ve volném postou by se

Více

10 částic. 1,0079 1, kg 1, kg. 1, kg. 6, , kg 0, kg 1,079g

10 částic. 1,0079 1, kg 1, kg. 1, kg. 6, , kg 0, kg 1,079g ..7 oláí veličiy I Předpoklady: 0 Opakováí z iulé hodiy: Ato uhlíku A C C je přibližě x těžší ež ato H. Potřebujee,0 0 atoů uhlíku C abycho dohoady získali g látky. Pokud áe,0 0 částic látky, říkáe, že

Více

Nejistoty v mìøení III: nejistoty nepøímých mìøení

Nejistoty v mìøení III: nejistoty nepøímých mìøení Nestoty v ìøeí III: estoty epøíých ìøeí MÌØIÍ TEHNIK V èácích [] a [] by podá pøehed soèasých ázorù a probeatk estot v ìøeí obecì a pøedstave zpùsob výpoèt estot pø éì ároèých pøíých ìøeích. Teto tøetí

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

8.2.1 Aritmetická posloupnost I

8.2.1 Aritmetická posloupnost I 8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

MĚŘENÍ PARAMETRŮ OSVĚTLOVACÍCH SOUSTAV VEŘEJNÉHO OSVĚTLENÍ NAPÁJENÝCH Z REGULÁTORU E15

MĚŘENÍ PARAMETRŮ OSVĚTLOVACÍCH SOUSTAV VEŘEJNÉHO OSVĚTLENÍ NAPÁJENÝCH Z REGULÁTORU E15 VŠB - T Ostrava, FE MĚŘENÍ PARAMETRŮ OVĚTLOVACÍCH OTAV VEŘEJNÉHO OVĚTLENÍ NAPÁJENÝCH Z REGLÁTOR E5 Řešitelé: g. taislav Mišák, Ph.D., Prof. g. Karel okaský, Cc. V Ostravě de.8.2007 g. taislav Mišák, Prof.

Více

Z toho se η využije na zajištění funkcí automobilu a na překonání odporu vzduchu. l 100 km. 2 body b) Hledáme minimum funkce θ = 1.

Z toho se η využije na zajištění funkcí automobilu a na překonání odporu vzduchu. l 100 km. 2 body b) Hledáme minimum funkce θ = 1. Řešení úoh. koa 59. ročníku fyzikání oympiády. Kategorie A Autor úoh: J. Thomas.a) Na dráze vt bude zapotřebí objem paiva V θ θv t. Při jeho spáení se získá tepo Q mh ρv H ρθvh t. Z toho se η využije na

Více

FINANČNÍ MATEMATIKA- INFLACE

FINANČNÍ MATEMATIKA- INFLACE ojekt ŠABLONY NA GVM Gymázum Velké Mezříčí egstačí číslo pojektu: CZ..7/.5./34.948 V- ovace a zkvaltěí výuky směřující k ozvoj matematcké gamotost žáků středích škol FNANČNÍ MATEMATA- NFLACE Auto Jazyk

Více

Lehké střešní konstrukce ze dřeva

Lehké střešní konstrukce ze dřeva Worshop 5 VZ Uržiteá výstavba Lehé střeší ostruce ze řeva Petr Kuí ioš Vooa Cíem tohoto jetu je popsat chováí ehých střeších ostrucí veeých pomocí oceových ese s isovaými tr při běžé tepotě a za požáru.

Více

Měřící technika - MT úvod

Měřící technika - MT úvod Měřící techika - MT úvod Historie Už Galileo Galilei zavádí vědecký přístup k měřeí. Jeho výrok Měřit vše, co je měřitelé a co eí měřitelým učiit platí stále. - jedotá soustava jedotek fyz. veliči - símače

Více

Prostředky automatického řízení

Prostředky automatického řízení VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ Protředky automatického řízeí Měřící a řídící řetězec Vypracoval: Petr Oadík Akademický rok: 006/007 Semetr: letí Zadáí Navrhěte měřicí

Více

1 ROZMĚRY STĚN. 1.1 Délka vnější stěny. 1.2 Výška vnější stěny

1 ROZMĚRY STĚN. 1.1 Délka vnější stěny. 1.2 Výška vnější stěny 1 ROZMĚRY STĚN Důežitými kritérii pro zhotovení cihených stěn o větších rozměrech (déce a výšce) je rozděení stěn na diatační ceky z hediska zatížení tepotou a statického posouzení stěny na zatížení větrem.

Více

České účetní standardy 006 Kurzové rozdíly

České účetní standardy 006 Kurzové rozdíly České účetí stadardy METODICKÝ ig. u Vykazováí v Vymezeí w Oceňováí Odpisováí, postup účtováí y Ivetarizace z Aalytická evidece { Podrozvahová evidece Zveřejňováí České účetí stadardy 2017 2 22 1 v Vymezeí

Více

2.1 Stáčivost v závislosti na koncentraci opticky aktivní látky

2.1 Stáčivost v závislosti na koncentraci opticky aktivní látky 1 Pracovní úkoy 1. Změřte závisost stočení poarizační roviny na koncentraci vodního roztoku gukozy v rozmezí 0 500 g/. Pro jednu zvoenou koncentraci proveďte 5 měření úhu stočení poarizační roviny. Jednu

Více

Měření na trojfázovém transformátoru naprázdno a nakrátko.

Měření na trojfázovém transformátoru naprázdno a nakrátko. Úol: Měřeí a trojfázovém trasformátoru aprázdo a aráto. 1. Změřte a areslete charateristiy aprázdo trojfázového trasformátoru 2,, P, cos = f ( 1) v rozmezí 4-1 V. Zdůvoděte průběh charateristi 2 = f (

Více